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Abstract 
 
The domestic dog has become a valuable model in exploring multifaceted diseases and biology 
important for human health. Large-scale dog genome projects produced high-quality draft 
references but still lack comprehensive annotation of encoded functional elements. Through the 
integrative next generation sequencing of transcriptomes paired with histone marks and DNA 
methylome profiling of 11 adult tissue types, implemented in a cross-species approach, we 
generated a reference epigenome of a domesticated dog. Using genome orthologues and 
synthenies, we deciphered the dog’s epigenetic code by defining distinct chromatin states, 
allowing for genome-wide, integratable data production. We then characterized somatic super-
enhancer landscapes and showed that genes mapped on these regions are associated with a 
broad range of biological and disease traits and are traceable to their tissue-of-origin. Ultimately, 
we delineated conserved epigenomic changes at the tissue- and species-specific resolutions. Our 
study provides an epigenomic blueprint of the dog for comparative biology and medical research. 
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INTRODUCTION 
 
The pet dog Canis familiaris, a descendant of a grey wolf species [1], is a modern-day champion 
of genetics. With a domestication history of more than 20,000 years, dog genetics has provided 
us with paramount knowledge on evolution and diversification of phenotypic traits from 
morphology to behavior [2,3]. The iconic traits of over 450 globally recognized dog breeds portray 
a potpourri of heritable genetics characterized to exhibit highly diverse interbreed heterogeneity 
while maintaining a fixed intrabreed homogeneity [4]. These variations resulting from population 
bottlenecks prove to be useful in our understanding of the biological basis of complex breed traits 
[5], hereditary disorders [6], and genetic predispositions to diseases such as cancer [7]. Thus, a 
careful and extensive annotation of the dog genome and its features are paramount to augment 
the impact of such knowledge in advancing biomedical science important for both animals and 
humans.  
 
The genome of Tasha—a purebred female Boxer—represents the first reference sequenced dog 
genome [8]. This high-quality draft genome paired with mapped single nucleotide polymorphisms 
(SNPs) across breeds has provided us with prime knowledge on genome and haplotype 
structures and gene evolution in dogs. For example, the surveyed compendium of >2.5 million 
SNPs from comparative sequence analysis of 11 dog breeds reaching a sufficient density and 
breed-specific polymorphism rate allowed for systemic mapping of genes and trait-of-interest 
association studies [8]. This has enabled the identification of population genetic and evolutionary 
forces and epistatic selection mechanisms that drive genome structure. This first draft—which 
was generated via a whole-genome shotgun (WGS) method coupled with clone-based 
sequencing based on a 7.4× Sanger sequencing framework—is a success story of the Dog 
Genome Sequencing Project paving the way for high-quality first genome sequences of other dog 
breeds and important discoveries of molecular variants such as single-nucleotide variants (SNVs), 
copy number variants, short indels, regulatory sequences, and rearrangements in dog genomes 
[8,9,11]. Since then, this reference has been improved with multiple methods to better resolve 
euchromatic regions and improve transcript annotation from gross tissues.         
 
Despite the advancements in resolving genome architectures and transcript complexities in 
domestic dogs along with newly generated reference assemblies (i.e., genomes of Mischka and 
Nala, female German Shepherds) [12,13], functional DNA elements of the dog genome have not 
yet been comprehensively annotated. These elements—sequence features that operationally 
specify molecular and biochemical products with diverse regulatory functions—elucidate the basis 
of gene and genome function in biology, disease, and cell/tissue identity [14,15]. Pioneering 
comprehensive maps of these functional elements have been generated, and even continuously 
improved, for both human and mouse genomes, collectively annotated in the Encyclopedia of 
DNA Elements (ENCODE) Project [14,15,16]. These respective high-resolution annotations, 
executed mostly by high-throughput experiments, have already broadened our understanding of 
diverse classes of functional elements and narrowed the discrepancy in defining what constitutes 
a ‘function’ and what set the boundaries of an ‘element’ [16,17]. Comparative genomics 
approaches applied to these catalogues of human and mouse have uncovered preferential 
conservation patterns of transcriptional activities, gene expression and chromatin modifications, 
cis-regulatory elements, and chromosome domains in both their genomes across evolutionary 
time. Integrative datasets that makeup these outputs allowed an unprecedented level of 
comparison of genomic features between species revealing both conserved sequence features 
and widespread divergence in transcription and regulation [16,17]. For example, considerable 
divergence of mouse genes involved in distinct biological pathways from their human orthologs 
has been observed despite a relatively high level of conservation. This divergence is also mirrored 
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by cis-regulatory landscapes between the two genomes depending on the classes of elements 
active in specific tissue contexts. But perhaps the most notable output is the enhanced definitions 
of species specificities of candidate regulatory sequences, chromatin state landscapes, and 
chromatin domains at the cell lineage resolution [16]. Along with companion works, the expanding 
ENCODE has since set a new standard in comparative genomics. As there currently is no dog 
equivalent to these encyclopedic resources, dog geneticists primarily rely on human and mouse 
genome annotations that have been remapped to the dog [18]. Unfortunately, this approach is 
often restricted, not accurate, and results in output on which downstream analysis cannot be 
performed [18,19]. 
 
Here, we report a comprehensive 11-tissue based functional annotation of the dog genome. 
Building from the exemplar projects launched by ENCODE [14,16], Functional Annotation of the 
Mammalian Genome (FANTOM) [20], and the Functional Annotation of Animal Genomes 
(FAANG) [21] consortia, we performed an integrated analyses of in-house generated RNA 
sequencing (RNA-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq) of five 
major histone marks, and methyl-CpG-binding domain sequencing (MBD-seq) datasets from 
diverse somatic tissue types collected from three adult dogs with replicates, together with publicly 
available transposase-accessible chromatin using sequencing (ATAC-seq) datasets. These data 
allowed us to discover epigenomic features and infer differences across multiple tissue types and 
species at the chromatin state resolution. We generated a discrete set of chromatin state 
annotations captured in genomic elements such as promoters, enhancers, and hetechromatic 
regions and integrated transcriptome-wide gene expression and genome-wide DNA methylome 
profiles. This approach licensed downstream epigenomic analyses, identify super-enhancer 
regions, and gain insights on associated complex diseases or traits. Comparative inter-tissue and 
cross-species analyses of these datasets, along with complementary datasets from human and 
mouse databases, revealed tissue-specific and species-specific patterns at the level of 
orthologues or synteny. The generated data types, analyses pipelines, and genome browser 
mandated us to develop EpiC Dog (Epigenome Catalog of the Dog), a preliminary dog 
epigenomics initiative that aims to provide an essential resource and additional insights to the 
growing effort to accelerate dog epigenomics, and help realize the benefits for both dog and 
human health.    
 
RESULTS 
 
Data production and initial processing 
 
Toward the goal of generating a reference dog epigenome, we performed genome-wide  

segmentation and functional annotation by: (1) producing two replicates of primary RNA-seq, 

ChIP-seq, and MBD-seq matched datasets from 11 adult tissue types isolated from three beagle 

dog breeds, along with publicly available ATAC-seq datasets, and (2) carrying out computational 

multiple type data integration at the transcript level for genome-wide functional annotation, 

chromatin state discovery, and downstream epigenome analyses (schematized in Figs. 1A-B). 

Subsequent to these efforts, genome orthology- and synteny-based clustering further allowed us 

to perform cross-species and inter-tissue comparative epigenome analyses utilizing the human 

and mouse ENCODE data (Fig. 1B). At the very least, all in-house next generation sequencing 

(NGS) datasets were assessed based on coverage, read mapping, and consistency between 

biological replicates (Supplementary Figs. 1-2 and Supplementary Data 1-3). All data 

generated conformed to overall stringent data quality standards and output robustness set by 

ENCODE [14, accessed via portal 22], demonstrating sequencing depth, mapping quality, and 
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reproducibility (Supplementary Figs. 1-3 and Supplementary Data 1-3). For all in-house 

generated NGS, we produced about a total of 12.3 billion mapped reads (9.6 billion filtered 

mapped reads) with an average rate of 77.81% remaining after filtering, trimming, and alignment 

post-quality check (QC) and pre-processing across all samples. Per sample, we achieved an 

average of >111.2 million, >42.8 million, and >46.9 million mapped paired-end reads for RNA-

seq, ChIP-seq, and MBD-seq, respectively, substantially exceeding the ENCODE standards of 

>30 million reads, at least for both RNA-seq and ChIP-seq (Supplementary Data 1-3). Among 

the 11 tissues (cerebellum, cerebrum, colon, kidney, liver, lung, mammary gland, ovary, pancreas, 

spleen, and stomach), we obtained an average 40,034, 81,814, 119,198, 35,043, 71,362, and 

300,036 peaks for H3K4me3, H3K4me1, H3K27ac, H3K27me3, H3K9me3, and MBD, with 

average size of 625, 431, 604, 358, 404, and 588 bp, and covering 1.1, 1.5, 3.1, 0.5, 1.2, and 7.6% 

of the entire dog genome, respectively. Following each NGS run, we implemented transcript 

integrity number (TIN) analysis to evaluate RNA integrity post-RNA-seq and strand cross-

correlation analysis to assess peak calling-independent quality check (QC) for both ChIP-seq and 

MBD-seq. (Fig. 1C and Supplementary Figs. 1D, 2D, 3D). Additionally, we utilized four ATAC-

seq datasets from eight adult tissues in the BarkBase dataset [23] to define chromatin accessibility 

at least in available matched tissues.  

Comparative inter-tissue transcriptomics 
 
To comprehensively profile the transcriptome of genic regions in the dog genome, we performed 
RNA-seq experiments in 11 dog tissues with two biological replicates each (Supplementary Fig. 
1). Gene body (full transcript length) coverage shows skewness and variations across all samples 
(Supplementary Fig. 1E). We further corroborated our transcriptome data by comparing to that 
of BarkBase [23]—a preliminary dataset of functionally annotated dog genome—which contains 
RNA-seq data of 27 adult tissues from five dogs (Supplementary Data 4). In matched tissues, 
principal component analysis (PCA) reveals high transcriptome similarity between datasets of the 
same or similar tissue types (Fig. 2A; >0.9 mean Spearman rank coefficient), indicating strong 
consolidation of tissue-specific transcriptomes, and possibly of tissue-specific regulatory 
elements, between the two datasets. Note that mammary gland (MG) and ovary (OV) tissues are 
not profiled in BarkBase. Across all tissue transcriptomes, we identified a total of 16,083 unique, 
actively expressed genes [fragments per kilobase of gene model per million mapped reads (FPKM) 
>1 corresponding to >1 mRNA molecule per cell]—consisting of putative 15,298 (95.12%) protein-
coding genes, 118 (0.73%) pseudogenes, 469 (2.92%) long non-coding RNAs (lncRNAs), and 
198 (1.23%) others—and 14,868 uncounted, low confidence genes (Fig. 2B). These gene 
number estimates from combined mapped tissue and replicate RNA-seq libraries, which 
represent ~98% of the total reads, indicate tissue sample variances in terms of usable reads and 
are stable across different sequencing depths (Supplementary Figs. 1A-B), suggesting bona 
fide tissue differences. Extended catalogs of these gene clusters annotated by ENSEMBL 
(CanFam3.1; build 102) [24], including those from human orthologous regions and regardless of 
physical read coverage, reflected the comparable fractions of measurable gene expression in our 
dataset. In every tissue transcriptome, we retrieved >96% actively expressed protein-coding 
genes. Active expression of this cluster is consistently retrieved in ENCODE-annotated human 
(>85%) and mouse (75%) adult tissue transcriptomes, albeit lower percentile shares than that of 
the dog—at least those profiled in our dataset, BarkBase or others. Unquestionably, poorer 
annotation and scarce transcriptome consensus in dogs can adequately result to this discordance. 
Regardless, we retrieved >13,100 one-to-one actively expressed protein-coding orthologs 
representing approximately 83% of total coding orthologs across human, mouse and dog species, 
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capturing the large majority of coding genes annotated in ENSEMBL or GENCODE [25] (builds 
37 and M27). Dog orthologs of other actively expressed non-coding clusters totaled to a miniscule 
<82 genes representing <9% of total non-coding orthologs in human and mouse species, 
indicating significant fraction of captured, non-overlapping novel transcripts. Further, we used the 
mapped data to assemble and quantify contig structures—overlapping segments that represent 
consensus DNA regions. We uncovered a total of 969,233 total unique RNA-seq contigs and 
cumulatively detected (consolidating non-unique contigs across tissues) >64% and >81% of 
annotated introns and transcripts, respectively, but only detected >18% for annotated exons and 
intergenic regions, respectively (Supplementary Fig. 4A). Regardless, across all tissues, exonic 
contigs have the widest distribution. The high contig coverage for exonic sequences is 
comparable to that of human and mouse. Moreover, the variation in the proportion of detected 
contigs among tissues was considerably small (Supplementary Fig. 4A). However, the overall 
captured contigs in our dataset only represent ~20% dog genome coverage compared to the 39% 
and 46% mapping coverage in human and mouse genomes, respectively. From our dataset, the 
total annotated exons have an average coverage by RNA-seq contigs of 77%, and an absolute 
coverage of 62% (Supplementary Figs. 4B). While this might imply that the dog genome is less 
pervasively transcribed than human and mouse genomes, it is worth noting that the human and 
mouse RNA-seq contig data were derived from 57 and 25 cell lines/tissues, respectively, 
compared to our 11 tissues. Besides, both the human and mouse data have greater sequencing 
depths and were obtained from broader sampling spectrum. In addition, multiple factors known to 
affect the accuracy of transcript-contig alignment or production of erroneous contigs such as 
sequence ambiguity and multi-mapped reads may have impacted this deviation since these are 
frequently encountered during transcriptome assembly of non-model organisms [26,27,28]. So 
far, these data highlight the utility of our transcriptome dataset to improve existing dog genome 
annotations.  
 
