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Abstract

The current lack of benchmark datasets with inbuilt ground-truth makes it challenging to compare the
performance of existing long-read isoform detection and differential expression analysis workflows. Here,
we present a benchmark experiment using two human lung adenocarcinoma cell lines that were each
profiled in triplicate together with synthetic, spliced, spike-in RNAs (“sequins”). Samples were deeply
sequenced on both Illumina short-read and Oxford Nanopore Technologies long-read platforms.
Alongside the ground-truth available via the sequins, we created in silico mixture samples to allow
performance assessment in the absence of true positives or true negatives. Our results show that,
StringTie2 and bambu outperformed other tools from the 6 isoform detection tools tested, DESeq2,
edgeR and limma-voom were best amongst the 5 differential transcript expression tools tested and there
was no clear front-runner for performing differential transcript usage analysis between the 5 tools
compared, which suggests further methods development is needed for this application.
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Introduction

Long-read sequencing technology is becoming more widely used in the field of transcriptomics research.
The ability to sequence full transcripts facilitates the study of alternative splicing by identifying and
quantifying novel splicing isoforms[1–4] and detecting differences in isoform usage and/or expression
between different conditions[5, 6]. A number of customised algorithms for long-read isoform detection
and workflows for differential splicing (DS) analysis have been developed in the past few years[7],
however, a lack of benchmarking datasets with built-in ground-truth has limited efforts to systematically
evaluate the performance of different methods.

Benchmarking studies can help researchers choose the most suitable experimental technologies and
computational methods to achieve their study goals[8]. Several benchmark studies for long-read bulk
RNA-seq have focused on the comparison of sequencing protocols by analysing data from matched
samples. For instance, Soneson et al.[9] and Wongsurawat et al.[10] compared Oxford Nanopore
Technologies (ONT) direct RNA-seq to direct cDNA-seq and Sessegolo et al.[11] compared ONT PCR
cDNA-seq to direct RNA-seq. In the recent Singapore Nanopore Expression Project (SG-NEx), Chen et
al.[12] generated a dataset containing 5 human cancer cell lines sequenced by 4 different protocols: ONT
direct RNA-seq, direct cDNA-seq, PCR cDNA-seq and Illumina RNA-seq. Synthetic ‘sequins’[13] that
contain alternatively spliced transcripts were spiked into some sequencing runs. By comparing different
sequencing protocols, they demonstrated the benefit of long-read RNA-seq in transcript-level analysis.

Other long-read benchmarking studies have focused on comparing the performance of different
analysis methods. For instance, Dong et al.[14] compared 3 isoform detection tools and 2 differential
transcript usage (DTU) tools using a mouse neural stem cell dataset and a synthetic sequins dataset.
Both experiments had corresponding Illumina short-read data run on equivalent samples that allowed for
comparison with ONT long-read data. Sequencing per sample was in the order of a few million reads per
sample, which is much lower that the typical number of reads obtained in a short-read RNA-seq dataset.
The Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium[15] profiled
biological triplicates of different human and mouse cell lines (pure and mixed) with human gene derived
Spike-In RNA Variants (SIRVs)[16] using different long- and short-read RNA-seq library preparation and
sequencing protocols. Human and mouse simulated datasets, and a manatee whole blood transcriptome
were also generated. In this study (manuscript in preparation), isoform detection and quantification
methods will be compared using the results submitted by challengers. Until now, the systematic
performance assessment of differential transcript expression (DTE) and DTU workflows on long-read
RNA-seq data has been hampered by small library sizes and the lack of available ground-truth in
previous benchmarking studies.

To advance research in this area, we designed and generated a dataset that consisted of matched
samples across long- (ONT) and short-read (Illumina) technologies. Each dataset contains 3 replicates
from 2 human lung adenocarcinoma cell lines that included sequins spike-in controls. To create biological
heterogeneity with inbuilt truth, replicate in silico mixtures at 3 different proportions (75:25, 50:50,
25:75) were generated by sampling reads from the different cell line samples. Using these data, we
evaluated 6 methods for long-read isoform detection, 5 for DTE analysis and 5 for DTU analysis to guide
method selection.

Results

Experimental design, benchmarking analysis plan and data quality
assessment

Our benchmarking experimental design involved RNA from two distinct human lung adenocarcinoma
cell lines, sequins spike-in controls and in-silico generated mixture samples (Figure 1a). The cell lines
NCI-H1975 and HCC827 were cultured separately in 3 replicates to introduce inter-sample variation due
to differences in lab processing and sample preparation to simulate biological variability[17]. Synthetic
RNA spike-ins (sequins) from two mixes (A or B) were added to each pure RNA sample to provide
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Figure 1. Overview of the experimental design and benchmark analysis. (a) Summary of the
experimental design involving pure RNA samples obtained from 2 cancer cell line (H1975 and HCC827)
with 2 synthetic sequins spike-in control mixes (A and B) and in silico generated mixture samples. (b)
Overview of the analysis workflow to benchmark the performance of different RNA-seq analysis tools for
isoform detection and quantification, differential transcript expression (DTE) and differential transcript
usage (DTU). Analysis steps and selected methods are shown in shaded boxes with solid borders, while
evaluation metrics are listed in boxes with dashed borders.

inbuilt ground-truth in our experiment. Each pure RNA sample was polyA-selected and cDNA was
prepared for sequencing. We used the ONT PCR-cDNA method for long-read sequencing on the ONT
PromethION and the NEB Ultra II Directional RNA library preparation for short-read sequencing on the
Illumina NextSeq (75bp paired-end), providing data on matched samples across technologies. Reads from
each pure RNA sample of a given cell line (denoted as 100:0 and 0:100) were down-sampled to a fixed
number of reads and combined with the down-sampled reads from a corresponding sample of the other
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cell line in three different proportions (75:25, 50:50 and 25:75) to generate in silico mixture samples.
To validate whether our in silico mixture strategy can simulate the variance structure seen in an

RNA-seq experiment where physical RNA mixtures were generated, we reanalysed the Illumina
short-read data from Holik et al.[17] (GSE64098). Triplicates of pure RNA samples of the same cell lines
NCI-H1975 and HCC827 as well as lab-generated RNA mixtures in the same proportions (75:25, 50:50
and 25:75) were available. In silico mixtures created using the reads from the pure cell line samples were
processed together with the pure and lab-mixed RNA samples using the same pipeline. The
multi-dimensional scaling (MDS) plot in Supplementary Figure S1 shows that the in silico mixture
samples had very similar gene expression profiles to the lab-mixed samples with the same mixture
proportions. This indicates that our in silico mixture strategy should be effective at simulating the
process of physically mixing RNA in the lab, and saved us 60% of the sequencing costs (only 6 samples
needed to be sequenced instead of 15).

