Adiponectin Promotes Glucose-Sensitive Insulin Secretion and Prevents β-Cell Damage by Obesity

Ana Cláudia Munhoz¹, Julian D. C. Serna¹, Eloisa Aparecida Vilas-Boas¹,
Camille C. Caldeira da Silva¹, Tiago Goss dos Santos², Vilma Regina Martins²,³,
Alicia J. Kowaltowski¹

¹Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo,
²Centro Internacional de Pesquisa (CIPE), A. C. Camargo Cancer Center,
³Present address: Departamento de Biologia Celular e do Desenvolvimento,
Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil

Classification: Biological Sciences, Physiology

Keywords: Obesity, diabetes, β-cell, adiponectin, oxidative phosphorylation

Abstract

Obesity and associated Type 2 diabetes involve decreased β-cell function and mass, lowering glucose-stimulated insulin secretion (GSIS). Previous studies by our group showed that serum from lean calorically-restricted (CR) rats alters β-cell mitochondrial dynamics and morphology, protecting them against glucolipotoxicity. Here, we show that similar results are observed with plasma from lean human donors, and sought to identify the serum component promoting these beneficial effects. We found that CR serum has larger amounts of adiponectin than the serum of obese animals fed ad libitum (AL). Lean human donors also have higher adiponectin levels when compared to obese donors. Adiponectin, alone, strongly induced mitochondrial oxygen consumption and GSIS in cultured β-cells and rat islets, surprisingly even in the absence of serum. In addition, adiponectin was able to prevent the reduction in GSIS and cell damage caused by incubation with plasma from obese human donors. Overall, our results suggest that circulating adiponectin, present in lean individuals, has strong protective effects, maintaining glucose-stimulated insulin secretion and β-cell integrity by promoting mitochondrial oxidative phosphorylation.
Introduction

About half a billion persons currently live with type 2 diabetes mellitus (T2DM), and this number is expected to increase by 51% until 2045 (1) as a result of population aging and rising obesity rates. T2DM is a chronic disease characterized by the inability to control blood glucose homeostasis, either by a decrease in insulin action (insulin resistance) or inadequate insulin release by pancreatic β-cells. β-cells are susceptible to damage caused by excess circulating glucose and lipids (glucolipotoxicity), which is common in obese individuals. Indeed, a high calorie obesogenic diet, favoring glucolipotoxic conditions, is associated with T2DM and increased mortality in humans and rodents (2, 3), while caloric restriction (CR), preventing nutrient overload, is one of the most studied dietary interventions known to extend health and longevity (3, 4).

In a previous study (5), we found that circulating factors in the sera from lean CR rats were highly protective for pancreatic islets, primary β cells, and insulin-secreting cell lines when added as a 10-fold diluted part of the incubation media, substituting commercial culture sera. Conversely, incubation for as little as 24 hours with sera from moderately obese animals fed ad libitum (AL) impaired insulin secretion. Sera from lean CR animals protected β cells not only under basal conditions, but also from insults such as glucolipotoxicity (5), suggesting it contains soluble factors that enable enhanced insulin secretion under damaging conditions.

Glucolipotoxicity leads to β-cell dysfunction in a manner dependent on changes in mitochondrial structure and function (6). Indeed, mitochondria are central players in the loss of β-cell function related to T2DM (7); in addition to their role regulating intracellular ATP production in response to glucose levels (and consequent insulin secretion), changes in mitochondrial genetics, bioenergetics, redox state, structure, and dynamics are involved in β-cell functional regulation (7). During glucolipotoxicity, extensive mitochondrial fission occurs, promoting a fragmented and poorly interconnected mitochondrial phenotype and causing decreased mitochondrial ATP synthesis and β-cell dysfunction (5, 8). Inhibiting this fragmentation prevents the loss of cell viability, demonstrating that the change in mitochondrial morphology and dynamics is causative of glucolipotoxicity-induced β-cell dysfunction (6). The protective effects of diluted CR sera on β-cells are related to changes in mitochondrial dynamics and function, as it increases
mitochondrial networking and respiratory rates, without overt changes in mitochondrial mass (6). CR sera also increases the expression of proteins involved in mitochondrial fusion (mitofusin-2, Mfn-2; optic atrophy 1, OPA-1), and reduces those involved in mitochondrial fission (dynamin related protein 1, DRP-1), a result consistent with the presence of a more filamentous and interconnected mitochondrial network (5).