Regardless of their measurable expression, there are fewer than 22,000 protein coding genes 
annotated across human, mouse, and dog genomes (GENCODE and ENSEMBL) [29,30,31]. 
However, they are transcribed into over 150,000 (human), 95,000 (mouse), and 45,000 (dog) 
transcripts, respectively, over 68% of which have protein coding potential and thus may contribute 
to protein diversity [29,30,31]. To deconvolute this transcript abundance, we functionally 
characterized the inter-tissue coding transcriptomes of the dog and performed cross-species 
analyses. We classified the pool of expressed genes according to their tissue-specificity (Fig. 2C). 
The majority of these genes are ubiquitously expressed across all tissues (20.1%; 6229 genes), 
with the remainder having mixed (14.3%; 4413 genes), tissue-specific (10.5%; 3252 genes; 
combined tissue-enriched and tissue-enhanced), or grouped tissue-specific (7.1%; 2189 genes) 
expression, while the uncounted fraction (48%; 14,868 genes) includes both undetected and low 
tissue specificity genes (Fig. 2C). These tissue-dependent metrics allowed us to decompose the 
tissue-level transcriptomes and perform tissue-specific gene and function annotation. Tissue 
specificity of these transcriptomes can also be retrieved as grouped tissue clusters (2 or 3 tissues; 
Supplementary Fig. 5A) and can be used to infer enriched biological signatures, albeit few fished 
out genes per category resulting in non-significant adjusted P values but with potentially 
biologically meaningful fold enrichments (Supplementary Fig. 5B). Among the 11 tissues, as 
expected, cerebellum (CL) and cerebrum (CR)—juxtaposing large brain structures comparable 
for both humans and dogs [32]—shared the greatest number of common genes (1154 genes, 2 
tissue groups; Supplementary Fig. 5B), many of which are enriched for glutamatergic synapse—
major excitatory synapses for neurotransmission [33]—and GABAergic synapse—major inhibitory 
synapses important in virtually every neuronal circuit [34]. Interestingly, many of the expressed 
genes in these brain regions share relatively predominant common genes with at least one other 
tissue type (3 tissue groups; Supplementary Fig. 5B), pointing to unexpected overlapping 
functions. For example, biological processes (BPs) related to cell motility, structural assembly, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.22.501075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501075


and organelle transport are commonly enriched in CL, CR, and lung (LU) tissues, while platelet 
aggregation and calcium ion regulation are commonly enriched in CL, CR, and spleen (SP) 
tissues (Supplementary Fig. 5B). Globally, ubiquitously expressed genes from these tissues 
highlight the enrichment of a myriad of biological pathways and processes involved in RNA, 
protein, and cellular metabolism, mRNA and protein processing, mitochondrial translation, and 
stress response, among others (Supplementary Figs. 5C-D). Ultimately, tissue-specific genes 
revealed enrichment of tissue appropriate BPs and pathways (Fig. 2D), further indicating the 
authenticity of tissue/organ-specificity, at least by transcribed products of the dog genome. 
Intriguingly, while common genes between CL and CR are enriched for brain-specific signatures 
(Supplementary Figs. 5A-B), CL and CR tissue-specific genes are discriminated by pathways 
related to stem cell pluripotency and neuroactive ligand-receptor interaction, respectively (Fig. 
2D). Nevertheless, co-occurring expression signatures of tissue-specific genes are highlighted in 
this tissue pair even after tissue-specific clustering.   
 
Across Mammalia, there are phenomenal examples of species-specific gene expression patterns 
that determine phenotypic changes during evolutionary adaptations [35]. Under these paradigms, 
the characteristic changes are bestowed by expression changes in a single gene between closely 
related species [35]. Still, how expression patterns change across distantly related species, such 
as humans, mouse, and dog, is poorly understood yet is crucial information in light of diverse 
scientific endeavors (i.e., comparative biology, domestication, heredity and disease). To emend 
this lack thereof, we interrogated the cross-species expression patterns of genes clustered in 
tissue-dependent manners. Based on the expression of 12,551 protein-coding orthologs across 
human, mouse and dog, we estimated the expression divergence between these species and 
their matched nine tissues (ENCODE and our dataset) by unsupervised hierarchical clustering. 
Similar to human and mouse [36], this initial approach revealed that gene expression patterns 
roughly gravitate toward a species cluster than a tissue cluster (Figs. 2E-F), with the exceptions 
of liver (LI) in all species and the mouse colon (CO) and pancreas (PA). We resolved the set of 
genes contributing to: i) tissue-dependent cluster, ii) species-dependent cluster, and iii) non-
specificity (low variance) by performing a variance decomposition using orthologs that occur 
between two species and across human, mouse, and dog (Fig. 2G). This analysis allowed us to 
examine the sets of genes with expression varying more across tissues than between species, 
and vice versa (Supplementary Fig. 6A). We retrieved a set of conserved high variance genes 
across three species including conserved genes between two sets of two species comparison 
(i.e., humans-dog and mouse-dog) and excluding those only conserved exclusively between the 
two species. Accordingly, the clustering of samples is asserted by either species or tissues, 
relying on the employed gene set. Removal of ~3477 conserved genes between two species that 
drive species-specific clustering or of ~2495 genes for tissue-specific clustering, and 
normalization approaches reduce species or tissue effects improving distance/clustering (Fig. 2H). 
Moreover, an additional k-means clustering step further composed the samples into new gene 
set expression clusters. We estimated the number of these clusters in the tissue-specific and 
species-specific sets of data using a gap statistic method and parsed 12 and 6 clusters for tissue 
and species data, respectively, upon evaluation of the goodness of separation with k between 1 
to 20 (tissue) or 1 to 10 (species) (Supplementary Fig. 6B). Biological features of these clusters 
validate our earlier sample partitioning based on tissue or species specificity showing definitive 
cell/tissue identity and functional pathways (Fig. 2I). This enabled the identification of shared 
features across tissues or species with enhanced biological interpretation (Supplementary Fig. 
7). For instance, in cluster 5 of the tissue data containing enrichments in LI and kidney (KI)—
major body metabolism sites [37]—across the three species, metabolic pathways were the most 
enriched (Supplementary Fig. 7A). In cluster 4 where multiple tissues (n>3) share the maximum 
number common enrichments, fibroblastic identity and extracellular matrix (ECM) organization 
pathways were enriched (Supplementary Fig. 7A), complementing known function of fibroblasts 
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in producing and modifying ECM components across multiple tissue architectures [38]. In cluster 
1 of the species data containing enrichments in dog and human but not in mouse, major pathways 
in eukaryotic transcription and translation were the most enriched, emphasizing gene and protein 
regulatory processing are more similar between human and dog (Supplementary Fig. 7B). 
Moreover, this cluster yielded the greatest number of enriched pathways annotated from multiple 
databases despite having a lesser sum of genes than other clusters, indicating a biologically 
significant overlap in function between human and dog than human and mouse. These modules 
of orthologous genes defined according to their tissue and species specificities remarked with 
functional properties should enable more informative comparison and research translation across 
human, mouse and dog.  
 
Genome-wide chromatin state discovery and characterization in dog tissues  
 
To date, efforts to catalog functional elements in the dog genome are actively being pursued by 
two initiatives: 1) BarkBase [23] and 2) the Dog Genome Annotation (DoGA) project [39]. While 
both execute large-scale integrative annotations, they currently lack datasets that systematically 
dissect dynamic epigenomic marks such as histone marks and DNA methylation. To advance the 
functional annotation of the dog genome, we produced integrated maps of histone modifications-
informed, genome-wide chromatin states and methylome-wide profiles in 11 dog tissues. We 
defined the dog genome as having a core set of five histone H3 modification marks: histone H3 
lysine 4 trimethylation (H3K4me3), H3 lysine 4 monomethylation (H3K4me1), H3 lysine 27 
acetylation (H3K27ac), H3 lysine 27 trimethylation (H3K27me3), and H3 lysine 9 trimethylation 
(H3K9me3)—marks well-known to have specific depositions on particular genomic regions and 
molecular signal associations (i.e., promoters, enhancers, heterochromatin, Polycomb repressive 
domains, etc). Enabled by a multivariate hidden Markov model (ChromHMM) [40] and combining 
all information on five epigenetic marks across tissues, we first defined 13 distinct chromatin 
states in the dog genome which can roughly be sorted into 8 active states, 4 repressive states, 
and a quiescent state; which can further be divided into four broad functional classes: promoter, 
enhancer, heterochromatin, and others (Fig. 3A). The optimal 13-state model was identified by 
first training the full-stack ChromHMM with 19 different state models (two to 20 state models) then 
quantitatively optimizing in terms of high correlation between the number of clusters and states in 
each model with data from all tissue types (see Methods and Supplementary Fig. 8). We then 
performed a concatenated modeling approach for tissue-type specific annotations. These states 
showed distinct levels of DNA methylation and evolutionary conservation, and mainly represented: 
(1) active states (associated with expressed genes and high-occupancy at genic and exonic 
regions) which consist of active, weak, and flanking active transcriptional start site (TSS) proximal 
or distal promoter states (TssWk, TssA, TssAFlnk1, and TssAFlnk2, with ~1.33% genome 
coverage), strong, poised, and weak active enhancer states (EnhA, EnhPd, and EnhWk, with 
~4.16% genome coverage), and a unique state associated with zinc finger protein genes 
(ZNF/Rpts, with ~0.1% genome coverage); and (2) inactive states (associated with repressed 
genes and low-occupancy at genic and exonic regions except for the TssEnhBiv state) which 
consist of states associated with repressed polycomb and other complexes (ReprP and Repr, 
with ~0.81% genome coverage), a bivalent regulatory state (TssEnhBiv, with ~0.14% genome 
coverage), a heterochromatic state (Het, with ~1.83% genome coverage), and a quiescent state 
(Quies, with 91.64% genome coverage). Across all samples analyzed, 38.7% of total overlapping 
regulatory regions are occupied by these chromatin states (Figs. 3A-B).  
 
Active states are generally coupled with nearly depleted DNA methylation, especially the active 
TssA promoter state, confirming the notable inverse correlation between promoter methylation 
and gene expression; while weak TssWk promoter and weak EnhWk enhancer states, which 
along with inactive and repressive states, are associated with higher methylation levels, 
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consistent with lower regulatory activity. In addition, active TssA, TssAFlnk1/2 promoter and EnhA, 
EnhPd enhancer states and the TssEnhBiv bivalent state showed the highest enrichment for 
conserved non-exonic elements during evolution (Fig. 3A), a curious finding reflecting similar 
evolutionary conservation for such elements outside coding regions or other known exons in 
human and other species [36,41,42]. En masse, we identified 1,567,566 unique regulatory 
elements (excluding Quies) spanning 11 tissues, including 132,750 active promoters (all TssA), 
166,506 active strong enhancers (EnhA), and 568,744 repressed elements (combined others 
except ZNF/Rpts). 
 
Fundamentally, each of the chromatin state have distinct categorical presence and levels of 
associated histone marks across tissues (Fig. 3A and Supplementary Fig. 9): (i) most of the 
annotated states predominantly active promoters, except only for enhancer and heterochromatic 
(Het) states, is marked by H3K4me3 at varying degrees, substantiating it both as active and near-
universal chromatin modification; (ii) active TssAFlnk1/2 promoter and EnhA, EnhPd enhancer 
states are preferentially marked by H3K4me1, which also moderately marks the TssEnhBiv 
bivalent and promiscuous ZNF/Rpts states, corroborating H3K4me1’s common association with 
distal enhancers and promoters proximal to TSS and the presence of poised chromatin; (iii) TssA, 
TssAFlnk2 promoter and EnhA, EhWk enhancer states are marked by H3K27ac, which also 
moderately marks TssEnhBiv and ZNF/Rpts states, owing to H3K27ac’s function in separating 
active from poised enhancers and in shaping active promoters and enhancers by opening 
chromatin; (iv) the heterochromatin Het and associated repressive Repr and ZNF/Rpts states are 
marked by H3K9me3, a modification known to assemble and propagate repressive 
heterochromatin to halt premature or untimely gene expression; (v) the bivalent state TssEnhBiv 
is additionally marked by H3K27me3, a prominent histone methylation of bivalency implicated in 
transcriptional repression of cell or tissue identity. These collective signatures of histone marks 
along with DNA methylation constitute a code that define both universal and tissue-specific 
chromatin states [43,44].  
 