By having both ONT long reads and Illumina short reads from the same samples, our experiment
provides a useful resource for direct comparison of the characteristics of the different sequencing
technologies. Also, the more accurate short reads can be used to verify the isoforms detected by
error-prone long-read data. Discrepancies between the results of long- and short-read data analysis can
also be examined.

A summary of the analysis workflow is shown in Figure 1b. ONT long reads from pure RNA samples
were used for isoform detection using six methods (bambu, FLAIR, FLAMES, SQANTI3, StringTie2 and
TALON ). Both pure RNA samples and in silico mixture samples were mapped and quantified against
the GENCODE human annotation (Release 33) and sequins annotation (version 2.4). The
transcript-level count matrix was used as input to downstream steps such as DTE (five methods:
DESeq2, EBSeq, edgeR, limma, NOISeq) and DTU (five methods: DEXSeq, DRIMSeq, edgeR, limma and
satuRn). Supplementary Figure S2 shows examples of different DTE and DTU states for 4 genes with 2
transcripts each.

In our ONT dataset, a total of ∼ 268 million (M) reads were processed and passed quality filtering.
The number of reads sequenced from each sample in the ONT dataset varied between 39 M to 51 M (Fig
2a). In comparison, ∼ 289 M reads were processed in the Illumina dataset. One of the HCC827 samples
only had ∼ 8.6 M reads and was re-sequenced, which delivered a further ∼ 125 M reads. Although the
mapping rate of the Illumina dataset was higher than the ONT dataset, fewer reads were counted in the
former. Overall our experiment contained a total of ∼ 235 M ONT transcript counts and ∼ 153 M
Illumina read counts.

In the ONT dataset, median read length is 591 bases, and mean read length is 716.5 bases (Figure 2b),
which is similar to Chen et al.[12]’s ONT PCR cDNA dataset. Longer reads tend to have slightly higher
read quality (Figure 2c). The mean average base quality score for demultiplexed reads is 10.848, which
corresponds to an estimated basecalling error rate of 8.2%. The updated ONT basecalling algorithm
offers improved accuracy compared to our previous study[14] (estimated basecalling error rate 15.8%).

In short-read RNA-seq, fragmentation during library preparation and read lengths limited to a few
hundred bases make it challenging to uniquely map short reads to transcripts, especially for reads from
overlapping exons shared by different isoforms of the same gene. In this respect, long-read RNA-seq has
a natural advantage since individual reads cover a longer proportion of the transcript. However, current
long-read RNA-seq protocols suffer from biases and not all reads correspond to full-length transcripts.
Here, we calculated the coverage fraction of transcripts by individual ONT reads after mapping them to
the reference transcriptome. The mean transcript base coverage rate of all reads is 50.4%. As shown in
Figure 2d, longer transcripts have lower base coverage rate. Although only 25.7% reads were found to be
full length (covering at least 95% of the bases of the corresponding transcripts), 60.3% of transcripts that
passed expression filtering have at least one full length read assigned to them, and the longest one among
these transcripts is 8,481 base pairs long. We estimated the transcript assignment ambiguity for the long
and short reads using the over-dispersion calculated by edgeR[18]’s catchSalmon function. The
over-dispersion for all transcripts are between 1 and 1.15 in our ONT long-read dataset, while two-thirds
of the transcripts in the Illumina short-read dataset had an over-dispersion larger than 3.56 (Figure 2e).
Importantly, transcripts from genes with more isoforms tend to have significantly higher over-dispersion
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Figure 2. Overview of data quality for the benchmarking dataset. (a) The total number
of trimmed and demultiplexed reads and transcript-level counts in ONT and Illumina dataset. (b)
Distribution of demultiplexed read length in the ONT dataset. (c) Distribution of read quality in the
ONT dataset, splitting by read length. Read quality is defined by the average base quality score of a
read. (d) A hexagonal 2D density plot showing the correlation between median base coverage rate of a
transcript and the length of the annotated transcript. (e) Distribution of over-dispersion coefficients in
ONT and Illumina dataset from human (left) and sequins (right) transcripts, stratified by number of
transcripts per gene. The width of boxes reflect the relative quantity of transcripts within each category.
(f and g) MDS plot showing the pure RNA samples and in-silico mixture samples based on human
transcript-level logCPM from ONT (f) and Illumina (g) dataset. (h) The proportion of short and long
reads assigned to different classes of transcripts in each sample. Transcript-level counts were broken down
according to GENCODE’s transcript biotypes annotation. (i) Heatmap showing the Pearson correlation
of transcript-level CPM (ONT) and TPM (Illumina) from protein coding transcripts and lncRNAs across
pure RNA samples. (j and k) The correlation between observed transcript counts and expected transcript
abundance of each sequins transcript from each sample in ONT (j) and Illumina (k) dataset.
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in the Illumina dataset. Due to the lower complexity of the sequins transcriptome, the mean
over-dispersion of sequins (1.688) was lower than human transcripts (6.184). This suggests that the ONT
PCR cDNA sequencing protocol far outperforms short-read sequencing in assigning reads to specific
transcripts, especially between multiple isoforms of the same gene, despite current limitations in
obtaining full-length reads.

To examine the variability in the data, MDS plots were generated after low-expression filtering,
normalization and converting the read counts from all samples to log2CPM (counts per million).
Samples were clearly separated on dimension 1 by mixture proportion in both the ONT and Illumina
datasets (Figure 2f and g). Samples from the same mixture proportion also appeared closely on the MDS
plot of human transcripts in ONT dataset (Figure 2f). In the MDS plots for sequins transcripts for both
datasets (Supplementry Figure S3a and b), dimension 1 explained most variance in the data (80% for
ONT, 79% for Illumina). Overall, the MDS plots show that the major variance in the data can be
explained by the biological difference between different mixture proportions of different cell lines.