While previous work demonstrated the intracellular mechanisms in which CR sera promotes the preservation of β-cell function, the molecular factors from CR sera involved in this protection were not identified. The dilution of the sera as well as the fact it was collected from overnight-fasted animals and used in the presence of nutrient-rich culture media implies that changes in the amounts of substrates such as glucose, fatty acids, and amino acids are not involved in these results. Rather, the effects are most likely associated with hormones or other circulatory signaling components.

Here, we investigated possible β-cell-protective factors in the sera of lean rats and humans, and identified adiponectin as a strong promoter of mitochondrial oxidative phosphorylation, insulin secretion, and β-cell preservation. Strikingly, adiponectin alone was able to promote β-cell function in the absence of sera. It was also able to protect against β-cell dysfunction promoted by incubation with the serum or plasma from obese rats or humans, indicating a therapeutic potential for this pathway in the prevention of pancreatic β-cell failure in obesity and T2DM.
Experimental procedures

Animals, diets and serum collection

All experiments were approved (# 109/18) by the animal use committee (Comissão de Ética em Uso de Animais do Biotério de Produção e Experimentação da Faculdade de Ciências Farmacêuticas e Instituto de Química da USP). Male 8-week-old Sprague Dawley rats were divided into two groups: AL, fed ad libitum with an AIN-93-M (9) diet prepared by Rhoster (Campinas, Brazil) and CR rats, fed 60% of the AL group's intake, using a diet supplemented with micronutrients to reach the same vitamin and mineral levels (10). The animals were housed in groups of three per cage in 12 h light/dark cycles and given water ad libitum. The weight of the animals and food intake were recorded weekly to adjust the CR group diet to 60% of the intake of the AL group. At 34 weeks of age (after 26 weeks of the diet), rats were euthanized after 12 h fasting, blood was collected by cardiac puncture, and serum was obtained after clotting at room temperature for 30 min and centrifugation for 20 min at 300 x g. The supernatant was collected and stored at -20°C. Serum samples were thawed and heat-inactivated at 56°C for 30 min prior to use.

Pancreas histology

Whole pancreases from AL and CR animals were removed and immersed in 20 mL of 10% formalin for 24 hours. The tissue was then PBS-washed and dehydrated through a series of graded ethanol solutions (70, 80, 95 and 100%), followed by a clearing process with xylol, and finally embedded into paraffin blocks. The paraffin-embedded tissues were sectioned (5 µm thick) with a semi-automated rotary microtome (Leica Microsystems, Wetzlar, Germany) and placed on microscope glass slides coated with poly-L-lysine. The slides were stained with hematoxylin and eosin (H&E). The whole slides were scanned using the TissueFAXS iPLUS (TissueGnostics, Wien, Austria) system under a magnification of 20. Three areas of each slide were blindly analyzed by two independent examiners using the ImageJ Fiji Software. Islets were categorized according to areas into very small (<1000 µm²), small (1000-5,000 µm²), medium (5,001-10,000 µm²), large (10,001-50,000 µm²) or very large (>50,000 µm²).
Human plasma samples