These chromatin state annotations allowed us to globally illustrate the epigenomic landscape of 
each tissue and explore the relationships among individual histone marks, gene expression, DNA 
methylation, and multiple genomic elements in specific locus in the dog genome (Fig. 3C). Using 
the pilot ATAC-seq data from BarkBase [23] and then applying it to the matched tissue samples, 
we examined the relationship between chromatin states, DNA accessibility, and DNA methylation 
(Fig. 3D, Supplementary Fig. 10 and Data 4). Our dog chromatin state assignments 
complement that of human and mouse as for average levels of chromatin accessibility [44,45]; 
with promoter states showing highest average levels of accessibility, followed by enhancer and 
bivalent states (Fig. 3D). Consistent with other annotated epigenomes from different species, we 
found generally low methylation and high accessibility in promoter states and their proximal 
regions (<1 kb); varied methylation and low accessibility in enhancer states; generally high 
methylation and near absence of accessibility in heterochromatic states; varied methylation and 
accessibility in the bivalent state; detectable methylation and complete absence of accessibility in 
quiescent state but with detectable peaks in its proximal regions (<1 kb). Since these differences 
in methylation level likely point to more pronounced association with gene activation status [46], 
we next inspected methylation signatures that couple overlapping active TssA promoter state with 
tissue-specific gene promoter regions (Fig. 3E). As expected, all tissue-specific promoters that 
significantly overlap with the TssA state exhibited low to depleted methylation patterns, 
consolidating the standard observation of nearly undetectable methylation associated with the 
TssA state upon bulk analysis of all tissue types (Fig. 3E and Supplementary Fig. 10). In addition, 
many non-specific promoters displayed inverse methylation signatures compared to tissue-
specific promoters, suggesting strong tissue-specific identities at the chromatin modification and 
DNA methylation level. The chromatin state maps further allow the visualization of this notable 
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tissue specificity at different tissue-specific gene loci (Fig. 3F). Systemic dissection of these 
chromatin states shaped by the epigenetic code of the dog allow for downstream integrative 
epigenomic analyses and comparative studies between functionally annotated genomes of other 
species.   
         
Cross-species epigenomic conservation and inter-tissue variation  
 

To expand our initial analysis on enrichment of evolutionarily conserved elements (Fig. 3A), we 
further performed cross-species epigenome analyses and inferred the evolutionary dynamics of 
the dog epigenome. As a requisite in the context of chromatin states, if the epigenome is 
evolutionarily conserved between two species, we expect to see a high degree of shared histone 
modifications in syntenic regions between two genomes [47]. Along with our datasets, we utilized 
available representative human and mouse ChIP-seq data from ENCODE and derived chromatin 
states corresponding to available matching histone marks data (Supplementary Fig. 11A). Since 
the chromatin state assignments differ between species, we grouped these states according to 
common core histone modifications that mark a particular state (Supplementary Fig. 11B). Note 
that quantitative ChIP-seq signal comparisons from multiple studies are often confounded by 
noisiness, variability, and other data quality issues even after standard normalization. During QC 
steps, we addressed this by additional peak calling steps following the ENCODE pipeline (see 
Methods). We first mapped cis-regulatory modules (CRMs) defined by regions of ChIP-seq signal 
enrichments between two genomes and used the LiftOver tool [48,49] for cross-species analysis 
(Fig.4A). This approach has been used in comparative genomics to annotate distant regulatory 
elements and the neighboring genes they regulate [48,50]. We then paired this with synteny to 
address long-range CRMs since they can be located as far as >1 Mb away from TSS of their 
target gene/s and are usually orientation-independent [51,52]. Mapping the 13 dog chromatin 
states to genomes of other species revealed that dog regulatory elements are broadly more 
conserved in human than in mouse (Fig. 4B). Concurrently, when the 15 human chromatin states 
are mapped to others, higher conservation in dog than mouse is observed, except the minor 
difference in flanking bivalent BivFlnk state. As expected, when the 15 mouse chromatin states 
are mapped to others, lesser conservation is observed in dog. To characterize where these 
mapped conservations further cluster into specific tissue types, we applied a Spearman’s 
correlation matrix (nonparametric version of Pearson correlation) to processed ChIP-seq data. 
Across matched tissues, correlation of mapped signals between species showed distinctively high 
conservation in active promoter states while relatively lower conservation at varying degrees in 
other states (Fig. 4C). When states between dog and human are mapped (dog→human and 
human→dog), the chromatin landscape looks largely similar across matched tissues, while 
mapping to mouse (dog→mouse and human→mouse) results in contradistinctive patterns in a 
number of matched tissues. Although the conservation of dog chromatin states especially the 
active promoters in human has already been foreshadowed by genomic studies pointing to 
parallel evolution between dogs and humans, ours are the first to enforce this similarity to be 
conserved at the chromatin landscape level.    
 
Epigenomic enrichments of genetic variants  
 
Using our dog tissue-specific epigenomic datasets and those of human and mouse mapped to 
dog, we next studied the regulatory annotation enrichments of phenotype-associated variants 
from genome-wide association studies (GWAS) that identify true association between SNPs and 
diverse traits and diseases. Since the vast majority of GWAS variants predominantly reside in 
non-coding regions of the genome in a tissue/cell-specific fashion [53], we used H3K27ac mark 
level, a strong indicator of active promoter and enhancer states [54], within accessible chromatin 
states (i.e., EnhA, EnhWk, TssA, TssAFlnk2) as a basis for quantification, and because H3K27ac-
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marked states represent: i) non-coding genomic regions where risk SNPs are enriched [55]; ii) 
principal regulatory components that enable tissue/cell-type specificities [54]; and iii) active 
enhancers that are more informative for tissue-specific disease trait enrichments [54,55]. To link 
chromatin states to the human genomic coordinate of GWAS catalog reported SNPs, we adapted 
the LiftOver tool to one-to-one syntenic alignments. We performed tissue/cell-type stratified 
GWAS analysis of regulatory or functional information enrichment with LD correction (GARFIELD) 
[56]—a methodological model that solves known confounders in interpreting unexpected GWAS 
trait enrichments—using GWAS summary statistics for 49 enriched phenotypes at nominal p 
value lower than 5% false discovery rate (FDR) including disease and non-disease traits (see 
Methods). The analysis retrieved a total of 687 significant associations between 24 tissues and 
38 complex phenotypes in dog, human-dog, and mouse-dog alignments (Fig. 5).  
 
As expected, these enrichments revealed matching tissue type-disease and non-disease trait 
relationships. Non-disease trait examples include: genomic loci associated with cognitive and 
neurological traits such as intelligence and wide-range of brain structures and function enriched 
in CL and CR states; immunological traits such as counts and concentrations of immune cells and 
endocrine trait such as thyroid stimulating hormone enriched in spleen (SP) states; metabolic 
traits such as cholesterol and blood urea nitrogen enriched in LI states; and respiratory traits such 
as FEV1 and FEV1/FVC ratio (pulmonary function measures) enriched in LU states; while disease 
trait examples include: genomic loci associated with (neuro-)psychiatric disorders such as 
depression and anxiety enriched in CL states; neuroticism, sensitivity, and nervousness enriched 
in CL and CR states; inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis 
enriched in CO states; and systemic lupus erythematosus enriched in SP states. While many of 
such traits associated with dog chromatin states are conserved in human and mouse, there 
appear to be interesting non-conserved and species-specific associated traits that do not 
necessarily define or associate a tissue/cell identity. Some striking examples include the 
associated traits for LU states wherein human states have the most immunological trait 
associations than dog and mouse states, with mouse having almost no enriched immune cell 
signatures in LU; traits for CR states wherein dog and mouse states are more associated with 
insomnia, a neurological trait, than in human states; and connective tissue and dermatological 
disease traits like Rheumatoid arthritis and Eczema, respectively, are strongly enriched in dog 
CO states but not in human and mouse CO states. These data present patterns of SNP locations 
linked with H3K27ac-marked regions that are informative for predicting tissue/cell types 
contributing to each complex phenotype. More specifically, while data for CL states in human was 
not available, the multitude of conserved complex traits for CR states that describe tissue/cell 
identity, brain structure similarity and function, and disease association among dog, human, and 
mouse pointing to varying degrees of conservation may indicate that these traits associated with 
brain-specific active enhancer variants marked by H3K27ac reveal bases for differences in the 
recent genomic evolution for these species.      
 
Overall, these catalogues of associations with GWAS risk variants illustrate that the epigenomic 
annotations provided here across different tissue types can provide valuable complementary 
resources to existing dog genomics projects for the interpretation of non-coding genetic variation 
linked to complex traits and diseases. In addition, as we demonstrated, these resources will be of 
great utility for advancing comparative studies between dog and other species like human.  
 
Genome-wide super-enhancer catalog and conservation  
 
To further probe tissue identity and function based on H3K27ac signals, we mapped super-
enhancers (SEs) and SE domains in the dog genome across multiple tissues and performed 
cross-species analyses. Using the rank ordering of SEs (ROSE) algorithm [57] to define SE signal, 
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and by merging SEs in all tissues to generate a domain set, and adapting an in silico peak-gene 
linking method to link SEs to genes (Fig. 6A), we generated the dog genomic landscape of SEs 
and associated gene interactome across multiple tissue types. We identified 16,810 SEs in all 
tissue types with an average of 1528 SEs per tissue (Fig. 6B). These SEs have a mean length of 
49 kb compared to the typical enhancer length of 0.56 kb, based on H3K27ac ChIP-seq density 
alone (Fig. 6C). Additionally, in these constituent SE regions, H3K4 mark (H3K4me1 and 
H3K4me3) signals are also specifically enriched while other histone marks and MBD signals are 
undetectable (Fig. 6D). The H3K4me1 enrichment agrees with previous findings on H3K4me1 
signifying SE regions along with H3K27ac, but with different site activation, transcriptional 
consequences, and outputs on enhancer activities at target genes [41,44,45]. The H3K4me3 
enrichment, while still not fully understood, may indicate the capture of broad H3K4me3 marks at 
distal or proximal target genes physically interacting with SEs in our experiments [58]. Regardless, 
these high levels of H3K4 modifications are due both to the domain size and occupancy density 
at constituent enhancer regions.  
 
Merging these SEs in all tissues resulted in 6654 SE domains—putative SE regions that may 
point to distinct modes-of-actions of SEs other than tissue/cell type-specific gene regulation. 
These SE domains have been found to exhibit a high degree of ‘universality’ across many human 
tissue and cell types which is a relatively novel aspect of SEs [59]. In our data, these SE domains 
have a mean length of 71 kb, more than double the size of the reported 32 kb mean length across 
different human tissue and cell types. However, in the context of length, similar to human, the 
profiled SE domains have low variability across tissues, excluding the possibility of bias caused 
by one or more samples. We then assessed the tissue specificity of these domains by utilizing a 
Tau scoring method commonly used in gene expression studies (Fig. 6A; see Methods). The 
distribution of these scores indicate that tissue specificities associated with these domains have 
high degree of variation (Supplementary Fig. 12A). Using these scores, we further classified 
these domains into: i) unique (tissue-specific; n = 1331), ii) non-unique (n = 3992), and iii) common 
(n = 1331) (Fig. 6A).  
 
In total, around 20.1% of the dog genome was marked by these domains, far exceeding the SE 
domain coverage in human genome (6.32%). 45.5% of these domains consisted of multiple SEs 
identified in at least two or more tissue types analyzed (Supplementary Fig. 12A). Although less 
than the fraction of domains with specificity towards one tissue type, the significant amount of SE 
domains with broad tissue specificities suggests that there is a significant recurrent formation of 
SEs in specific genomic regions regardless of tissue specificity. Utilizing the defined tissue unique, 
common, and non-unique SE domains, we then categorized these domains according to different 
tissue specificities (Fig. 6E and Supplementary Fig. 12B). This allowed us to extensively link 
these domains to genes and predict interactions relevant to the identity and biology of the specific 
tissue. To do this, we adapted an in silico peak-to-gene linking method [60] using a correlation-
based approach. In this way, SE domain regions in distal or proximal non-coding DNA elements 
are linked to genes via correlation of H3K27ac signal and RNA expression [59,60]. We initially 
identified 79,820 unique, unfiltered links between SE domains and genes with TSS located within 
a 500 kb SE domain boundary (see Methods). Using a standard FDR cut-off of <0.05 and a 
Pearson correlation of >0.6 (at least a moderate positive relationship), we narrowed this down to 
2618 links, with 496 negatively correlated and 2122 positively correlated links (Supplementary 
Fig. 12C). While some links are driven by correlation across many tissue types, >27.5% are 
strongly driven by tissue-specific clusters (Fig. 6F). These pools of links provided the opportunity 
to derive target gene maps of SEs across tissues, albeit the relatively low number of significantly 
correlated linked genes. From the tissue-specific SE domain clusters, we examined the GO terms 
and pathways associated with nearby linked gene pools (522 genes) to gain deeper insights into 
the processes and regulatory factors in each tissue (Fig. 6G). Considering the clusters with 
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relatively high number of significant links, we found enrichments of tissue-specific function. For 
example, in the CL and CR clusters, synapse-specific function and processes are enriched, all of 
which are ubiquitous features of brain activity [33,34]. In the CO cluster, metabolism of important 
amino acids such as histidine, tryptophan, arginine, and proline are enriched, signifying CO as a 
metabolically significant site of amino acid metabolism in the body [61]. In the LI cluster, 
homeostasis and storage of fatty acids and lipids and cholesterol metabolism are enriched, 
reiterating LI as a central organ for lipid metabolism in the body [62]. In the SP cluster, immune 
response and processes are enriched, pointing to the known specialized immune system in SP 
[63]. We also showed that these tissue-specific links are mappable at specific genomic loci (Fig. 
6H). These reiterate the concept of which SEs define key genes important for tissue identity and 
perhaps enhance the utility of identifying SE domains as a more rigid selection for mapping key 
target genes of SEs.  
 