In order to compare the read distribution across different RNA classes from long- and short-read
sequencing, we annotated the count matrices using the transcript biotype information available from the
GENCODE annotation. The proportion of reads assigned to most biotypes in each pure RNA sample
(Figure 2h) were very similar between ONT and Illumina datasets; about 90% of reads were assigned to
protein coding transcripts in both datasets. Our ONT long-read sequencing captured marginally more
non-coding RNAs (ncRNAs). To compare the transcript-level quantification obtained from ONT
long-read and Illumina short-read sequencing, we calculated the Pearson correlation of transcript counts
across each pure RNA sample (Figure 2i, Supplementary Figure S4). We noticed that some transcripts
which were detected to be highly expressed in one platform, only had limited number of reads detected
in another platform (Supplementary Figure S4a). The transcript-level counts from protein coding
transcript and lncRNAs showed very high correlation (>0.94) between replicates. The Pearson
correlations of counts from the same cell lines sequenced on different platforms (0.65 to 0.71) are lower
than that of different cell lines on the same platform (0.80 to 0.89), indicating the existence of strong
batch effects between different sequencing platforms (Figure 2i). The inconsistency of quantification
between platforms is stronger for transcripts in other biotypes (Pearson correlation 0.15 to 0.31,
Supplementary Figure S4b), which leads to reduced cross-platform correlation when calculated using all
transcripts (Supplementary Figure S4c). By contrast, the correlation of sequins transcript quantification
across sequencing platforms is very high (0.88 to 0.93, Supplementary Figure S4d).

To evaluate the accuracy of quantification, we compared our transcript-level quantification of the
sequins spike-in transcripts to their annotated abundance. Both CPM (effective TPM) from ONT long
reads (Figure 2j) and TPM from Illumina short reads (Figure 2k) had strong positive linear relationships
with the annotated abundance. The linear relationship for the ONT data is slightly stronger than that of
Illumina data, indicating that improved transcript-level quantification can be obtained using long-read
sequencing.

Comparisons of isoform detection methods

We tested six isoform detection and quantification methods for long-read data: bambu
(https://github.com/GoekeLab/bambu), FLAIR[19], FLAMES[20], SQANTI3[21], StringTie2[22] and
TALON[23]. Using the sequins, we evaluated how well the methods recovered known transcripts in the
original full dataset using the complete annotation, and how well they discovered known, but missing
(‘novel’) transcripts in a downsampled dataset using an annotation where selected isoforms (40 in total)
were removed. Ideally, all known sequins transcripts should be detected with no novel isoforms. Our
results show that bambu detected the most sequins transcripts in both analyses (Figure 3a, b), and the
fewest artefactual isoforms in the full dataset. It identified ∼91% of the sequins transcripts in the full
dataset and ∼71% of the sequins transcripts that were retained in the annotation in the downsampled
dataset. FLAIR, FLAMES, and StringTie2 found similar numbers of known or retained sequins
transcripts in both analyses, but the number of artefactual isoforms FLAIR detected were more than
double the number of sequins transcripts in the full dataset (Figure 3a). This was not the case in the
downsampled analysis, in which out of the three tools, FLAMES found a significantly higher number of
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Figure 3. Comparison of isoform identification and quantification methods using pure RNA
samples. (a) The number of known sequins in the reference annotation and non-reference artefactual
isoforms detected by each tool in the full ONT data. The dashed line represents the true number of
sequins. (b) The number of sequins excluded from the modified reference annotation, sequins retained,
and non-reference artefactual isoforms detected by each tool in the downsampled ONT data. The green
dashed line represents the true number of retained sequins and the purple dashed line represents the
true number of excluded sequins. (c) Bar plots showing the number of isoforms detected in the ONT
data (left) and the number of counts from isoforms (right), coloured by isoform structural categories.
Known transcripts (i.e. true positive) constitute the red “full splice match” category; other categories
represent erroneous transcripts. (d) A bar plot showing the the number of isoforms detected in both the
full and downsampled ONT long-read datasets (“exact matches”), in the full dataset only and in the
downsampled dataset only. (e) A ridgeline plot showing the distribution of uniquely mapped Illumina
short-read junction read count for each tool. Redundant junctions and isoforms from the “full splice
match” structural category were excluded. (f) An UpSet plot showing the 20 largest intersections of
isoform coordinates between isoform annotations identified by each tool in the ONT long-read data.

artefactual isoforms (Figure 3b). SQANTI3 and TALON identified the lowest number of known sequins
in the full dataset and the most artefactual isoforms overall. Results from this analysis also show that
the only tools to recover more than half of the removed sequins were bambu (∼58%) and SQANTI3
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(∼53%). The next best-performing tool in this regard was StringTie2 (∼43%), and the worst-performing
tool was FLAMES (30%). Overall, bambu outperformed all other methods in both sequins analyses.

Exploration of the transcripts detected in the human cell line RNA revealed disproportionately large
numbers of erroneous transcripts detected by FLAIR and SQANTI3 as indicated by the number of
transcripts belonging to isoform structural categories other than “full splice match” (Figure 3c). The
highest percentage of known transcripts, represented by the “full splice match” category, was produced
by StringTie2 (∼68%). For reads assigned to transcripts in each structural category, most counts were
from known isoforms in all tools, except SQANTI3. Overall, bambu detected the largest number of
known transcripts (69,252) and yielded the highest read counts for known transcripts (∼194 M). In
contrast, SQANTI3 generated the smallest number of known transcripts (20,334), with the lowest read
counts for this category (∼14 M), and the highest proportions of erroneous transcripts (∼91%) and read
counts (∼87%). Of note, bambu retained all a priori annotated isoforms in the output GTF annotation
file even if some of them did not meet the criteria to be identified as ‘detected’ in the dataset. Its
subsequent use of all of pre-existing isoforms for quantification makes annotated isoforms easier to be
considered as ‘detected’ in our analysis.

We also compared isoforms identified in the full (100%) versus the downsampled (10%) cell line
datasets, to evaluate the performance of isoform detection at lower sequencing levels (Figure 3d). Ideally,
as many isoforms as possible detected in the full dataset should be recovered completely as exact
matches to the annotations generated from the downsampled dataset, with no novel isoforms in the
downsampled dataset that were not detected in the full dataset. StringTie2 and bambu showed superior
performance compared to other methods and were the only methods to yield exact matches for more
than 70% of the isoforms detected in both datasets. StringTie2, with 236,428 total comparisons,
recovered the highest proportion of exact matches (203,776, ∼86%), making it the best-performing tool
in this analysis. It also produced the lowest proportion of isoforms detected only in the full dataset
(15,482, ∼7%). bambu recovered ∼72% (204,633) of exact matches and produced the lowest proportion of
isoforms detected only in the downsampled dataset (∼0.03%), with just 78 isoforms. In contrast, results
from the worst-performing tools in this analysis, FLAIR and SQANTI3, comprised proportions of exact
matches of less than 5% (36,528/980,929 and 34,362/1,604,301, respectively). FLAIR also identified
466,783 isoforms in the downsampled dataset only, the highest proportion (∼48%) out of all tools. A
large number of isoforms detected by SQANTI3 (1,458,931 or ∼91%) were unique to the full dataset.