Human plasma samples were obtained from the A.C. Camargo Cancer Center Biobank, and all experiments were carried out in accordance with the A. C. Camargo Cancer Center Institutional Review Board under registration n°. 3117/21. Samples include healthy donors who signed a free and informed consent form and authorized the institution to store and use their biological material for future studies. For the selection of research participants, data from medical records were examined and a balance in gender, age, eating habits, physical activity, and height was sought, separating subjects into lean and obese groups according to their body mass index (BMI). Subjects with pathologies, elevated blood pressure, smokers, regular alcohol consumption, STDs, bariatric surgery and chronic diseases were eliminated (Table 1). The overall selection includes patients of both genders, equal in all quantifiable parameters except BMIs, producing four distinct groups: Lean women (BMI 22.0 ± 0.9, n=4), Obese women (BMI 31.0 ± 1.4, n=6), Lean men (BMI 23.3 ± 0.4, n=8) and Obese men (BMI 31.2 ± 1.4, n=10). Their blood was collected in a sterile vacuum tube containing 4.45 mmol/mL of the anticoagulant ethylenediaminetetraacetic acid dipotassium salt (EDTA). The blood was then centrifuged at 300 x g and 4°C for 20 min. The supernatant was collected, heat-inactivated at 56°C for 30 min and stored at -20°C until use. Sample analysis and cellular stimuli were performed with the pooled samples from the four groups mentioned.

Cell cultures and incubations

INS-1E cells (a rat insulin-secreting β-cell line) were cultured with 100 IU/mL penicillin/streptomycin in RPMI-1640 medium (11.1 mM glucose, 10% bovine serum, 1 mM pyruvate, 10 mM HEPES, 2 mM glutamine and 0.1% β-mercaptoethanol) at 37°C and 5% CO₂. Plating was done at 60,000 cells for all experiments. After 24 h, media was substituted for RPMI-1640 containing 10% fetal bovine serum (FBS), 10% serum from AL or CR animals; or 10% inactivated plasma from human volunteers. All experiments were performed 24 h after this medium change. In adiponectin supplementation experiments, cells were incubated with medium containing 10 μg/mL recombinant human adiponectin (SRP4901, Sigma-Aldrich), in the absence or presence of other serum or plasma, as indicated.
Cellular oxygen consumption

On the day of the experiment, cells were incubated in 500 µL RPMI-1640 without HEPES or FBS, containing 11.1 mM glucose for 1 h at 37°C, without CO₂. During these 60 min, the ports of the cartridge containing the oxygen probes were loaded with the compounds to be injected during the assay (75 µL/port). The 24-well plate was then introduced into the Seahorse Bioscience XF24 analyzer (Billerica, MA, USA). Oxygen consumption was recorded for 30 min, at 5 min intervals, until system stabilization. Oligomycin was then injected at a final concentration of 1 µM, followed by carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) used at a final concentration of 10 µM, and antimycin and rotenone, both used at final concentrations of 2 µM. All respiratory modulators were used at optimal titrated concentrations, determined in preliminary experiments.

Western blots

Serum and plasma samples were diluted in Laemmli buffer at a concentration of 1 µg/µL (human samples) or 7 µg/µL (animal samples), and proteins were separated using a 12% denaturing polyacrylamide gel. Proteins were transferred to nitrocellulose membranes and incubated with anti-adiponectin antibody diluted 1:1000 (ab22554, Abcam). Ponceau staining was used as a loading control. Fluorescent Secondary Anti-Rabbit Antibody diluted 1:10000 was added to the membranes and bands were visualized using an Odyssey infrared system. Bands were semi-quantified by densitometric analysis using ImageJ software.

Cultured cell insulin secretion

The cells were plated as described above, and 24 h later they were incubated with different serum or plasma samples, as indicated. After 24 h, they were pre-incubated for 30 min in Krebs-Henseleit (KH) solution containing 0.1% albumin and 5.6 mM glucose. Then, they were incubated for 1 hour at 37°C in the presence of 5.6 mM, 11.3 mM or 16.7 mM glucose. The supernatant was collected and stored at -20°C for subsequent measurements of secreted insulin. In addition, cells were lysed with acid-alcohol solution (52 mL ethanol, 17 mL water, 1 mL hydrochloric acid) to disrupt the cells and collect the intracellular insulin content.
The determination of the amounts of secreted and intracellular insulin was performed following the Elisa Insulin Quantitation Kit protocol (Milipore, Billerica, MA, USA). Glucose-stimulated insulin secretion (GSIS) was calculated by dividing the concentration in the supernatant (secreted) by the remaining intracellular insulin (content).