We then performed comparative analyses of SEs among dog, human, and mouse genomes. To 
do this, we first mapped the syntenic SE regions derived from matching tissue data between 
species. Collectively, dog SEs showed higher sequence conservation in human genome than 
mouse genome (Fig. 6I). Similarly, human SEs showed slightly higher conservation in dog 
genome than mouse genome, while mouse SEs did not discriminate human and dog genomes in 
terms of conservation (Supplementary Figs. 13A-B). In these mapped syntenic SE regions, we 
examined the associated tissue identities annotated in an integrated database based on human 
and mouse SEs. Considering the Jaccard similarity in matched tissue data, we found consistent 
tissue-specific identity enrichments across dog, human, and mouse (Fig. 6J and Supplementary 
Figs. 13C-D), validating that the mapped syntenic SEs across species indeed reflect tissue-
specific resolutions. Taken together, the mapped SE repertoire in the dog genome serve as a 
basis for further exploration of functions and mechanisms of SEs and their target genes in dog 
biology and disease and enables comparative investigation with other annotated SEs from other 
species.  
 
DNA methylome landscape of the dog genome  
 
Methylation of cytosines in DNA is a prototypic, stable, nearly universal mechanism of the 
mammalian epigenome [64]. In domestic dogs, DNA methylation studies have been performed 
yet still lack epigenome-scale resolution. So far, public resources of functionally annotated dog 
genomes (i.e., BarkBase and DoGA) do not include methylome data [23,39]. To profile global 
DNA methylome landscape of the dog, we performed genome-wide MBD-seq experiments on 11 
somatic tissues. In these experiments, captured and enriched genomic DNA fragments covering 
a CpG are used to assay the total amount of methylation for a locus about the size of the 
fragments, which dictate the resolution of association signals [65]. High coverage of these 
methylated CpGs can therefore be achieved by optimized protocol for efficient enrichment and 
increased sequencing depth. Tasha’s reference genome (CanFam3.1) contains roughly 
26,092,847 CpG sites (<1.1% genome coverage). Our MBD-seq assays retrieved an average of 
45,184,839 mapped reads representing at least >50% of all captured CpGs.     
 
We assessed the landscape of specific histone modifications and DNA methylomes (Fig. 7A). As 
expected, several notable variations between tissues are observed, particularly based on region-
specific normalized enrichment signatures and absence of signals of MBD, H3K27me3, H3K9me3, 
H3K27ac, H3K4me1, and H3K4me3 marks across all tissues (Fig. 7A and Supplementary Fig. 
14). In general, enriched signal patterns of DNA methylation are associated with genomic regions 
marked by H3K27me3, H3K9me3, and H3K4me1, while scarce signal patterns of DNA 
methylation are inversely associated with regions marked by H3K27ac and H3K4me3. These 
dynamics likely reflect known relationship between chromatin domains defined by these histone 
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marks and DNA methylation such as the overlap of repressive H3K27me3 mark with inter CpG 
island methylation [66], regulation of DNA methylation maintenance by heterochromatic 
H3K9me3 [67], positive correlation between primed enhancer H3K4me1 mark and DNA 
methylation within hypomethylated regions, mutually exclusive occurrence of broad H3K4me3 
mark with DNA methylation [68], and bivalency at enhancers characterized by cytosine 
methylation and H3K27ac [69].  
 
The overall distribution and levels of DNA methylation inform tissue specificity underlying 
mammalian traits [64]. To delineate these inter-tissue DNA methylation signatures, we 
systemically annotated genome-wide commonly methylated regions (CMRs) and tissue-specific 
differentially methylated regions (tsDMRs). We first determined these regions in 100 bp bins in all 
tissue samples and mapped them in the dog genome. We identified 7,135,450 CMRs (~31% 
genome coverage) and 20,437 tsDMRs across 11 tissues, including unique DMRs shared in CL 
+ CR (<0.1% genome coverage). Genome-wide CMRs across all tissues showed only little 
variation to almost no variation in at least top 20,000 CMRs. Along with the high total number and 
miniscule variation across tissues, it is natural to think that these CMRs ostensibly have 
contiguous methylcytosines. Using tsDMR profiles, we investigated signatures of 
hypermethylation and hypomethylation at tissue-specific CpG regions (Fig. 7B). We uncovered 
2074 hypermethylated and 18,363 hypomethylated tissue-specific regions, including tsDMR data 
from combined CL and CR, revealing extensive hypomethylation in tissue-specific CpGs. 
Additionally, these tsDMR profiles reveal that regions containing genes that define tissue 
specificity have preferential DNA hypomethylation or hypermethylation. In general, the majority of 
these tsDMRs are hypomethylated across all tissues (Fig. 7C). Among these tissues, CL and OV 
accommodated largest numbers of tissue-specific hypomethylated and hypermethylated regions 
with 15481 and 3173 tsDMRs, respectively. It is interesting to note that in the dog brain, CL 
distinctively has the highest number of DMRs covering ~76% of total tsDMRs across 11 tissues 
than the <0.005% in CR (Supplementary Data 10). These data generally validate the known 
relative high DNA methylation levels in the mammalian brain compared to any other tissues in the 
body [70]. CMRs and tsDMRs occupy different genomic regions at different frequencies (Fig. 7C). 
Remarkably, intergenic and intronic regions collectively have the highest DMRs accounting for 
>45% and >47% CMRs and >34.1% and >49.1% tsDMRs, respectively, while exonic and TSS 
regions have the least. These DMRs, especially hypomethylated tsDMRs, are predominant in 
regions with non-repeat sequences (>61.1% CMRs and >79.3% tsDMRs) than those with tandem 
repeats (>38.8% CMRs and >20.6% tsDMRs). In CpG-defined regions, CMRs almost exclusively 
occur at open sea—CpGs not associated with a CpG island (CGI; >77.7%), while deplete in CGIs, 
CpG shore, and CpG shelf regions. Hypomethylated tsDMRs are almost ubiquitous in these 
regions (Fig. 7C). These distributions may highlight some well-known features and critical roles 
of DNA methylation on gene activities across intergenic, gene body, and CpG-defined regions 
[71]. Next, we mapped co-occurring chromatin states in ±5 kb window surrounding the CMRs and 
tsDMRs located at CpG-defined regions. Strikingly, CMRs are widely associated with 
heterochromatic states, at least those ranked in the top 20,000, while tsDMRs strongly overlap 
with active enhancers across CpG regions (Fig. 7D). We then examined the expression of 6825 
genes that overlap with tissue-specific methylation at CpG-defined regions across the dog 
genome (tissue-specific differentially methylated genes; tsDMGs) (Fig. 7E). These tsDMGs can 
further be classified into their expression levels (upregulated or downregulated) in the context of 
hypermethylation or hypomethylation. Of these tsDMGs, 203 upregulated and 307 downregulated 
genes are mapped into hypermethylated regions while 3525 upregulated and 782 downregulated 
genes are mapped into hypomethylated regions. Intronic regions have the most tsDMGs (4662 
genes; >68.3%) followed by those in exonic regions (1231 genes; ~18%) which mirror the high 
tsDMR frequencies in these gene body regions (excluding intergenic regions). Correlation 
analysis between DNA methylation of specific CpG-defined regions and tsDMG expression at 
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distinct genomic regions revealed that there is a consistent, significant inverse correlation 
between DNA methylation of TSS-proximal promoters and gene expression (Fig. 7E). Variable, 
non-significant correlations are more frequent between gene expression and DNA methylation of 
introns, exons, and transcript end sites (TES).    
 
Subsequently, we functionally annotated all of the DMGs and performed an enrichment GO 
analysis. Abundant CMRs harboring a DMG were collectively found to be involved in 
neurogenesis and development of multicellular organism, anatomical structure, and axon (Fig.7F), 
reinforcing both basic development functions such as housekeeping functions and embryonic 
phases of neurogenesis [72,73]. As we highlighted, CMRs are ubiquitously marked by 
heterochromatic states which are then characterized by polycomb-repressed genes. We 
interrogated whether the functional categories we found to be associated with DMGs at CMRs 
complement heterochromatic states-linked gene set functions. Consistent with previous reports 
on other mammalian genomes [74,75], many developmental processes are represented by these 
polycomb target genes marked by heterochromatic states across multiple adult tissue types 
(Supplementary Fig. 15). Many of these genes also validate the DMG GO enrichments identified 
in CMRs. These data might indicate the previously described essential and pervasive roles for 
polycomb-repressed genes in silencing key regulators of tissue development and differentiation, 
in this context mediated by common DNA methylation [74,75]. In contrast, select tissues where 
tsDMRs have the greatest number of mapped tsDMGs (CL, SP, and PA) showed GO enrichments 
that define tissue specificities (Fig. 7F). For example, enrichment of genes for nervous system 
development in CL, immune cell activation in SP, and protein digestion and absorption in PA. In 
aggregate, these data establish the validity of dog genome-wide DNA methylome maps we 
generated for 11 tissues.  
 
DISCUSSION 
 
Modern dog genomes fundamentally challenge our knowledge on mammalian evolution [76], 
domestication [1,2,3], ancestry [77], aging [78], heritability [2,5,11,77], and disease biology 
[5,7,11]. Yet, comprehensive functional annotation of these genomes is still in its infancy. In this 
study, we generated a multi-tiered, high-quality catalog of dog regulatory elements and the most 
comprehensive characterization of dog genome-wide chromatin state maps, SE, and DNA 
methylome landscapes for 11 distinct tissues to date, thereby providing an indispensable resource 
to advance dog genomics in exploring a plethora of scientific enterprise, especially in light of 
comparative studies involving genomes from other species-of-interest such as human. In support, 
we also generated accessible resources collectively under the epithet of EpiC Dog, albeit in early-
stage formats as of writing, which includes a genome browser to allow for integrative exploration 
of inter-tissue and cross-species epigenome comparisons and a repository page for sequencing 
analysis and integrated pipelines and preprocessed datasets (Fig. 8).  
 
The ENCODE [14,15,25,36], now in its phase 4, along with Roadmap Epigenomics consortia 
have pioneered yet the most comprehensive annotation of functional elements encoded in the 
human genome. Parallel to this, the mouse (C57BL/6J strain) ENCODE [16,36,44], modENCODE 
for worm (C. elegans) [79] and fly (D. melanogaster) [80], and DANIO-CODE for zebrafish (D. 
rerio) [81] consortia have been initiated, which by far provide the highest resolution epigenomes 
for such laboratory model organisms at scale. Such cataloging of epigenomes paved roadmaps 
toward better understanding the principles of genome architecture and function and gene 
regulation; and enabled the translation of biology between human and other organisms. Such 
ENCODE-level datasets do not exist for dog. Regardless, on-going efforts such as BarkBase [23] 
and DoGA [39] provide accessible preliminary characterizations of dog epigenomes. One key 
limitation in these genome-wide epigenomic annotations is the lack of chromatin state maps—
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recurrent epigenomic segmentations of the non-coding genome based on the abundance of a 
given set of histone modifications—that reveal local and long-range chromatin patterns and allow 
for systems level understanding of chromatin. Pairing these chromatin state assignments with 
annotations of non-coding regulatory regions and transcribed elements in the dog genome allow 
for integrative mapping of the dog epigenome, substantially improving existing annotations. 
 
Much like any reference dog genome assemblies, we focused on a specific breed, in this case, 
the beagle—among the most common breed ancestry with a historical account of being 
standardized as a “laboratory dog” [77,82]. By generating and analyzing primary data from 
multiple dog tissues, we bypass the practice of making inferences from human and the need for 
tools to lift them over to the dog genome, thus improving sensitivity by enabling profiling of genes 
specifically expressed in dogs but not in other species. This is further realized with the utility of 
these identified genes and the associated biological function and pathways in comparative studies 
by providing more depth in terms of data coverage, quality, and integrability as we demonstrated. 
Within the limits of our analyses, this becomes more important given that compared to human 
and mouse (ENCODE), we found that the dog transcriptome is less pervasively transcribed based 
on the active expression of species-specific putative protein-coding genes. As this likely reflects 
greater sequencing depths and broader spectrum of biological samples analyzed in human and 
mouse, our data and that of BarkBase manifest the need for deeper and more extensive profiling 
of diverse biological samples. Nevertheless, we showcased a compendium of transcriptomes that 
exhibit specificity at tissue- and species-level resolutions. Clustering these transcriptomes into 
groups licensed us to infer diverse biology conserved among human, mouse, and dog across 
multiple tissue identities. Thus, these data are not only practical for comparative transcriptomics 
but they also complement existing annotations, which includes genes and transcripts that are 
“missed” in our analyses by virtue of amenability in incorporating these missing transcripts and 
expanding coverage of annotations. As gene expression is broadly influenced by the 
combinatorial action of transcriptional regulators and elements that make up the highly complex 
epigenetic code, integration of these transcriptome datasets with subsequent epigenome data is 
core to the functional annotation of the dog genome. 
 