In an attempt to distinguish between true positive transcripts and false positives, we examined the
level of support provided by high accuracy short reads[24] by looking at the distribution of Illumina’s
short-read splice junction counts for each tool (Figure 3e). StringTie2 performed the best in this
analysis, with 81% of junctions from novel isoforms supported by short reads (≥10 uniquely mapped
junction counts), depicted by the larger peak of non-zero short-read junction counts in the distribution.
More than 60% of junctions from novel isoforms detected by FLAIR and FLAMES were supported by
short reads, while the proportion was 46% for bambu. A disproportionately large fraction of isoforms
identified by TALON and SQANTI3 were not supported by short reads (79% and 85%, respectively), as
indicated by the large peaks at zero short-read junction counts (Figure 3e). We also quantified the
transcripts detected by each tool using Illumina short reads (Supplementary Figure S5). Theoretically,
there should be a high degree of agreement between the long and short reads among isoforms; therefore
false junctions or transcripts attributable to long-read sequencing error should not be assigned
supporting short reads. The correlation for StringTie2 between ONT long-read log2CPM (counts per
million) and Illumina short-read log2TPM (transcripts per million) was also highest (R = 0.58). FLAIR
and bambu yielded similar correlations (R = 0.54 and R = 0.53, respectively), but detected many more
transcripts (n = 228,204 and n = 151,126, respectively) than StringTie2 (n = 55,630). The correlation
for FLAMES was close to 0.50 (R = 0.47). The correlations of quantification between ONT and Illumina
data for TALON and SQANTI3 were significantly lower (R = 0.20 and R = 0.23, respectively).

To examine the intersection of results from all isoform methods, we developed a genome binning
approach. Due to differences in transcript naming conventions and output formats, the coordinates of
the isoforms detected by each tool were used instead. We compared the overlap of coordinates in two
kilobase bins along the genome. In the UpSet plot shown in Figure 3f, the largest intersection of bins
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with common isoform coordinates encompasses all tools, indicating a high degree of agreement among
the methods for isoforms detected. The next two largest intersections also include most tools; the second
largest intersection excludes TALON and the third excludes FLAMES and TALON. The fourth
intersection shows that many unique regions overlap with the coordinates of a subset of isoforms
detected only by bambu, as does the sixth intersection with SQANTI3, suggesting that a sizeable number
of unique isoforms were detected by these tools.

Comparisons of differential transcript expression methods

Given the advantages of long-read sequencing in terms of lower transcript assignment uncertainty and
better transcript-level quantification, traditional differential gene expression analysis can be extended to
the transcript-level by applying DE methods to transcript count matrices[25, 26]. We evaluated five
popular DE analysis methods including DESeq2 [27], edgeR’s quasi-likelihood pipeline[18], EBSeq [28], the
limma-voom pipeline[29] and NOISeq [30], using the transcript count matrix as input.

Here, we applied the same DTE analysis workflows on transcript counts from both ONT long-read
and Illumina short-read data, and compared the differentially expressed transcripts detected between
pure RNA samples (100 vs 000) by different methods on each dataset. For transcripts tested across both
the Illumina and ONT datasets, results from different methods showed high concordance, with the
largest intersection of DE transcripts those detected by all methods across both datasets (Figure 4a,
Supplementary Figure S6a). The t-statistics calculated by limma-voom pipeline and converted to
Z-scores had high correlation between the ONT and Illumina data (Figure 4b). The length distribution
of detected DTEs were similar between the methods across both datasets (Supplementary Figure S6b).
If we consider all transcripts tested by any method in either the Illumina or ONT datasets (variation
here arises due to differences in filtering), we observe many that were specifically detected as
differentially expressed in the ONT dataset by one or more methods (Supplementary Figure S6a), and
that all methods reported more DTEs in the ONT dataset than in the Illumina dataset (Supplementary
Figure S6a). In both datasets, NOISeq detected more than 3,000 unique DTEs which were not detected
by other methods in any dataset. More lncRNAs and retained introns were detected to be significantly
DE in the ONT dataset compared to the Illumina dataset (Figure 4c, Supplementary Figure S6c).

To further evaluate the performance of DTE methods, various metrics relying on the in silico mixture
series were calculated. Relative to the comparison between pure RNA samples (100 vs 000), the
differences between the comparison 075 vs 025 samples is less pronounced, while the comparisons 050 vs
025 and 075 vs 050 will be more subtle again due to the more similar mixing proportions. Although the
true positive or true negative DTE transcripts between the cell lines are not annotated, based on the fact
that the same set of transcripts must be differentially expressed between any pair of samples in a
mixture design, we were able to estimate the sensitivity and precision of methods using the following
metrics: the number of DTEs detected in each comparisons, recovery rate (proportion of DTEs detected
in 100 vs 000 that are also detected in other comparison), and inconsistency rate (proportion of DTEs in
comparisons of mixture samples that are not detected in the 100 vs 000 comparison). Furthermore, the
known differences in transcript abundance between sequins mixtures A and B allowed us to calculate the
false discovery rate (FDR) and true positive rate (TPR) of DTE methods.

Using an adjusted p-value cutoff of 0.05 (or estimated probability of DE >0.95), limma and edgeR
detected the largest number of DTEs (∼ 33,000) between pure RNA samples (100 vs 000) among a total
of ∼ 60,000 human transcripts, followed by DESeq2 and NOISeq reporting a bit less DTEs (∼ 31,000,
Figure 4d). Among the five methods we compared, NOISeq achieved the highest recovery rate for human
genes across the various comparisons of mixture samples (Supplementary Figure S6d). DESeq2, edgeR
and limma performed similarly in terms of the total number of DTEs they obtained (Figure 4d) and
their recovery of DTEs found in 100 vs 000 comparison in the other mixture comparisons
(Supplementary Figure S6d). EBSeq detected the least number of DTEs from the 100 vs 000 comparison,
and it also had the lowest recovery rate in the 075 vs 025 comparison (Figure 4d, Supplementary Figure
S6d). The inconsistency rate of all methods are below the 0.05 threshold (Figure 4e), with limma, edgeR
and DESeq2 being very close to zero, indicating that all methods controlled false discoveries well in the
human ONT data.
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Figure 4. Comparisons of differential transcript expression methods using in silico mix-
tures. (a) An UpSet plot showing the 25 largest intersections of differentially expressed transcripts
between HCC827 (100) and H1975 (000) samples detected by each tool in Illumina short-read and ONT
long-read data. Only transcripts tested by all methods on both Illumina and ONT datasets are included.
(b) A hexagonal 2D density plot of the Z-score standardized t-statistics calculated between HCC827
(100) and H1975 (000) samples from Illumina short-read and ONT long-read data. (c) The proportion
of differentially expressed human transcript biotypes detected by each tool in Illumina short-read and
ONT long-read data. (d) The number of differentially expressed human transcripts detected in each
comparison of the ONT data showing the power and the ability to recover discoveries from the 100 versus
000 comparison of each method. (e) The rate of differentially expressed human transcripts detected
that were inconsistent with discoveries from the 100 versus 000 comparison of each method. (f) The
true positive rate (TPR) of different comparisons from each differential transcript expression tool in the
ONT sequins data. (g) The false discovery rate (FDR) of different comparisons from each differential
transcript expression tool in the ONT sequins data.