Pancreatic islet isolation and insulin secretion

Male Wistar rats (10 to 12 weeks) were deeply anesthetized with ketamine and xylazine, followed by decapitation. The abdomen was dissected, and the pancreas was inflated with 20 mL of collagenase type V (0.7 mg/mL) in KH buffer. After full inflation, pancreases were removed and incubated for 25 min at 37°C, shaken manually, washed with KH buffer, and centrifuged three times at 1,000 rpm for 5 min. Islets were collected with a micropipette under a stereomicroscope and cultured for 24 h in RPMI-1640 medium containing 10 mM glucose, 1% penicillin/streptomycin and 10% FBS before receiving treatments. After 24 h, islets were randomly divided into wells under different conditions in 10 mM glucose RPMI: without FBS, with FBS, with 10 µg/mL adiponectin, or with FBS + adiponectin. After the 24 h incubation, the media were collected to check for insulin release over 24 hours, as well as LDH release (see below).

Islets were also checked for acute GSIS. Batches of 5 islets were collected in fresh tubes containing KH buffer with 5.6 mM glucose and incubated at 37°C for 30 min for stabilization. Supernatants were discarded and replaced by KH buffer with low (5.6 mM) or high (16.7 mM) concentrations of glucose and incubated at 37°C for 60 min. Insulin release in the medium over 24 hours and in the supernatant after acute stimulation with glucose was measured blindly by the Provet Institute (São Paulo, Brazil), by radioimmunoassay. Insulin concentrations are expressed as ng/mL.

LDH quantification

Cultured INS-1E cells were plated and after 24 h treated with 10% plasma from lean and obese men and women for an additional 24 h, with or without 10 µg/mL of recombinant human adiponectin. Islets were incubated in 10 mM glucose for 24 h, with or without FBS and adiponectin, as described above. The culture medium supernatant was collected for lactate dehydrogenase (LDH)
quantification, an enzyme that is released into the medium when there is damage to the plasma membrane. LDH activity was measured colorimetrically measuring NADH absorbance, following the protocol of a commercial quantification kit (Labtest, Lagoa Santa, MG, Brazil).

Dada analysis

GraphPad Prism 7 was used for statistical evaluations. Data were expressed as means ± standard error of the mean (SEM) and statistically analyzed by unpaired Student's t-tests or one-way ANOVA tests, with Tukey posttests. The minimum limit of significance was p < 0.05.
Results

In order to investigate the effects of circulating factors in the sera of lean versus mildly obese rats, we established a colony of animals in which a 60% caloric restriction (CR) diet, enriched with micronutrients to avoid malnutrition (10), was introduced in early adulthood. These animals were compared to ad libitum (AL)-fed animals, which develop obesity, insulin resistance and other characteristics of the metabolic syndrome (11). Fig. 1A shows that the animals on the CR diet gained significantly less weight over the course of 15 weeks, but did not lose mass (which, if present, could be indicative of malnutrition). At the end of the intervention, the pancreas from both groups were collected, stained, and their islets quantified. We observed that pancreas from CR rats displayed an increased percentage of large islets compared to AL (Fig. 1B), without changes in total islet area and circularity (not shown), a moderate change in morphology compatible with the fact that the animals were obese, but not diabetic. In addition, serum from both groups was collected to be used on cultured INS-1E β-cells.