Our de novo discovery of 13 functionally distinct genome-wide chromatin states enabled us to 
systemically characterize diverse epigenomic landscapes in dog. Their definition and preferential 
indexing patterns revealed numerous insights into the combinatorial signatures of chromatin 
marks, some of which were not previously described in known annotations of mammalian 
genomes in ENCODE, FANTOM, or FAANG, at least based on the five histone modifications 
used. This hint at the fact that evolutionarily conserved regions of mammalian genomes are well-
annotated than the often unalignable, dog-specific genomic regions, to which our generated 13-
state model may expose many previously unannotated candidate functional elements, although 
they have yet to be properly identified. Production of these chromatin states and their single-tissue 
resolution maps also pave the way to answering some sought-after questions in dog genomics, 
such as whether or not there are epigenetic bases for selection, domestication, adaptation, and 
parallel evolution with humans, among others. While it can be obvious that there should be, 
genome annotation resulting from these mapped chromatin states can extend the interpretable 
portion of the dog genome and enhance the decipherability of its epigenetic code, thus enabling 
to answer such questions. We have to emphasize that the exact number of chromatin states can 
vary based on types and total number of the surveyed chromatin marks, and the appropriate 
resolution at which the distinct state patterns are studied. In ENCODE datasets [36,44,45], the 
15-state model represents concerted data from 127 human and 12 mouse tissue/cell types some 
of which display a development or differentiation continuum, informed by five and 12 histone 
modifications, respectively. It is undeniable that our five histone modifications-informed 13-state 
model derived from 11 tissue types is inferior in both sampling and diversity of surveyed histone 
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modifications. Nevertheless, recognizing that despite the many landmark dog genomics 
resources, there is still lack of epigenome-wide data for dog tissues. Therefore, we consider that 
our pioneering mapping of epigenomic landscapes in the lens of chromatin states discovery 
across multiple tissue types is desperately needed regardless of such scale limitations.     
 
Our integrative analyses and mapping of dog chromatin states with the generated SE (domain) 
and DNA methylome landscapes attest to these claims. Based on downstream data integrations, 
we generated GWAS catalogs inferring associated complex traits and disease phenotypes, SE 
landscapes that inform on linked genes critical for tissue/cell identity, and DNA methylomes that 
illuminate genome regulation. These epigenomic landscapes produced from multi-tiered data 
integrations provided an additional functional layer to our annotation of regulatory elements in the 
dog genome. We defined their coordinated genome-wide activities along with chromatin states 
and further demonstrated the interpretability of these landscapes in the context of biological 
functions, traits, and phenotypes across multiple tissues. Ultimately, our comparative epigenomic 
studies involving human and mouse further draw the idea that the human genome has deeper 
similarities with the dog genome than that of the mouse. At the level of mapped chromatin states, 
one-to-one syntenic mapping generated a dog chromatin landscape that broadly resembles that 
of human than that of mouse, and this is similar when human is mapped to dog or mouse. Across 
select matched tissues, dog genomic loci associated with a multitude of complex traits are more 
conserved in human than in mouse. Likewise, dog SE landscapes have higher sequence 
conservation in the human genome than in mouse, and demonstrates higher similarity in terms of 
tissue/cell identities. These comparative investigations provide an epigenetic layer of evidence 
supporting genome similarity between humans and dogs, further substantiating recent genomic 
evolution between them, and with the dog serving as a distinct mammalian reference for 
comparison between human and mouse.  
 
In this unprecedented era of dog genomics, construction of fine scale genomic maps for breeds 
all over the world incubates revolutionary scientific initiatives that empower our understanding of 
not just the human genome, but also of mammalian genome evolution, population genetics, and 
the nature of genes that underly complex phenotypic traits. Overall, we expect that the usefulness 
of our dog reference epigenome that catalog genes, transcripts, regulatory regions together with 
their consequent chromatin states and DNA methylation patterns, will leverage the diverse work 
and questions pursued by the community. As such, we will continue to develop the EpiC Dog 
resource to adapt and advance dog epigenomics.  
 
 
 
METHODS 
 
Animals and tissue collection 
 
All procedures involving animals and sample collection were reviewed and approved by the Seoul 
National University Institutional Animal Care and Use Committee (IACUC #SNU-170602-1). One 
male and two female beagles (approximately six years old), enrolled in a deceased donation 
program at College of Veterinary Medicine, Chungbuk National University, were kindly donated 
by Dr. Jong-Koo Kang. Gender distribution was by chance rather than study design. Dogs were 
euthanized for medical reasons (except for cancer) and donated by owners after signing a written 
consent. Humane euthanasia of dogs was performed by intravenous administration of alfaxalone 
and potassium chloride. The dogs were mainly included based on availability. Guided by licensed 
veterinarians, we performed surgery and collected biopsies from up to 11 tissues, including 
cerebrum, cerebellum, colon, kidney, liver, lung, mammary gland, ovary, pancreas, spleen, and 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.22.501075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501075


stomach, following gross examination. Selection for these tissue types were primarily based on 
tumor development risk and prevalence for each organ/site in beagle dogs as a means to prioritize 
utility for comparative oncology studies. Sample collection was performed immediately after death, 
tissues immediately placed on ice, and rinsed with ice-cold PBS before mincing. To avoid sample 
degradation, only one sample was processed at a time, and tissue was kept ice-cold during 
surgery. All tubes were pre-chilled in dry ice so that samples could be flash-frozen immediately. 
Shortly after mincing, tissues were partitioned into multiple tubes depending on the intended 
downstream assays. At least two separate collection tubes were collection tubes were collected 
for each tissue for biological replication. In all cases, at least one sample per tissue type was 
flash-frozen in liquid nitrogen and then stored at -80°C deep freezer until further processing. 
Tissue samples for RNA assays were separately kept in RNAlater reagent (Thermo Fisher) and 
frozen at -80°C deep freezer until further processing or freshly processed. Experimenters were 
not blinded as there was no treatment or control group being assessed. Due to the scale of 
production, randomization was not feasible.  
 

Library construction and next-generation sequencing (NGS) 
 
For RNA-seq, total RNA was extracted using RNeasy Plus Mini kit (Qiagen). Samples were 
initially processed by tissue pulverization using liquid nitrogen followed by homogenization prior 
to RNA isolation according to standard procedures. RNA quality was assessed by resolving the 
18S and 28S ribosomal RNA bands using the Agilent 2100 Bioanalyzer and the RNA 6000 Nano 
kit (Agilent). RNA-seq libraries were constructed using TruSeq Stranded Total RNA sample prep 
kit (Illumina), quantified using Collibri NGS Library Quantification kit (Thermo Scientific) and CFX 
Connect quantitative PCR (qPCR; Bio-Rad), prepared for strand-specific sequencing, and 
sequenced as 101 bp or 150 bp paired-end reads on Illumina HiSeq 2500 and NovaSeq 6000 
platforms.   
 
For ChIP-seq, frozen tissues were thawed on ice and 10 mg of tissue per immunoprecipitation 
(IP) reaction was chopped into ~1 mm3 pieces with two razor blades on ice. Chopped tissues 
were washed with PBS buffer containing Protease K, 10mM PMSF, and 10mM sodium butyrate 
histone deacetylase inhibitor to remove blood from the tissue. Washed tissues were grinded using 
a mortar and pestle. Prepared cell mass was cross-linked in the PBS buffer with 1.5% 
formaldehyde at room temperature (RT) for 20 minutes. By adding 125 mM glycine and placing 
the samples on the rotator for 5 min, cross-linking reactions were stopped. The fixed cell mass 
was washed twice with PBS buffer containing Protease K, 10mM PMSF, and 10mM sodium 
butyrate, and was lysed using buffer A (5 mM PIPES buffer, 85 mM KCl, and 0.5% NP 40). The 
supernatant was centrifuged out and added to buffer B (50 mM Tris-HCl, 0.5% SDS, and 2.5mM 
EDTA). All buffers contained Protease K, 10 mM PMSF, and 10 mM sodium butyrate histone 
deacetylase inhibitor. Sonication was carried out to shear chromatin into 200-500 bp size 
fragments using the Bioruptor Pico (Diagenode). 20 to 50 cycles of 30 seconds/cycle, on and off, 
were performed at 4°C depending on the tissue, as recommended. The chromatin solution was 
centrifuged to remove the debris and diluted with ChIP IP buffer (16.7 mM Tris-HCl, 0.05% SDS, 
1.1% Triton X-100, 1.2 mM EDTA, and 167 mM NaCl). After adding 5 µg of sample to 10 µg of 
anti-H3K4me3 (Abcam, ab8580), H3K4me1 (Abcam, ab8895), H3K27Ac (Abcam, ab4729), 
H3K27me3 (Abcam, ab6002), H3K9me3 (Abcam, ab8898), and IgG (Santa Cruz Biotechnology, 
sc-2027) per IP reaction, and the chromatin solution was incubated overnight at 4°C. An IgG mock 
control was performed for each sample. The cross-linking was reversed, and the DNA was 
purified after treatment with Protease K and RNase A. After ChIP, DNA was quantified using the 
Qubit 3.0 Fluorometer (Thermo Fisher) and the enrichment was validated by PCR. The ChIP 
library was prepared using TruSeq ChIP Library Prep kit (Illumina) and sequenced as 50 bp or 
150 bp paired-end reads on Illumina HiSeq 2500 and NovaSeq 6000 platforms. 
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For MBD-seq, ~25mg of each tissue were incubated in Buffer ATL (Qiagen) and Protease K at 
56 °C until the tissue was completely lysed. Genomic DNA was extracted using DNeasy Blood 
and Tissue kit (Qiagen), according to the manufacturer's protocol with modifications. The 
concentration and purity of isolated genomic DNA was assessed by Nanodrop 2000 (Thermo 
Scientific). For each sample, 3 μg DNA, normalized to 20 ng/μl, was sheared using Bioruptor Pico 
and the size of the fragmented DNA (~300 bp) was verified on an agarose gel. Finally, the 
concentration of sheared double-stranded DNA (dsDNA) was measured using Qubit 3.0 
Fluorometer. 500 ng fragmented dsDNA was enriched with methylated CpGs using the 
MethylMiner kit (Invitrogen, ME10025), according to the manufacturer's instructions with minor 
modifications. To counteract the possibility of increased unspecific binding, we used more 
stringent wash conditions. In more detail, for each capture reaction, prepared MBD-beads (10 μg 
beads and 350 ng MBD-biotin protein were used in the same reaction) were added to each 500 
ng of fragmented DNA input. Prepared MBD-beads were diluted to 1x in Bind/Wash Buffer prior 
to addition to each DNA sample, to increase pipetting accuracy. Each capture reaction was 
brought up to a 200 μl final volume in 1x Bind/Wash Buffer, and incubated on a rotator for 40 min 
at RT. Following incubation, each tube was placed on a magnet for 1 minute and the supernatant 
containing the non-captured (unmethylated) DNA fragments was removed. The beads with bound 
methylated DNA were then washed twice by incubation with 200 μl Bind/Wash Buffer, according 
to the protocol, and eluted in stepwise elution using 200 μl of serially diluted elution buffer (200, 
300, 400, 600, and 800 mM). Eluted methylated DNA fragments in the 600- and 800-mM elution 
buffers underwent cluster generation. The MBD library was constructed using TruSeq Nano DNA 
Library prep kit (Illumina) and sequenced as 101 bp paired-end reads on Illumina HiSeq 4000 
system. 
 
Genomes and annotations 
 
Across all generated in-house and used public datasets, the CanFam3.1 genome for dog, hg38 
genome for human, and mm10 genome for mouse were used as reference genome assemblies. 
ENSEMBL v102 for dog, GENCODE v37 for human and GENCODE vM25 for mouse were used 
for downstream gene annotation during data processing. 
 
Processing and initial analysis of in-house and public NGS datasets 
 
Prior to data processing, matching RNA-seq datasets for specific tissues from BarkBase (ten 
tissue types; cerebellum, frontal cortex, colon, kidney cortex, kidney medulla, liver, lung, pancreas, 
spleen, and stomach) and ATAC-seq data (four tissue types; liver, pancreas, spleen, and stomach) 
were downloaded. The BarkBase “frontal cortex” was matched with cerebrum, and “kidney cortex” 
and “kidney medulla” were matched with kidney. See also Supplementary Data 4. 
 