For the sequins data, NOISeq detected the most true positive DTEs in the 100 vs 000 comparison
(Figure 4f), but it had the lowest recovery rate for all other mixture comparisons (Supplementary Figure
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S6e), and the highest FDR among all methods (Figure 4g). DESeq2, edgeR and limma outperformed the
other tools in terms of recovery rate (Supplementary Figure S6e), however, their FDR in the 100 vs 000
comparison exceeded the nominal 0.05 threshold (Figure 4g), which indicates the potential for more false
discoveries than expected. Although EBSeq had a relatively lower power to detect DTEs (Figure 4d), it
was the only tool that controlled FDR well in all comparisons (Figure 4g).

Comparisons of differential transcript usage analysis methods

Other than studying the difference of transcript expression levels between experimental groups, it is also
of biological interest to study differential splicing (DS). One way to study DS is through differential
transcript usage (DTU) analysis, where the relative changes in proportion of expressed transcripts from a
given gene are examined between conditions. Differential exon or exon junction usage (DEU) analysis is
an alternative way to study DS that focuses on the usage changes for a given gene at the exon-level. If
transcript-level counts rather than exon-level counts were used as input, models designed for DEU
analysis can also be used to perform DTU analysis[14, 31]. We selected five methods to perform DTU
analysis, including two DTU methods (DRIMSeq [32], satuRn[33]) and three methods that were originally
designed for DEU analysis (DEXSeq [34], limma-diffSplice pipeline[29], edgeR-diffSliceDGE pipeline[18]).

To study DTU events, there are two ways to identify significant changes between different
experimental groups. The transcript-level test measures whether each individual transcript changes in
proportion between conditions, while the gene-level test examines whether, for a given gene there are any
transcripts with DTU. The transcript- and gene-level DTU results are usually combined in practice to
identify features of biological interest. Here, we compared the DTU transcripts and genes detected
between the pure (100 vs 000) samples by different methods on each dataset. All methods except for
limma-diffSplice had more significant findings in the ONT data than the Illumina data at both the
transcript- (Supplementary Figure S7a) and gene-level (S8a). One reason for this is that a lot of
significant DTU features detected in the ONT dataset did not pass expression filtering in the Illumina
dataset (Figure 5a, Supplementary Figure S8b). Among all the DTU features detected by any method,
only 14.4% of transcripts (Supplementary Figure S7b) and 23.1% of genes (Supplementary Figure S8c)
were detected to be significant on both the ONT and Illumina dataset. The inconsistency of DTUs
detected in the ONT and Illumina datasets was higher at the transcript- rather than the gene-level, both
before (Supplementary Figure S7b and S8c) and after (Supplementary Figure S7c and S8d) filtering out
transcripts or genes that were only tested in one dataset. All methods tend to find shorter DTU
transcripts in the ONT dataset than the Illumina dataset (Figure 5b), while the difference in length of
DTU genes detected in ONT and Illumina dataset is subtle (Supplementary Figure S8e). A higher
proportion of DTU genes and transcripts that are not of the protein coding biotype were detected on the
ONT dataset compared to the Illumina dataset, especially for the lncRNAs and processed transcripts
classes for the transcript-level analysis (Figure 5c), and lncRNAs for the gene-level analysis
(Supplementary Figure S8f).

We evaluated the performance of the five DTE methods in a similar manner to the DTU methods, by
calculating the power, recovery rate and inconsistency rate of each method at the transcript- and
gene-level using the ONT in silico mixture series, and calculating the true positive rate and false
discovery rate for the sequins transcripts and genes. DRIMSeq and DEXSeq detected the largest number
of human DTU transcripts (Figure 5d) and genes (Supplementary Figure S9a), while edgeR detected the
least DTUs. The power of all DTU methods declined dramatically as the mixing proportions compared
became more similar, with recovery rates below 0.2 for all methods for both human transcripts
(Supplementary Figure S7d) and genes (Supplementary Figure S9b). The recovery rate of edgeR and
limma were slightly lower than other methods. The inconsistency rate of all methods are below the 0.05
threshold (Figure 5e and S9c).

For the ONT sequins dataset, DRIMSeq and limma detected the largest number of DTU transcripts
and genes for the 100 vs 000 comparison (Figure 5f, Supplementary Figure S9d), but the recovery rate of
limma was lower than DRIMSeq at both the transcript- (Supplementary Figure S7e) and gene-level
(Supplementary Figure S9e). DEXSeq also detected the largest number of DTU sequins transcripts, and
had the highest recovery rate for the comparison 075 vs 050 (Supplementary Figure S7e). The FDR of
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Figure 5. Transcript-level comparisons of differential transcript usage methods using in
silico mixtures. (a) An UpSet plot showing the 25 largest intersections of DTU features between
HCC827 (100) and H1975 (000) samples detected by each tool in Illumina short-read and ONT long-read
data. Only transcripts tested by all methods on both Illumina and ONT datasets are included. (b)
Distribution of annotated length of DTU features detected by each method in Illumina (top) and ONT
(bottom) data. (c) The proportion of DTU features of different biotypes detected by each tool in Illumina
short-read and ONT long-read data. (d) The number of DTU features in each comparison of ONT data
showing the power and the ability to recover discoveries from the 100 versus 000 comparison of each
method. (e) The rate of detected differential used human transcripts inconsistent with discoveries from
100 versus 000 of each method. (f) The true positive rate (TPR) of different comparisons from each
DTU analysis tool in the ONT sequins data. (g) The false discovery rate (FDR) of different comparisons
from each DTU analysis tool in the ONT sequins data.