As β-cell maintenance and its role in insulin secretion are dependent on oxidative phosphorylation, we tested the effects of culture media containing 10% serum from CR versus AL animals on oxygen consumption rates (OCR) in intact β-cells (Fig. 1C) by extracellular flux analysis. As observed previously (5), we found that 24 hours incubation with sera from lean CR animals results in higher OCRs relative to sera from obese AL animals, and also relative to commercial fetal bovine serum (FBS). Higher OCRs were observed under basal conditions (Fig. 1D), which reflect normal mitochondrial oxygen consumption, as well as conditions in which OCRs were maximized by uncoupler (Fig. 1E), which reflect the limits of mitochondrial electron transport chain capacity. Finally, CR sera increased ATP-linked OCR, which represents the difference between oxygen consumption under basal conditions and in the presence of ATP synthase inhibitor oligomycin (Fig. 1F), and is directly associated with ATP production and insulin secretion in these cells (5,6). Overall, these findings confirm that sera from lean animals enhance oxidative phosphorylation activities in β-cells, known to be linked to glucose-stimulated insulin secretion.

As the effects of sera from lean animals are seen with 24 h incubations, they suggest the exciting idea that β-cell function, and hence their dysfunction in T2DM, can be acutely altered by the presence of circulating factors in the blood. Given
the importance of this concept, we evaluated if the same was seen with human circulating factors. Human plasma samples stored in the Biobank of the A. C. Camargo Cancer Center were used. Although differences in clotting factors and nutrients exist between plasma and serum samples (12-15), human plasma samples from healthy donors were readily available in the Biobank, together with extensive metabolic and nutritional information (Table 1), allowing for more directed sample selection. Importantly, circulating hormonal factors probably do not differ much between plasma and serum samples. For example, the amount of leptin in serum samples from healthy subjects does not differ from the amount of leptin in plasma samples (16). Selected donors chosen did not present chronic health conditions, smoke, or drink alcohol. They were within the same age range (Table 1), but were clearly distinct in body mass indexes (BMI), which separated them in lean and obese groups: lean women (BMI 22 ± 0.9, Fig. 2B), obese women (BMI 31.0 ± 1.4), lean men (BMI 23.2 ± 0.3), and obese men (BMI 31.2 ± 1.3).

We then investigated the effects of diluted inactivated human plasma on β-cell metabolic fluxes in Fig. 2A. Typical OCR traces (Fig. 2A) were conducted under the same conditions as Fig. 1, and basal (Fig. 2B), maximal (Fig. 2C) and ATP-linked (Fig. 2D) OCRs were again calculated. We found that samples incubated in the presence of plasma from lean women presented metabolic fluxes similar to those incubated in commercial FBS. On the other hand, plasma from obese women significantly suppressed basal, maximal, and ATP-linked OCRs. Plasma samples from lean men also resulted in lower oxygen consumption compared to women’s samples, and OCRs were further suppressed in cells incubated with plasma from obese men. Overall, these results show a clear modulatory effect of circulating blood factors on metabolic fluxes in β-cells, which are positively stimulated by factors present in samples from lean and female subjects.

We were interested in identifying the circulating blood factors responsible for these robust effects on β-cell metabolic responses. In peripheral tissues and vascular cells, enhanced mitochondrial electron transport capacity promoted by CR has been linked to adiponectin-activated eNOS signaling (17). Indeed, adiponectin is a hormone that modulates various metabolic processes, and is secreted by the adipose tissue in a manner increased by low body weights (18) and decreased by central adiposity (19). We thus quantified adiponectin in our rat
serum samples (Fig. 3A), and found that the hormone was significantly increased in CR serum compared to AL. Indeed, prior work (20) has shown that animals under caloric restriction show a two-fold increase in circulating adiponectin levels. We also quantified adiponectin in the human plasma (Fig. 3B) and found that both male and obese donors had decreased adiponectin, also consistently with prior work (19, 21). The levels of adiponectin in the blood therefore mirror closely the metabolic flux effects we observed in β-cells (Figs. 1 and 2).