For RNA-seq, quality of raw sequencing reads and libraries were estimated using FastQC v0.11.9. 
Raw reads were trimmed using Trimmomatic [83] v0.39 using default parameters to uniformly 
truncate them to a definitive 100 bp length, discard reads less than 50 bp, and filter out low-quality 
and adaptor sequences. Using RSEM [84] v1.3.3 with ENCODE3’s STAR-RSEM pipeline 
parameters (--star), filtered reads were aligned to the reference genome using STAR [85] v 2.7.3a., 
and expression values including read count and FPKM were calculated. For secondary QCs, RNA 
integrity and coverage on gene body were estimated using RSeQC [86] v4.0. To generate signal 
tracks, bedGraph format file of each replicate was initially created from bam file using 
makeTagDirectory (default options) and makeUCSCfile (-style rnaseq -strand both options) 
functions in Homer [87] v4.11 with pre-built packages. The generated files were then converted 
to bigwig format using bedGraphToBigWig (Supplementary Data 1). 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.22.501075doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501075


 
For ChIP-seq, ENCODE’s uniform processing histone ChIP-seq pipeline 
(https://github.com/ENCODE-DCC/chip-seq-pipeline2) as previously described in a protocol by 
Gorkin et al. [44]. was adapted. Briefly, we first cropped the read length to 50 bp for all samples 
to remove the bias that may be caused by the difference in read length using Trimmomatic. 
Cropped reads were then aligned to the reference genome using bowtie2 [88] v2.3.4 and sorted 
after changing from sam format to bam format using “view” and “sort” function in Samtools [89] 
v1.11. For post-alignment filtering, the unmapped and multi-mapped reads with PCR duplicates 
were removed using “view” function in Samtools with options (-F 1804 -q 30) and MarkDuplicates 
function in Picard v2.20.7. For peak calling and signal track generation, MACS2 [90] v2.2.4 was 
used. Before this step, the filtered bam files were subsampled to create pseudo-replicate files. 
Optimal peak sets (optimal.narrowPeak) were then created through logical comparisons between 
pooled replicates and pseudo replicates. The signal track was generated in both types of fold 
enrichment and -log10 (p-value) method. Through this pipeline, the QC statistics were 
sequentially summarized in several steps including sequencing depth, mapping quality, library 
complexity (NRF, PBC1 and PBC2) and signal-to-noise measurements (NSC and RSC). For 
MBD-seq, since processing of libraries and QCs follow similar pipelines and tools used in ChIP-
seq, the same ENCODE pipeline was utilized (Supplementary Data 2-3). For BarkBase ATAC-
seq, ENCODE’s ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline) 
described by Gorkin et al. was adapted [44]. During analysis, a signal track was required, and 
pre-processing step to generate this track was performed following the ChIP-seq pipeline. 
 
RNA-seq contigs analysis 
 
Contig means the region of the transcript covered by RNA-seq. Therefore, it is possible to study 
known and novel positions where transcripts are expressed without dependency on genome 
annotations. They are strand-specific and so contigs with unusually high antisense signal than 
sense signal (in this case, 9 times higher) are filtered and considered as possible artifacts of 
strand-specific library construction. These contigs are called from merged biological replicates, 
but each contig was scored against individual replicates to allow for irreproducible discovery rate 
(IDR) analysis. We based these definitions of contig regions through the approach described by 
Djebali et al. [91]. First, the contigs were called from merged biological replicates of each tissue. 
For this step, the analysis was carried out as follows: (1) uniquely mapped reads files in bam 
format for biological replicates were merged and sorted using merge and sort function in Samtools; 
(2) strand-specific bedGraph files were generated using makeTagDirectory function in Homer with 
options (-format sam -sspe -single); (3) using public Python-based script 
(https://github.com/guigolab/grape-nf/blob/master/bin/contigsNew.py) designed for contig calling 
and generated bedGraph files divided according to positive- and negative-strand, the contig 
regions were defined. In this process, when the gap between contigs is less than 25bp, they were 
merged into one. Next, non-parametric IDR (npIDR) analysis was performed using individual 
replicates on defined each contig to select reproducible contigs. Finally, only contigs with an IDR 
value lower or equal to 0.1 were reported.  
 
Comparison of transcriptomes between in-house and Barkbase datasets 
 
To estimate transcriptomic similarity between our RNA-seq datasets and those from BarkBase, 
gene-level estimated counts calculated from RSEM were imported using tximport [92] v1.14.2 in 
R. Genes in which the sum of the counts of all samples does not exceed 10 were filtered out to 
remove noise signals. Normalized counts were computed using DESeq2 [93] v1.26 and 
transformed and visualized through vst and plotPCA function in DESeq2. Spearman rank 
coefficient values were measured, and plotted using ggplot2 [94] v3.3.5 in R. 
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Gene classification by expression patterns 
 
To classify genes according to the expression pattern between tissues, the average FPKM value 
of all individual samples for each tissue was used. For analysis, the algorithm described by the 
Human Protein Atlas (HPA) [95], as adapted by mouse ENCODE [96] and GTEx [97], was used 
using teGeneRetrieval function of TissueEnrich [98] v1.6. Analysis was conducted after the cutoffs 
were set as follows: (1) the fold change threshold was set to 4; and (2) the maximum number of 
tissues allowed in the group-enriched category was set to 3. 
 
Normalization of gene expression across different species 
 
To intuitively compare the transcriptome of dog with that of human and mouse, we adapted the 
method described by Yue et al. [16] using logically comparable matched human (18-51 years old) 
and mouse (8-10 weeks old) tissue datasets from the ENCODE portal (Supplementary Data 5). 
As a result, the input RNA-seq data were organized for nine tissues (CO, KI, LI, LU, MG, OV, PA, 
SP and ST) except for brain tissues (CL and CR) matched in three species and preprocessed in 
the same way as dog data. Before integrating data from different species, log10-transformed 
FPKM + 0.01 were used and quantile normalized in each species using the PreprocessCore [99] 
v1.48 in R. For data integration, we selected orthologous genes matched one-to-one within three 
species through extracted data from ENSEMBL BioMart. A list of non-coding genes was removed 
prior to analysis. To eliminate noise signals possibly derived from low expressed genes, we only 
selected genes with an FPKM > 0.1 in at least one tissue from each species. The remaining 
12,551 filtered orthologous genes were used in all analysis. Visualization of dendrogram and PCA 
applying expression values of these genes on the 3 species were performed using Factoextra 
[100] v1.0.7 in R. 
 

Variance decomposition 

 
To identify genes whose expression variation is significantly affected by tissue- or species-specific 
factors, the linear mixed model (LMM) was applied to every matched two species pairing (human-
dog, human-mouse and dog-mouse) using lme4 [101] v1.1.26 in R with the same approach 
described by Yue et al. [16]. This method also assesses the contribution of tissue and species to 
gene expression variation in a given condition, and thus gene expression was modeled as a 
function of tissue and species, which are considered as random factors. Normalization (estimation) 
of the restricted maximum likelihood (REML) estimators for the random effects of tissue, species, 
and residual variance were implemented by their sums to give the latent variance components in 
gene expression data. Expression data as input is the same (12,551 orthologous genes) as those 
used to analyze and visualize Figs. 2E-F. In each comparison, we selected genes whose fraction 
of variance described by tissue or species were within their respective top quartiles (over 75%) 
and higher than other fraction to extract tissue- or species-specific genes from the three species 
(Supplementary Fig. 6A). Euclidean distance and average linkage were used for sample 
clustering based on tissue- or species-specific gene expression (Figs. 2E, H). 
 

Segmentation of tissue- and species-specific genes 

 

To determine the defined tissue- and species-specific genes in more detail, genes that do not 

overlap from one species pair or matched two species pair as described earlier (human-dog, 

human-mouse, and dog-mouse) were filtered out (Supplementary Fig. 6). As a result, tissue- (n 

= 2252) or species-specific (n = 3291) genes in each of the 3 species were selected 
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(Supplementary Fig. 6A). Specifically, k-means clustering algorithm was used to classify the 

selected gene sets. Before analysis, to determine the optimal number of clusters k, gap statistics 

were calculated and visualized using fviz_nbclust function of Factoextra with Euclidean distance 

and option (nboot = 1000) in R (Supplementary Fig. 6B). For learning the selected number of 

clusters, we used KMeans function with 1000 iterations option on Scikit-learn [102] v0.22.1. The 

heatmap of relative expression of tissue-and species-specific genes were visualized according to 

the sorted order by clustering using clustermap function on Seaborn [103] v 0.10.1. 

 
Chromatin states analysis 
 
While the characteristics of chromatin signatures were primarily based on ENCODE, we note that 
the chromatin state annotations described here are specific to this study and are distinct from 
epigenome references of other mammalian species reported by ENCODE or other initiatives. To 
identify chromatin states and to train the prediction model integrating the five different histone 
marks from 11 dog tissues, we segmented and systemically annotated the dog genome using 
ChromHMM [104] v1.22, which classifies genomic regions based on a multivariate Hidden Markov 
Model. The model was trained using already well-called and optimized peak bed files 
(optimal.narrowPeak) of ChIP-seq data generated from two biological replicates of 11 tissues 
through the ENCODE ChIP-seq pipeline. The same tissue of two biological replicates were 
collectively considered as one tissue epigenome. Prior to training, the entire genome was divided 
into 200 bp windows and binarized into 1 and 0 depending on whether there is a signal or not for 
each histone modification of each tissue using BinarizeBed function with options (-peaks -b 200). 
Then, chromatin states were defined, and the number of states was set within the range of 2 to 
20, and were learned separately on the two replicates using LearnModel function. To determine 
the optimal number of states, we used the CompareModels function, which compares the 
emission parameters of two different models selected and calculates maximum Pearson 
correlation of each state a model with its best fitting state in each other comparative model. 
Applying this function, we compared the 20 states model to the simpler models and measured 
the median correlation for 20 states for all simpler models. A model in which the median 
correlation is saturated was found, and finally the 13-state model was selected as most optimal. 
 
Chromatin state annotation 
 
To enable systemic characterization and interpretation of each chromatin state and allow 
integration of the the defined chromatin states with a variety of known knowledge and processed 
data, the chromatin state fold enrichment was calculated for each genome locus including whole 
gene elements based on ENSEMBL, CpG island, repeats (simple tandem and interspersed), ZNF 
genes, and classified gene elements by expression using OverlapEnrichment function in 
ChromHMM. A given gene with an active expression was defined as an expressed transcript 
(Expr) if its expression level (FPKM) was greater than or equal to 0.1, otherwise, it was defined 
as a repressed transcript (Repr). We also measured fold enrichment of each chromatin state in 
methylated peak regions defined from MBD-seq data and mammalian conserved elements which 
identified from Multiple Sequence Alignments (MSA) using the Genomic Evolutionary Rate 
Profiling (GERP) software based on 111 mammals (GERP; https://ftp.ensembl.org/pub/release-
102/bed/ensembl-compara/111_mammals.gerp_constrained_element/). For these previous two 
elements, the results of the 11 tissues were integrated and shown as box plots. Finally, the 13-
chromatin state were manually labeled based on the well-established characteristics of specific 
histone modification and chromatin state fold enrichment for various types of elements defined 
earlier. After labeling, the Reorder function was used to arrange and align states with similar 
characteristics in randomly arranged chromatin states. Along with the investigation of chromatin 
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accessibility and methylation level on each chromatin state, we validated chromatin state patterns 
annotated solely based on histone modification signal by generating profile plots using 
computeMatrix and plotProfile function in deepTools [105] v3.5.1 (Fig. 3D and Supplementary 
Fig. 10). For chromatin accessibility, count signal tracks of ATAC-seq data were used, and for 
methylation level, fold enrichment signal tracks of MBD-seq data were used. 
 
Analysis of co-enrichments of strong active promoter chromatin state (TssA) and DNA 

methylation on highly expressed tissue-specific gene promoters 

 

Promoter regions (promoter and ± 2 kb flanking regions around TSS) of tissue-specific genes in 
all tissue types including combined CL and CR defined in Fig. 2D were extracted. Fold enrichment 
of TssA state of each tissue were calculated for these promoter regions using OverlapEnrichment 
function in ChromHMM and normalized by z-score among tissues. Before measuring the 
methylation level on these promoters, regions where methylation can be estimated were defined 
by merging peak sets of 11 tissues using merge function in Bedtools [106] v2.3. The merged peak 
set was overlapped with these promoter regions, and the methylation level of each tissue was 
measured on the selected regions using bigWigAverageOverBed, which is one of UCSC genome 
browser’s utility [107]. The signals of all regions by gene group were normalized by z-score among 
11 tissues and averaged in each tissue. Finally, normalized fold enrichment of TssA state and 
methylation level on tissue-specific promoters were visualized with a square bubble heatmap 
using ggplot. 
 

Calculation of mapping ratio for chromatin states 

The conservation degree of the genome sequence according to the position of chromatin states 

in the 11 tissues was measured. Before the interspecific sequence mapping, each state was 

divided into 200 bp bins to remove bias that may occur during genome mapping due to the 

difference in length of the different states. To quantify epigenomic conservation, annotated dog 

genomic sequences for the 13 dog chromatin states were mapped to the human and mouse 

genome, using LiftOver to facilitate one-to-one mapping with the use of whole genome alignment 

chain files in UCSC genome browser, and then processed as described in UCSC, and conversion 

of genomic coordinates between assemblies based on the default 0.95 sequence identity 

parameter performed using the same tool. The ratio of mapped regions to total regions is shown 

in Fig. 4B. Public human and mouse chromatin state datasets were downloaded from the 

ENCODE portal (Supplementary Data 6). In the same way, the human and mouse chromatin 

states were divided into 200 bp bins and mapped to the genomes of other two species. 