DRIMSeq, satuRn and DEXSeq in the 100 vs 000 comparison were all above 0.2 at both the transcript-
(Figure 5g) and gene-level (Supplementary Figure S9f). Although edgeR was the only tool that
controlled the transcript-level FDR to be lower than the cutoff 0.05 in the 100 vs 000 comparison (Figure
5g), and had the lowest gene-level FDR (Supplementary Figure S9f), its power to detect DTU at the
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transcript- or gene-level was lowest among all tools for all comparisons between the in silico mixture
samples (Figure 5f, Supplementary Figure S9d).

Discussion

By introducing ground-truth in the form of sequin spike-ins, we could assess the performance of tools at
each step of the workflow using a small number of genes and transcripts. Furthermore, the in silico
mixtures provided a means to broadly assess the performance of DTE and DTU tools on a genome-wide
scale, where true positives and negatives are unknown. Our in silico mixture strategy provides extra
levels of ground-truth without extra cost, and can be easily applied to other datasets that have replicate
samples across multiple groups.

Previous studies of ONT long-read RNA-seq data contained low read numbers per sample resulting in
a loss of power for DE analyses[9, 14, 26]. Compared to other long-read RNA-seq studies such as the
SG-NEx project[12] (34 million long reads per cell line on average) and the LRGASP project[15] (3-60
million reads per cell line per sequencing protocol), our samples were sequenced to a greater extent using
one single long-read protocol (134 million reads per cell line on average, Figure2a). Our results suggest
that the sequencing level per samples we obtained can support the detection of both novel isoforms
(Figure 3) and a large number of DTE (Figure 4 or DTU 5). Exploring how many reads are required for
different applications could be carried out using a down-sampling strategy as future work.

The PCR cDNA-seq protocol from ONT yields a greater number of reads than other ONT
protocols[11, 12, 15], however, the reads can be truncated due to internal priming in both first-strand
and second-strand cDNA synthesis [11]. This results in shorter read lengths than have been observed
using either direct RNA-seq and direct cDNA-seq protocols, which also suffer from partial transcript
coverage themselves [12]. This limits our ability to obtain reads covering full-length transcripts (Figure
2d). Further protocol improvements will be required to ensure reliable information can be obtained for
transcripts above 2 kb in length such as those from XIST (16.5 kb) and TITIN (80 kb). The use of
updated basecalling algorithms has seen a reduction in sequencing error rate in these data (Figure 2c)
compared to previous studies[14], although it is still considerably higher than the error rate of short-read
sequencing.

We were able to obtain reliable transcript quantification on both ONT and Illumina data for sequins
transcripts using Salmon (Figure 2j and k, Supplementary Figure S4d). However, transcript
quantification using short-read data was much more challenging for the human data due to its
complexity. The higher transcript assignment ambiguity in the Illumina data (Figure 2e), leads to
increased technical variation in the Illumina human transcript counts, as reflected in MDS plots where
the proportion of variance explained by dimension 1 that separated samples by groups was lower (17%),
and replicates from the same group were not clustered together on dimension 2 (Figure 2g). Although a
large proportion of isoforms (72% or more) were detected in common between the full and downsampled
dataset by both StringTie2 and bambu (Figure 3d) which suggests the possibility of hybrid analysis
using low-depth long-read and high-depth short-read sequencing, it is still challenging to obtain accurate
short-read transcript-level quantification with current methods.

Due to the limitations of current long-read RNA-seq technology, it is challenging to distinguish true
novel isoforms from false discoveries. If isoform filtering is too stringent, many genuine isoforms will be
missed. Both the existence of false discoveries and missing true isoforms can impact the accuracy of
transcript-level quantification. Our comparison of isoform detection tools showed that StringTie2 and
bambu outperformed other tools in general on ONT data. StringTie2 showed better accuracy, while
bambu showed better power to detect novel isoforms and assignment of reads to produce counts (Figure
3). For ease of comparison, we mostly relied upon the default settings of each method for identifying
novel isoforms. However, the large number of artefactual sequin isoforms, erroneous transcripts and
junctions that were not supported by short-read data detected by FLAIR, SQANTI3 and TALON
(Figure 3) suggests that these parameters may not be optimal for datasets with large numbers of reads.

For long-read RNA-seq, our study is the first to compare DTE and DTU methods on a controlled
dataset with a tens of millions of reads per sample, as is typically available in short-read studies. Our

13

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.22.501076doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501076
http://creativecommons.org/licenses/by-nd/4.0/


work therefore complements the efforts of other long-read RNA-seq benchmarking projects such as
SG-NEx[12] and LR-GASP project[15]. DESeq2, edgeR and limma-voom, which are considered as ‘gold
standard’ methods for short-read DE analysis, showed similarly good sensitivity to detect DE transcripts
on our long-read dataset, while edgeR outperformed other methods in terms of false discovery control
(Figure 4, Supplementary figure S6). However, for DTU analysis, none of the methods we compared had
a good balance between power to detect DTUs and control of false discoveries (Figure 5, Supplementary
figure S7, S8 and S9), which suggests there is still a gap to be filled to develop DTU analysis tool that
are better tailored to long-read RNA-seq data. DEXSeq and DRIMDeq showed higher sensitivity in most
cases, but their false discoveries were not controlled for the sequin spike-ins. In contrast,
edgeR-diffSpliceDGE performed better in terms of FDR control, but had the lowest power to detect
DTU genes and transcripts. Unlike DTE analysis where each transcript is tested independently, DTU
analysis calculates the proportion of transcript expression relative to all transcripts from the gene, which
can be impacted more readily by changes in quantification of any transcript from a given gene.
Therefore, the difference of quantification in ONT and Illumina data (Figure 2i, Supplementary Figure
S4) had a larger impact on DTU results (Figure 5a) than on DTE results (Figure 4a and b).

Our analysis has included many popular tools and covered the most popular use cases of long-read
RNA-seq. Methods for other analysis tasks such as read alignment, transcript-level quantification and
fusion detection can also be compared on our dataset. Also, we did not test the performance of tools at
the pipeline-level, where different transcript count matrices based on detected isoforms could be used as
input for DTE and DTU analysis. Furthermore, we did not include long-read data generated by different
sequencing protocols and technology platforms. Currently, getting ∼40 million reads per sample is still
prohibitively expensive for PacBio, ruling out a fair comparison between long-read sequencing platforms
and the DTE/DTU analyses. The use of established cell lines and spike-ins makes it relatively easy to
extend this study to include from new technologies in the future. We hope that our data and analysis
can guide researchers towards better analysis of long-read RNA-seq data.