Given previous findings that adiponectin can increase mitochondrial respiratory activity in vascular cells (17), we investigated the effects of this hormone on β-cell metabolic fluxes (Fig. 4A-D). Interestingly, we found that while robust OCRs are present in FBS, oxygen consumption in these cells was strongly suppressed, reaching undetectable levels, in the absence of any sera, although cells remained adhered at this time point. Impressively, adding 10 µg/mL adiponectin alone, a quantity compatible with levels present in CR sera (20), promoted metabolic fluxes close to those seen in the presence of commercial FBS. This shows that adiponectin induces a strong, and previously undescribed, effect inducing oxidative phosphorylation in β-cells in the absence of other serological factors.

Given the strong adiponectin effects on OCRs, we questioned if it could also promote glucose-stimulated insulin secretion in INS-1E β-cells, which are known to depend on the presence of serum (22). Fig. 4E compares insulin secretion with different glucose concentrations in cells incubated in FBS or adiponectin in the absence of FBS. Our data show that 10 µg/mL adiponectin alone was able to promote glucose-stimulated insulin secretion patterns similar to those seen in full serum. Indeed, responses were not significantly different from those seen in FBS controls. This demonstrates that adiponectin’s metabolic effect increasing ATP-linked OCRs is accompanied by the expected increase in insulin release from β-cells. It also confirms that adiponectin is a soluble serological factor with a pronounced impact on β cell function.

The finding that adiponectin strongly protects cultured β-cells on its own, in the absence of any other serological factor, is highly surprising, and prompted us verify whether primary β-cells are also able to respond to adiponectin. Figure 5A and 5B show measurements of insulin release from primary rat islets in the
presence of low and high glucose, respectively. As expected, insulin was secreted in high glucose (Fig. 5B) when serum was present, but not in its absence. Strikingly, the presence of recombinant adiponectin alone restored islet secretory function, in a manner that was not additive to the presence of serum (Fig. 5B), indicating that adiponectin itself is the main β-cell-protective circulating factor.

The lack of insulin release in media with high glucose and no serum is a consequence of islet damage, as indicated by the fact that 24 h insulin secretion (due to β-cell membrane disruption, leading to intracellular insulin release independent of glucose stimulation, Fig. 5C) and LDH release (Fig. 5D) were augmented in islets incubated with no sera. Once again, adiponectin alone was protective against these insults, in a manner that was not additive with the effect of FBS, demonstrating that this hormone is strongly protective toward primary islets as well as cultured β-cells.

Next, we sought to verify if adiponectin supplementation in the plasma from obese donors was capable of reversing the metabolic flux limitations observed in Fig. 2. We monitored OCRs in samples in which 10 µg/mL adiponectin was added together with the plasma of obese men and women (Fig. 6). Once again, the effect of added adiponectin was very pronounced, and it was able to stimulate OCRs under all conditions, in both male and female obese plasma-treated β-cells. These results indicate that samples from male and obese subjects do not primarily decrease metabolic fluxes in β-cells due to the presence of damaging circulating molecules, but instead as a result of the lack of the stimulatory factor adiponectin.

Given the strong protective effect on metabolic fluxes, we also tested the effect of added adiponectin on glucose-stimulated insulin secretion (GSIS). In samples incubated for 24 h in plasma from lean women, an expected increase in insulin release was observed with increasing glucose concentrations (Fig. 7A). Incubation in plasma from obese women lead to very high levels of insulin secretion, without any effect of glucose concentrations. This could be due to the presence of ruptured cells, releasing insulin into the supernatant. Indeed, when we measured LDH release as a measure of cell integrity (Fig. 7B), we found that the sera of obese women promoted significant cell damage. Strikingly, the addition of adiponectin to the samples incubated with plasma of obese women completely prevented LDH release (Fig. 7B) and restored functional GSIS (Fig. 7A). Adiponectin also prevented LDH release from cells incubated in plasma from...
obese male donors (Fig. 7D), and restored expected insulin secretion patterns (Fig. 7C), which were not observed in the plasma from obese male donors alone. Overall, these results demonstrate that the presence of adiponectin is capable of completely abrogating the damaging effects of obese plasma on β-cells.
Discussion