 
Similarity of ChIP densities on mapped chromatin state regions across different species 
 
Prior to data processing, we first downloaded representative ENCODE -log10(p-value) signal 
tracks of matching inter-tissue ChIP-seq data (five histone modifications) of human and mouse 
from the ENCODE portal (Supplementary Data 7). We then re-categorized the previously 
determined chromatin states into four groups (promoter, enhancer, others and excluded) 
depending on the characteristics of each state to unify and simplify a different number of states 
for each species. For correlation analysis, we measured the ChIP signals at each location of one-
to-one mapped chromatin state (dog to others, human to others, and mouse to others) using 
bigWigAverageOverBed. Using -log10(p-value) signals of the paired histone marks in the 
matched tissue of two species, Spearman rank coefficient values were calculated and heatmaps 
were visualized in Python. 
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GWAS studies within dog active enhancer regions 

 

We performed enrichment analysis of diverse non-disease and disease related GWAS traits on 
strongly active regulatory elements of dog, human and mouse, which are conserved on dog 
genome. Prior to analysis, enhancer element region files in bed format and GWAS summary 
statistics were prepared. For the former, we first downloaded peak set data generated from 
H3K27ac ChIP-seq of human and mouse in tissue samples consistent with in-house data from 
the ENCODE portal (Supplementary Data 7). Second, the peak sets of three species were 
divided into 200 bp bins to remove bias that may occur during genome mapping due to the 
difference in length of peaks. Then, divided peaks of human and mouse data were aligned to the 
dog genome using LiftOver (default parameters). Because of the vast number of GWAS traits built 
and developed in humans, analysis was performed in the human genome. For this reason, 
mapped areas were re-mapped to human genome (hg19 genome build). Because the peak region 
tends to be narrowly defined around summit of signal during peak calling,1kb was added to both 
sides of each peak to capture more SNPs overlapping around the peak regions. A total of 49 
GWAS summary statistics of unique traits related to experimental tissues were downloaded from 
GWASATLAS [108] (https://atlas.ctglab.nl/; Supplementary Data 8). Specific information 
including locations and p-value scores of SNPs for each trait were extracted from each summary 
statistics file in a different format. Analysis was performed using GARFIELD [56] v2 algorithm, a 
framework that systematically estimates the association of functional regions to genetic variation 
related with diverse traits. The prepared peak sets and extracted SNPs data mentioned above 
were pre-processed to transform into a form suitable for proper analysis using 
garfield_annotate_uk10k.sh and garfield-create-input-gwas.sh scripts. Then, enrichments were 
computed using script named “garfield” using default parameters. In output table of each trait, 
only for results with a value of 1.0E-8 in the "PThresh" column indicating the GWAS threshold 
used in the analysis, the enriched scores were extracted from the "Pvalues" column and if there 
was no significance enriched score (p-value < 0.05) in any tissue, the trait was filtered out. 
 
Identification of super-enhancers (SEs) 
 
To identify SEs, a well-established algorithm named ROSE (Rank Ordering of Super-Enhancers) 
described by Whyte et al. [57] and Jakob Lovén et al. [109] was applied. Because this algorithm 
is designed to analyze only human and mouse data and needs to be modified so that SEs analysis 
can be performed in dog genome, we first prepared and located gene annotation file in gtf format 
of dog in a folder named “annotation” used in the tool. Then, main script named “ROSE_main.py” 
was corrected to be analyzed using the prepared annotation. Prior the analysis, the peak files in 
bed format of H3K27ac ChIP-seq datasets were converted to gff format suitable as input to the 
tool using awk function in Linux. Using this corrected script with options (-g CANFAM3 -s 12500 
-t 2000), we first defined enhancer regions by filtering out H3K27ac peaks located at gene 
promoter (within ±2 kb of TSS), and SE regions were then identified by: (1) definition of predicted 
SE regions where filtered peaks were closely located (12.5 kb); (2) estimation of H3K27ac signal 
density on each region; and (3) identification of SEs from areas where the signal density rose up 
dramatically and had a slope >1; while the remaining peaks were defined as typical enhancers 
(TEs). For generation of profile plots for H3K27ac ChIP-seq on SE and TE regions and 4 histone 
modification ChIP-seq and MBD-seq on constituent regions, computeMatrix and plotProfile 
functions in deepTools were used. 
 
Categorization of SE domain set 
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To classify the SE domain set through tissue specificity of SE activities, the approach using Tau 
score method described by Ryu et al. [59] was adopted. To define the integrative and uniformed 
domain set, we first merged all regions of SE for 11 tissues using merge function in Bedtools. 
Then, H3K27ac signal densities for 11 tissues were calculated using bigWigAverageOverBed and 
quantile normalized using PreprocessCore in R. Through these normalized values, the Tau 
scores were estimated for individual domains. For counting of the number of tissue types 
associated with each SE domain, the domain set was overlapped with the SEs of individual 
tissues using intersect function in Bedtools, and the number of overlapped tissues was calculated 
for each domain. The estimated Tau sores (x-axis) and the number of tissue types associated 
with SE domain (y-axis) were visualized through scatter plot (Supplementary Fig. 12A). The Tau 
score ranges from 0 to 1, the closer to 0, the more common, and the closer to 1, the more specific. 
SE domains were classified into three groups by: (1) unique group, which consist of top 20% of 
domains that associated with one tissue to each tissue or two to CL+CR and had a high Tau score; 
(2) common group, which consist of bottom 20% of domains with low Tau score; and (3) non-
unique group including the rest of domains. 
 
SE domain-to-gene linking prediction 

 
To identify predicted links between SE domain and associated gene, we adopted correlation-
based linking approach described by Corces et al. [60], and an optimized Python-based script 
was written. In this analysis, two types of input data were used. The first is the H3K27ac signal 
table on the SE domain of 11 tissues, which had normalized signal values previously used for 
categorization analysis of the SE domain set. The second is a gene expression table with FPKM 
value. Prior to analysis, we filtered out the bottom 25% of both genes and SE domains in input 
tables on variance to remove noise signals. Then, the genes that had TSSs within 500 kb of the 
boundary of a given SE were identified. For all these possible gene and SE connections, the 
Pearson correlation were computed using H3K27ac ChIP signals (log2(normalized signal)) and 
the gene expression (log2(FPKM+1)). To estimate significance of calculated correlation and filter 
out the false positive connections, a conservative null model was constructed. First, we correlated 
the expression of every gene included in SE domain-to-gene combinations with signal density of 
500 randomly selected SE domain located in other chromosomes or 500kb away from TSS. 
Second, we computed the mean and standard deviation for every gene using these correlations 
of nonspecific connections. Third, through these values, we estimated the significance (p-value) 
for each interaction. Finally, upon consideration of various cutoff scores, correlation score > 0.6 
and p-value < 0.05 were decided on as the cutoff. 
 
Genomic and epigenomic comparisons of SEs between dog and other species 
 
To compare dog SEs with that of other species, processed data in bed format including SEs 
region generated from H3K27ac ChIP-seq datasets of diverse human (n = 99) and mouse (n = 
24) tissues and cell lines using almost the same algorithms from raw reads mapping to peak- and 
SE-calling were downloaded from dbSUPER [110] (https://asntech.org/dbsuper/; Supplementary 
Data 9). To measure the degree of conservation of SEs at the genome-level across species, SEs 
of the three species were mapped via LiftOver to the different species’ genomes. Since the range 
of lengths of SEs is very wide, minimum mismatch ratio parameter was adjusted widely from 10 
to 90%. Then, the degrees of mapping were calculated and visualized through box plots. Next, to 
measure the relative similarity of SE locations of dog in different species, the Jaccard statistic was 
calculated for each tissue pair between dogs and other species using the jaccard function in 
Bedtools.  All Jaccard statistics for each tissue of dog were transformed through max 
normalization. 
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Identification of common and tissue-specific differentially methylated regions (CMRs and 

tsDMRs) 

To define tsDMRs in each tissue and CMRs of 11 tissues, MethylAction [111] package in R was 

used. Bam files were imported through getReads function with parameter (fragsize=200). The 

reads were counted on 100bp windows using the getCount function. Then, MethylAction was 

conducted with several parameters (stageone.p=0.01, anodev.p=0.01, post.p=0.05, freq=1, 

minsize=100, joindist=0, nperms=0, perm.boot=F). As a result, 7,135,450 CMRs and 20,437 

tsDMRs of 100bp size were defined. These regions were annotated using annotatePeaks.pl 

function of Homer and distributed across dog genomic, common repeats, and CpG regions. To 

select a representative common methylated region, the top 20,000 with a high average of 

normalized counts for all samples were extracted. This list of CMRs was used in Figs. 2B and D. 

To profile distribution of tsDMRs and CMRs on the genome, these regions were annotated using 

findPeaks function in Homer. From the output, the locations according to gene elements, repeat, 

and cpg island were extracted. These were divided into CMR, hyper and hypo tsDMR and shown 

as a bar plot. 

 

Enrichment of chromatin states at CMR and tsDMR regions 

 

To investigate the distribution of chromatin states around CMR and tsDMR regions (± 5 kb 

flanking), average density and heatmap of chromatin states were estimated using 

EnrichedHeatmap [112] v1.26 package in R. Chromatin states were re-categorized into four 

groups; promoter (TssA, TssWk and TssFlnk1-2); enhancer (EnhA, EnhWk and EnhPd); bivalent 

(TssEnhBiv); and heterochromatin (RepR, Repr, ZNF/Rpts and Het). At CMR and tsDMR regions, 

signals of re-categorized chromatin states for 11 tissues were visualized. 

 

Correlation analysis between methylation level on DMRs and gene expression 

 

To understand the relevance between gene expression and DNA methylation located at different 

positions containing specific gene elements (exon, intron, around the TSS and TES) and 

separated by CpG property (CGI, shore, shelf, and non-CGI), correlation analysis was performed. 

First, one-to-one matching between gene expression and methylation was achieved by focusing 

on tsDMR regions and averaging similar methylation patterns (hypo- and hyper-methylation) in 

each tissue. A total of 6,825 genes overlapped with tsDMRs, and as a result, expression and 

methylation signals for 6,825 tsDMR-gene one-to-one pairs were prepared. For gene expression, 

the log2-transformed fold change was calculated after adding 0.01 to the expression value (FPKM) 

of the corresponding tissue and the average expression value of the remaining tissues. For DNA 

methylation, the log2-transformed fold change was calculated after adding one to the MBD signal 

density (normalized count) of the corresponding tissue and the average signal density of the 

remaining tissues. The fold changes were calculated by dividing methylation and expression level 

of the corresponding tissue by the value of the remaining 10 tissues in each tissue. Pearson 

correlation and significance were estimated using the calculated fold changes of methylation and 

expression. 

 

Identification of polycomb-associated repressed genes 
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The promoter regions (TSS and ± 2 kb flanking regions around TSS) of all genes in ENSEMBL 

were extracted. These promoter regions were overlapped with each chromatin states of each 

tissue to classify according to the state of activity. Then, promoters overlapped with any active 

states (TssA, TssWk, TssAFlnk1-2, EnhA, EnhWk, EnhPd) were classified as active in a given 

tissue type. Promoters containing RepP state and not overlapping with any active states were 

selected as repressed in a given tissue type. Finally, genes were classified as polycomb-

associated repressed genes if they include at least one repressed promoter in each tissue. GO 

analysis was performed on selected repressed genes from individual tissues above, and the terms 

that showed significant results in more tissues were shown in Supplementary Fig. 15. 

 

Functional annotation 

 

To interrogate the functional association of selected gene sets through enrichment analysis, we 

used Gene ontology (GO) [113] or pathway databases including KEGG [114], Reactome [115] 

and WikiPathway [116], g:Profile [117] (https://biit.cs.ut.ee/gprofiler/gost) and DAVID [118] 

(https://david.ncifcrf.gov/), which are web-based tools for functional analysis. GO terms 

associated with commonly expressed genes are summarized and visualized through Revigo [119] 

(http://revigo.irb.hr/; Supplementary Fig. 4D). To infer tissues showing significantly similar 

expression patterns with gene clusters which expressions were well-conserved between tissues 

among the three species, Enrichr [120] (https://maayanlab.cloud/Enrichr/) was used and results 

of “ARCHS4 Tissues” section are visualized (Supplementary Fig. 6A). 
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Figure description 
 
Figure 1. Overview of the integrative mapping approach to generate a dog reference 
epigenome. 
(A) Diagram of 11 primary tissue types from beagle dogs sampled for the study.  
(B) Synopsis of next-generation sequencing (NGS) methods, data integration approaches, and 
analyses performed for the integrative profiling the dog epigenome. See also Materials and 
Methods. 
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(C) Matrix of in-house generated NGS dataset quality from 11 primary tissue types, including 
information on RNA expression, defined epigenomic modifications, and DNA methylation. 
Normalized data integrity measures for each NGS sample profile [relative transcript integrity 
number (TIN) for whole-transcriptome RNA-sequencing (RNA-seq) and normalized strand cross-
correlation coefficient (NSC) quality score for histone chromatin immunoprecipitation followed by 
sequencing (ChIP-seq) and methyl-CpG-binding domain sequencing (MBD-seq)] are displayed. 
Two replicates per sampled tissue were profiled. Indicated tissue abbreviations were used all 
throughout the manuscript.         
 