Methods

Cell culture, mRNA extraction and study design

Two human lung adenocarcinoma cell lines (NCI-H1975 and HCC827) from 2-4 of passages were
retrieved from the American Type Culture Collection (ATCC) (https://www.atcc.org/) and cultured
on 3 separate occasions in Roswell Park Memorial Institute (RPMI) 1640 medium with 10% fetal calf
serum and 1% penicillin-streptomycin. The cells were grown independently at 37◦C with 5% carbon
dioxide until near 100% confluency. Cells were dissociated into single cell suspensions in FACS buffer,
centrifuged and frozen at -80◦C. The mRNA was extracted using a Qiagen RNA miniprep kit and
purified using the NEBNext® Poly(A) mRNA Magnetic Isolation Module (E7490). Synthetic ‘sequin’
RNA standards were then added to the cell lines – NCI-H1975 with sequins mix A, and HCC827 with
sequins mix B (Figure 1a). Libraries were then constructed for processing on 2 different platforms –
ONT PCR cDNA sequencing on PromethION platform for long reads, and Illumina RNA-seq on
NextSeq 500 platform for short reads.

RNA sequencing and data preprocessing

Long reads: ONT cDNA libraries were constructed with SQK-PCS109 cDNA-PCR sequencing and
SQK-PBK004 PCR Barcoding kits using the supplied protocol. Triplicate libraries of each mix were
constructed using 1.5ng as input for cDNA synthesis. Samples were barcoded 1 to 6 using supplied PCR
barcodes. Transcripts were amplified by 14 cycles of PCR with a 2-minute-30-second extension time.
Pooled barcoded libraries were sequenced on 5 PromethION R9 flow cells and sequenced using the ONT
PromethION platform. The fast5 files were base-called by Guppy version 3.2.8, available to ONT
customers via the community site (https://community.nanoporetech.com/).

Short reads: Illumina mRNA libraries were constructed with the NEBNext® Ultra II Directional
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RNA Library Prep Kit. Fragmentation was carried out for 15 minutes at 94◦C, and final amplification
with 11 cycles of PCR and libraries were sequenced in 75PE on NextSeq 500. Base calling and quality
scoring were conducted using Real-Time Analysis onboard software version 2.4.6 (Illumina). The fastq
files were generated and demultiplexed using bcl2fastq conversion software version 2.15.0.4 (Illumina).

In silico mixture

Long and short reads from NCI-H1975 (000) and HCC827 (100) samples were randomly subsampled and
mixed separately in 3 different ratios: 75:25, 50:50 and 25:75. To precisely control the mixing ratios and
obtain equal library sizes for each sample, 7.5 million (25%), 15 million (50%) and 22.5 million (50%)
reads were extracted randomly from each sample using seqtk (https://github.com/lh3/seqtk) using a
fixed random seed (100). Each NCI-H1975 sample was paired with an HCC827 sample to create in-silico
mixture samples from their subsampled reads – 30 million reads in total for each in-silico mixture
sample, with 3 replicates in each mixture group (Figure 1a).

Long-read isoform detection

We used six different tools to perform isoform detection and quantification of the long-read data: bambu,
FLAIR[19], FLAMES, SQANTI3[21], StringTie2[22], and TALON[23]. Default parameters were used to
run bambu (version 1.0.2 https://github.com/GoekeLab/bambu), FLAMES (version 0.1.0
(https://github.com/LuyiTian/FLAMES) and TALON (version 5.0.0). Prior to running TALON, we
ran TranscriptClean[35] (version 2.0.2) using default parameters to perform reference-based error
correction.

FLAIR (version 1.5.0) was run with optional arguments: -v1.3 to specify samtools version 1.3+ in the
align step; –nvrna in the correct step to keep read strands consistent after correction; and –trust ends to
indicate long reads with minimal fragmentation during the collapse and quantify steps. StringTie2
(version 2.1.5) was run using sorted BAM files for each sample, with the arguments -L to indicate
long-read settings and -G to specify a reference annotation. BAM files were sorted using samtools[36, 37]
(version 1.7). The GTF files from each StringTie2 run were combined to generate a non-redundant set of
isoforms using the transcript merge usage mode. To run SQANTI3 (version 1.6.0), we first ran
cDNA Cupcake (version 25.2.0 https://github.com/Magdoll/cDNA_Cupcake) to obtain a collapsed
GFF file containing the unique transcripts in our ONT sequences. A sorted BAM file was used as the
input and cDNA Cupcake’s script to collapse redundant isoforms using a reference genome was run with
default settings. The SQANTI3 quality control protocol was then run with default parameters.

To compare the isoforms detected by all six tools, R/Bioconductor package Repitools[38–40] (version
1.40.0) was used to first create two-kilobase bins along the genome, and IRanges[41] (version 2.28.0) was
then used to find overlaps between isoform coordinates and each bin. To calculate short-read splicing
junction coverage and classify transcripts found by each tool into structural categories, the SQANTI3
(version 5.0) quality control protocol was additionally run with parameter –short reads specifying
Illumina FASTQ files.

A downsampled dataset containing 10% of reads was generated with seqtk. The isoform detection
tools were first run on this dataset with the same parameters and annotation GTF. Isoforms identified in
the full and in the downsampled datasets were compared using GffCompare[42] (version 0.12.6) against
the reference annotation file provided with the -r argument. An isoform detected in both datasets and in
the reference annotation was a complete exact match if given the transcript class code ”=” in the output
tracking file. If an isoform was only detected in the first or second query GTF, it was considered to be
unique to the full or downsampled dataset, respectively.

The isoform detection tools were additionally run on the downsampled dataset using a modified
annotation GTF for the sequins recovery analysis. To create the modified GTF, a random sample of
sequin genes excluding single transcript genes was selected, from which every second annotation was
removed from the reference annotations. This resulted in each gene from this sample missing 1 or 2
isoforms but retaining at least 1. In total, 40 (25%) sequin isoforms were removed.
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Transcript-level quantification of detected isoforms

Long reads: Transcript-level counts generated by bambu, FLAIR, FLAMES and TALON were used
directly in downstream analysis. SQANTI3 and StringTie2 required some extra steps: transcript
assemblies were created using annotation GTF files by Cufflinks[43] (version 2.1.1); and Salmon[44]
(version 1.5.2) was used to assign long reads to individual isoforms using its ‘mapping-based mode’.