Previous studies by our group found that serum from CR rats diluted in culture media is capable of increasing the expression of proteins involved in mitochondrial fusion (mitofusin-2, Mfn-2; optic atrophy 1, OPA-1) and reducing DRP-1, involved in mitochondrial fission. This results in increased mitochondrial length and connectivity in β-cells, an effect that promotes glucose-stimulated ATP production and insulin secretion (5). Sera from CR animals was also protective against in vitro toxic stimuli (glucolipotoxicity with 20 mM glucose and 0.4 mM palmitate) that are a model of T2DM, preventing mitochondrial fragmentation and respiratory dysfunction, as well as preserving GSIS (5). Knowing that the sera could not contribute significantly to the nutrient pool at the dilution used, we hypothesized that the results were due to the presence of hormonal circulatory components.

Other studies have tested the in vitro effects of sera from calorically-restricted animals. In normal human diploid fibroblasts, serum from CR animals delayed senescence and significantly increased longevity compared to serum from AL animals (23). In human hepatoma cells, serum from calorie-restricted volunteers increased longevity markers such as Sirtuin 1 and PGC-1α, and enhanced stress resistance (24). In vascular cells, rat CR sera activates the insulin pathway and phosphorylation of endothelial nitric oxide synthase (17), which modulates mitochondrial biogenesis, a process believed to have a central role in the longevity effects of CR (25). The beneficial effects of CR sera on vascular cells were eliminated when the sera were depleted of adiponectin (17), suggesting this is an important hormonal factor modulating oxidative phosphorylation in lean animals.

In the present study, we not only corroborate the results observed previously, but also shed light on adiponectin as a protective component of sera from lean subjects on β-cells. Indeed, we found that adiponectin itself (even in the absence of sera) is a strong determinant of β-cell metabolic fluxes and GSIS, in both cell lines and primary cells. Additionally, this hormone reverses the damaging effects of obese rat and human sera/plasma on β-cells, demonstrating that it is a very important modulator of insulin-secreting cell function.
There is evidence in the literature that adiponectin acts on cells by binding to adiponectin receptors and modulating the phosphorylation of protein kinase B (AKT) (17, 26, 27). Specifically in pancreatic β-cells, adiponectin has been observed to regulate insulin gene expression, in addition to increasing cell viability and decreasing apoptosis via AKT phosphorylation (28), results compatible with the protective effects of adiponectin we observed in this study. Consistently, circulating adiponectin is lower in patients with T2DM compared to healthy individuals, and well as those with T2DM risk factors such as obesity (29-33). Furthermore, transgenic mice overexpressing human adiponectin and fed with a high-fat/high-sucrose diet present increased longevity as well as reduced morbidity and mortality (2). These animals also showed reduced body weight, and less accumulation of subcutaneous and visceral fat, with smaller adipocytes in both tissues. This, added to an increase in oxygen consumption associated with equal caloric consumption compared to control animals, suggests an increase in energy expenditure (2). On the other hand, adiponectin-deficient animals exhibit higher body mass, impaired glucose tolerance, and more triacylglycerol accumulation than control animals (34-37). Adiponectin also acts via the hypothalamus to inhibit appetite and increase energy expenditure (38, 39), promoting fatty acid oxidation in muscle and liver, leading to weight loss (40, 41). Overall, these studies indicate that this hormone is a major regulator of energy metabolism in various organs, and are in line with our added finding of its strong metabolic and functional effects on β-cells.