Figure 2. Comprehensive inter-tissue and cross-species transcriptome analysis. 
(A) Unbiased agreement between in-house generated and BarkBase matching inter-tissue 
transcriptome data. Principal component analysis (PCA) performed for sampled tissue 
transcriptomes in our study and the BarkBase dataset from matching sampled tissues. The in-
house data are marked by black circle. Beside displays Spearman rank coefficient values 
indicating transcriptome similarity per tissue type. All correlations have statistically significant 
values (P<0.05). Note that BarkBase dataset does not include MG and OV tissue types 
(Supplementary Data 4). Each category of tissue is represented by a different color. 
Supplementary Fig. 1 shows quality control (QC) checks for RNA-seq analysis.   
(B) Proportion of total unique gene counts per tissue type annotated from Ensembl database 
(v102) using Tasha’s assembled genome updated in CanFam3.1. Only genes with expression 
level greater than or equal to 1 (fragments per kilobase of exon per million mapped fragments; 
FPKM) were analyzed. Fractions of uncounted genes (FPKM <1) are indicated in grey. Beside 
shows four Ensembl-annotated gene categories (30,951 genes) identified from the dog reference 
genome.  
(C) Distribution of defined tissue specificity of counted genes as in b. Categories of tissue 
specificity were derived from the Human Protein Atlas algorithm for classification of 
transcriptomics data. 
(D) Heatmap of relative expression (log2-transformed FPKM + 1) of 4,394 total tissue-specific 
genes. Gain and loss signatures correspond to all the available genes identified displaying 
indicated z-scores. Beside shows Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of pathways from tissue type-specific gene expression. Tissue-specific 
genes for all 11 primary types consist of both tissue-enriched and tissue-enhanced genes (n = 
3,240) while that of the combined CL and CR also included group-enriched (n = 1,150) and tissue-
enhanced (n = 4) genes. Adjusted -log10 p-values (bar height) and relative unique gene counts 
(bar width) are indicated for each matched KEGG pathways. See also Supplementary Fig. 5.  
(E) Dendrogram showing hierarchical clustering using Euclidean distance metric and average 
linkage method on the basis of 12,551 orthologous protein-coding gene expression across the 
sampled primary tissues in dog and matched tissues in human and mouse using transcriptomes 
from the ENCODE project. Note that only the matched nine tissue types were analyzed as CL 
and CR are not available in human or mouse datasets.   
(F) PCA performed for data analyzed in E. The expression values are normalized across the 
entire dataset. 
(G) Variance decomposition to estimate the relative contribution of tissue and species to the 
observed variance in gene expression for each orthologous human–dog, human–mouse, or dog–
mouse gene pair. Each plot shows proportion split of variance attributable to orthologous gene 
expression across tissues or species. Yellow dots indicate genes with higher between-tissue 
contributions and green dots are genes with higher between-species contributions.  
(H) Dendrogram showing two-way hierarchical clustering as in E was repeated, except on the 
basis of expression of 2,252 orthologous protein-coding genes with high variance across tissues 
in dog, human, and mouse, which included overlapping genes across human–dog, human–
mouse, or dog–mouse pairs. Beside shows clustering, except on the basis of expression of 
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overlapping 3,291 orthologous protein-coding genes with high variance across species (dog, 
human, and mouse) which included overlapping genes across human–dog, human–mouse, or 
dog–mouse pairs. See also Supplementary Fig. 6A. 
(I) Heatmaps of relative expression (log10-transformed FPKM + 0.01) of overlapping high 
variance tissue-specific or species-specific genes from Supplementary Fig. 6A, except after 
applying k-means clustering to partition “true” tissue-specific genes regardless of species or “true” 
species-specific genes regardless of tissues among 3 species. Gain and loss signatures 
correspond to all available genes identified that display indicated z-scores. Each category of 
tissue or species is represented by a different color and is matched across all panels. See also 
Supplementary Figs. 6 and 7. 
 
Figure 3. Chromatin state landscapes and DNA methylation status in dog primary tissues.  
(A) Representative 13-chromatin state model based on five histone modification marks, emission 
probabilities for individual histone marks (fixed model across all tissues) and fold enrichments of 
chromatin states for the various types of genomic annotations including whole gene elements, 
CpG island, common repeats (tandem simple and interspersed), ZNF genes, active and inactive 
gene elements (expressed and repressed) for CL and including methylated regions and non-
coding conserved elements for 11 tissues. For all boxplots in this paper: box, interquartile range 
(IQR); whiskers,1.5× IQR; horizontal line, median. TSS, transcription start site. TES, transcription 
end site. STR, short tandem repeat. ISR, interspersed repeat. Supplementary Figs. 2 and 3 
show quality control (QC) checks for ChIP-seq and MBD-seq analysis, respectively. See also 
Supplementary Figs. 8 and 9. 
(B) Genome coverage of chromatin states excluding the quiescent state in 11 primary tissue types. 
Total overlapping regulatory region occupied in all tissue types and average regulatory region 
occupied in each tissue type.  
(C) Representative chromatin state landscapes showing annotations across 11 primary tissue 
types at a ~0.46-Mb region on dog chromosome 9. Chromatin states are color coded as in a. In 
the same locus, signal tracks of histone modification mark-binding ChIP-seq, RNA-seq, and MBD-
seq, including annotations of genes (ENSEMBL), CpG islands, and repeats (tandem simple and 
interspersed) for CL are shown.  
(D) Average spatial accessibility of different chromatin states at the defined loci (± 5 kb of 
chromHMM region) in LI, PA, SP, and ST—matching four tissue types with available ATAC-seq 
data in the BarkBase dataset. Read density indicates normalized ATAC-seq signal.  
(E) Relative overlap of active transcriptional start site (TssA) chromatin state (square size) and 
relative degree of methylation density (color scale) on the promoter regions (promoter and ± 2 kb 
flanking regions around TSS) of tissue-specific genes in all tissue types including combined CL 
and CR defined in Fig. 2D. Normalized z-scores are shown.  
(F) Chromatin state landscapes across 11 primary tissue types as in c, except at representative 
tissue-specific gene marker regions defined in Fig. 2D. Per gene locus, RNA-seq signal tracks 
are shown for 11 primary tissue types.  
 
Figure 4. Cross-species mapping and analysis of chromatin states.  
(A) Schematic of comparative mapping strategy to evaluate divergence and conservation of dog 
chromatin states on syntenic regions in both human and mouse genomes and vice versa. See 
also Methods.  
(B) Genome-wide conservation of defined chromatin states across dog, human, and mouse. 
Chromatin states derived from matched tissue types in dog (this study), human and mouse 
(ENCODE) were mapped as in A. Values indicate mapping proportion of segmented chromatin 
state to the total covered genomic region. A default minimum of 95% match score is set. Color 
coded bars indicate analogous chromatin state classification as in dog.  
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(C) Clustered correlation heatmap of selected histone modification marks across species with 
sufficient emission probabilities per regulatory region as evaluated in each species (see Fig. 3A 
and Supplementary Fig. 11B). Spearman rank coefficient values indicate ChIP-seq signal 
similarity on mapped regions. See also Supplementary Fig. 11. 
 
Figure 5. Tissue-specific complex trait enrichments on active enhancer marks conserved 
in the dog genome. 
(A-C) Heatmap showing enrichment of human genome-wide association study (GWAS) signal for 
complex traits and diseases within the mapped dog (A), human-to-dog (B), and mouse-to-dog (C) 
active enhancers marked by strong histone H3K27ac modification. Color intensity indicates 

normalized -log10 enrichment P values at GWAS threshold ≤ 1.0E-8 in the Garfield algorithm. 

 
Figure 6. Tissue-specific super-enhancer landscapes and cross-species analysis.  
(A) Schematic of super-enhancer (SE) analysis by: i) SE calling based on H3K27ac-binding ChIP-
seq signals using the ranking of super-enhancer (ROSE) algorithm, ii) classification of domain set 
merged from SEs of 11 tissues, and iii) domain-to-gene linking prediction strategy. See also 
Methods. 
(B) Individual SE call summary from each tissue type in addition to the 6,654 peaks representing 
the merged domain set (green bar) indicated in A.  
(C) Representative mean H3K27ac-binding ChIP-seq signal density [fold enrichment signal over 
background] across the mapped SE and typical enhancers (TE) in CL. H3K27ac signals are 
centered on the enhancer region (566 base pairs for TE and 49 kb for SE of mean length), with 5 
kb surrounding each SE region and 2 kb for TE region. 
(D) Representative mean ChIP-seq signal densities as in c except for other histone modifications 
and mean MBD-seq signal density in CL. The signals are centered on constituent region located 
in SE with 2 kb surrounding each region. 
(E) Heatmap of background-subtracted, SE-specific H3K27ac-binding ChIP-seq signal density 
across 11 primary tissue types. Color intensity indicates log2 transformed ChIP-seq signal of SE 
domains. See also Supplementary Fig. 12. 
(F) Heatmap of relative expression (log2 FPKM + 1) of 525 genes linked with H3K27ac associated 
SE from e across 11 primary tissue types. Gain and loss signatures correspond to all available 
genes identified that display indicated z-scores.  
(G) Gene ontology (GO) analysis of biological processes (BPs) and KEGG enrichment analysis 
of pathways from tissue-specific genes enriched as in F. Adjusted -log10 p-values are indicated 
for each matched GO terms or KEGG pathways. 
(H) Signal tracks of H3K27ac-binding ChIP-seq and RNA-seq for representative combined CL 
and CR- and LI-specific locus, including annotations of tissue-specific genes (ENSEMBL). 
(I) Syntenic conservation of mapped dog SEs across human and mouse genomes. 16,810 dog 
SEs generated in this study were used along with SE regions sourced from 99 human and 24 
mouse tissue/cell types curated from dbSUPER. Values indicate cross-species SE mapping rate 
and genome similarity (shown as minimum match ratio) adjusted to range from 10 to 90%. See 
also Supplementary Fig. 13. 
(J) Jaccard similarity of overlapping SEs across species per tissue type. SEs were sourced as in 
I. Values indicate max normalized Jaccard index and only the top 10 matching tissue identities 
were visualized (color coded). See also Supplementary Fig. 13. 
 
Figure 7. Tissue-specific DNA methylation landscapes and associated biology.  
(A) Representative heatmaps of normalized MBD-seq and histone mark-binding ChIP-seq signal 
density centered around CpG island regions (CGI ± 4 kb) for CL. Heatmaps were generated from 
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merged biological replicate pairs for each dataset. Regions are sorted in descending order based 
on average row density for MBD-seq. See also Supplementary Fig. 14. 
(B) Heatmap of top 20,000 commonly methylated regions (CMRs) and 20,437 tissue-specific 
differentially methylated regions (tsDMRs) across 11 primary tissue types. Color intensity 
indicates normalized counts. Beside shows heatmap of tsDMRs, except values indicate z-scores 
to differentiate between tissue-specific hypomethylated (blue gradient; at the top) and 
hypermethylated (red gradient; at the bottom) regions.   
(C) Distribution of CMRs and tsDMRs across dog genomic, common repeats, and CpG regions 
in sampled dog primary tissues. Values indicate frequency of hypermethylated or hypomethylated 
regions.   
(D) Maps displaying the distribution patterns and average signal density of defined chromatin 
states (collectively grouped into four categories: promoter, enhancer, heterochromatin, and 
bivalent region) around CMRs and tsDMRs (center of region ± 5 kb). Maps were clustered 
according to CpG region type.  
(E) Scatter plots showing correlation between gene expression (RNA-seq; log2 fold change) and 
methylation levels (MBD-seq; log2 fold change). Methylation levels of tsDMRs on overlapped 
6,825 genes at non-CGI, CGI, and neighboring shores and shelves situated in different genomic 
regions are evaluated. Pearson rank coefficient values and statistical significance are shown. The 
red line shows the least squares line with zero intercept. 
(F) GO analysis of BPs or KEGG enrichment analysis of pathways from genes related with CMRs 
or hypo-tsDMRs. Adjusted -log10 p-values (color intensity), enrichment scores, and relative 
unique gene counts (circle size) are indicated for each matched GO terms or KEGG pathways.     
 
Figure 8. The EpiC Dog initiative.  
Our preliminary resource page enables the download of raw and pre-processed RNA-seq, ChIP-
seq, MBD-seq data for up to 11 tissues and their replicates from each of the three adult dogs; 
including utilized datasets from human and mouse ENCODE for comparative studies. Reads pre-
processed and aligned to CanFam3.1 are also available along with integrated analysis pipelines 
used in the study. A linked UCSC Genome Browser page is generated to allow for genome-wide 
visualization of the integrated epigenome landscapes for each tissue sample and for comparative 
study with human and mouse epigenomes. As new datasets come in, we will update the resource 
page accordingly along with the goal of creating an interactive dog epigenome hub. 
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