Short reads: Transcript assemblies generated by FLAIR and FLAMES were used directly in
downstream analysis. For SQANTI3, StringTie2, bambu and TALON, transcript assemblies were created
from their GTF files. Salmon[44] (version 1.5.2) was used to assign short reads to individual isoforms
using its ‘mapping-based mode’.

Read count processing

Transcripts were removed from both long- and short-read datasets if they had fewer than 10 counts in
the long-read data.

Long reads: Counts were transformed into log2CPM values using the cpm function from
R/Bioconductor package edgeR[18] (version 3.34.0) with parameter log=TRUE.

Short reads: Counts were transformed into log2TPM values (transcripts per million) using a prior
count of 0.5 and transcript lengths generated by Salmon from the counting process.

Transcriptomic alignment and transcript-level quantification against
reference annotation

Long reads: Reads were mapped to the GENCODE Human Release 33 transcript sequences and RNA
sequin transcript sequences using minimap2 [45] (version 2.17), with arguments -ax map-ont
–sam-hit-only. Secondary alignments were removed from BAM files using Samtools[36] (version 1.14).
Then, we ran the ‘alignment-based mode’ in Salmon[44] (version 1.4.0) to obtain transcript-level
quantification, where 100 bootstrap samples were computed to estimate technical variance. Coverage
fractions of transcripts by individual reads were calculated using R/Bioconductor package
GenomicAlignments[41] (version 1.28.0) as described by Soneson et al.[9].

Short reads: Transcript-level quantification was carried out by Salmon (version 1.4.0) on its
‘mapping-based mode’; flag –validateMappings was used for a selective alignment strategy, and 100
bootstrap samples were computed to estimate technical variance.

We annotated transcripts and gene biotypes using R/Bioconductor package AnnotationHub
(https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html version 3.2.2) to
retrieve Ensembl based human annotation version 104. The function catchSalmon from R/Bioconductor
package edgeR[18] (version 3.34.0) was used to read transcript-level counts and estimate transcriptome
mapping ambiguity (over-dispersion coefficient) for each transcript using the bootstrap samples
generated by Salmon. Specifically, catchSalmon estimates the extra variation that is introduced during
read-transcript assignment over that of the baseline Poisson variation that occurs at the cDNA sampling
step. The estimated number of transcript counts were loaded into R using R package tximport [46]
(version 1.20.0) for differential transcript expression and differential transcript usage analysis. For each
two-group comparison, we subset the data for the two groups of interest.

Differential transcript expression analysis

We used five different tools to perform differential transcript expression analysis: limma[29] version
3.48.1, edgeR[18] version 3.34.0, DESeq2 [27] version 1.32.0, EBSeq [28] version 1.32.0 and NOISeq [30]
version 2.36.0. We used the methods recommended by each tool to perform low-count gene filtering and
data normalization, and chose a representative pipeline from each tool for the DGE analysis as described
in their vignettes.

When using limma and edgeR, lowly expressed genes were removed using the filterByExpr function
from edgeR using default arguments. The read counts were normalized using the trimmed mean of

16

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.22.501076doi: bioRxiv preprint 

https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html
https://doi.org/10.1101/2022.07.22.501076
http://creativecommons.org/licenses/by-nd/4.0/


M-values (TMM) method[47]. The limma-voom pipeline[48, 49] and edgeR quasi-likelihood pipeline[50]
were used to perform differential transcript expression analysis.

When using DESeq2, transcripts expressed with a count of 10 or higher in at least 3 samples were
kept for downstream analysis. The DESeq function was used to estimate size factors using the
median-by-ratio method[51], estimate dispersion, fit the Negative Binomial generalized linear model and
perform a Wald test to calculate p-values for DE.

The median-by-ratio normalization method was also used in the EBSeq pipeline, followed by the
function EBTest to use the empirical Bayes hierarchical model to detect DE genes. The arguments
maxround=5 was used to run 5 iterations. We extracted the posterior probabilities of being equally
expressed (PPEE) for each gene and treated genes with PPEE less than 0.05 as DE genes with false
discovery rate controlled at 5%.

Low count genes were filtered out using the filtered.data function in the package NOISeq based on
CPM values using default threshold. The noiseqbio function was used to compute differential gene
expression between conditions, where the TMM method was used to normalize the read counts.

Differential transcript usage analysis

We used five different methods to perform differential transcript usage analysis: DRIMSeq version
1.20.0[32], DEXSeq version 1.38.0[34], the diffSplice function in limma version 3.48.1[29], the
diffSpliceDGE function in edgeR version 3.34.0[18], and satuRn version 1.1.1[33]. DRIMSeq was designed
for DTU analysis with transcript-level counts and gives adjusted p-values at both the gene- and
transcript-level. DEXSeq, limma-diffSplice and edgeR-diffSplice were designed to take exon-level
short-read counts to analyze differential exon usage. We instead used transcript-level counts as input for
these methods to allow DTU analysis as carried recommended by Love et al.[31].

Lowly expressed transcripts were filtered out using the dmFilter function in the DRIMSeq [32]
package. Transcripts with 10 or more counts in at least 3 samples were kept. Genes in every sample were
required to have an associated gene count (obtained by summing counts across all transcripts for a given
gene) of 10 or more.

DEXSeq returns raw and adjusted p-value at the “exon”-level (which should be read as
transcript-level for our analysis), and the function perGeneQValue computes gene-level adjusted p-value
by summarizing per-“exon” p-value. For limma-diffSplice and edgeR-diffSplice, we used t-tests to
calculate “exon”-level (which should be read as transcript-level for our analysis) adjusted p-values, and
Simes adjustment for gene-level adjusted p-values. satuRn was designed for DTU analysis and calculates
raw and adjusted p-values for transcripts. satuRn also uses empirical Bayes methods to control the false
positive rate, but we still used regular FDR values due to power issues. The perGeneQValueExact
method from DEXSeq was performed to calculate the per-gene adjusted p-value as carried out in the
satuRn package vignette.

Data Availability

RNA-seq data are available from Gene Expression Omnibus (GEO) under accession number GSE172421.

Software Specification and Code Availability

All analyses for DTE, DTU and comparisons of methods performance were run in R version 4.1.0[52].
Results were visualized using ggplot2 version 3.3.5[53] and UpSetR version 1.4.0 [54]. Code used to
perform these analyses and generate the figures are available from
https://github.com/XueyiDong/LongReadBenchmark.
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