In addition to adiposity, gender also affects the amount of adiponectin, with more of this hormone circulating in women than in men (30, 42-45). The reduction in men appears to be linked to the presence of higher concentrations of testosterone, as this hormone reduced adiponectin concentrations in mice, and castration induced an increase in plasma adiponectin associated with a significant improvement in insulin sensitivity (42). In fact, although obesity is more common in women, T2DM is more often diagnosed at a lower age and with lower body mass indexes in men (1, 46, 47). It is tempting to speculate that this may be related to the lack of adiponectin and its β-cell-protective effects, as uncovered in this study.
Conclusions

We show that adiponectin, at quantities present in the blood of lean animals and lean women donors, is a strong stimulatory factor necessary to maintain metabolic fluxes in β-cells. The presence of adiponectin alone sustains ATP-linked respiration and associated glucose-stimulated insulin release in primary and cultured β-cells. Addition of adiponectin to plasma-supplemented media also rescues β-cell function compromised by incubation with samples from obese donors. Overall, our results suggest this hormone, its receptors, and the signaling pathways it activates, are robust potential targets for treatment in obesity-related pancreatic failure.
Conflict of interest
The authors declare that there is no conflict of interest.

Acknowledgments
This study was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance Code 001, and Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP) grants 20/06970-5 and 13/07937-8, as part of the Centro de Pesquisa, Inovação e Difusão de Processos Redox em Biomedicina (Redoxoma). ACM, JDCS, and EVB are supported by FAPESP fellowships (19/04233-6, 19/05226-3, 21/02481-2). We acknowledge Gisela Ramos Terçarioli and Cruz Alberto Mendoza Rigonati for histological technical assistance and Roberta Andrejew for experimental help in slide scanning. The authors also acknowledge to the A. C. Camargo Biobank for the plasma samples from normal donors. Biobanking of these samples was supported by the Programa Nacional de Apoio à Atenção Oncológica (PRONON), Banco de Tumores para Pesquisa em Tratamento, Prevenção e Diagnóstico Precoce do Câncer (25000.158.661/2014-68).

Data sharing
Raw data will be provided upon request.
References

<table>
<thead>
<tr>
<th>Group</th>
<th>Age (years)</th>
<th>Systolic blood pressure</th>
<th>Diastolic blood pressure</th>
<th>Height (m)</th>
<th>Weight (kg)</th>
<th>BMI (kg/m²)</th>
<th>Bariatric surgery</th>
<th>Physical activity</th>
<th>Eating habits</th>
<th>Tobacco use</th>
<th>Alcohol use</th>
<th>STDs</th>
<th>Total hysterectomy</th>
<th>Hepatitis B (HBsAg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lean women</td>
<td>43</td>
<td>118</td>
<td>73</td>
<td>150</td>
<td>45</td>
<td>20</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lean women</td>
<td>29</td>
<td>110</td>
<td>70</td>
<td>168</td>
<td>60</td>
<td>21</td>
<td>No</td>
<td>Walking (>5 hours/week)</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Lean women</td>
<td>33</td>
<td>165</td>
<td>62</td>
<td>23</td>
<td>23</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Lean women</td>
<td>36</td>
<td>148</td>
<td>88</td>
<td>170</td>
<td>70</td>
<td>24</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Averages Lean Women</td>
<td>35.2 ± 3.0</td>
<td>125 ± 10</td>
<td>77 ± 5</td>
<td>163 ± 5</td>
<td>59 ± 5</td>
<td>22.0 ± 0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obese women</td>
<td>38</td>
<td>142</td>
<td>78</td>
<td>168</td>
<td>75</td>
<td>27</td>
<td>No</td>
<td>Walking (>2.5 hours/week)</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Obese women</td>
<td>34</td>
<td>162</td>
<td>70</td>
<td>27</td>
<td>27</td>
<td>No</td>
<td>Walking (>2.5 hours/week)</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Obese women</td>
<td>39</td>
<td>157</td>
<td>78</td>
<td>32</td>
<td>32</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Obese women</td>
<td>40</td>
<td>156</td>
<td>80</td>
<td>33</td>
<td>33</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Obese women</td>
<td>30</td>
<td>161</td>
<td>89</td>
<td>34</td>
<td>34</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>Drinks socially</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Obese women</td>
<td>36</td>
<td>140</td>
<td>90</td>
<td>156</td>
<td>86</td>
<td>35</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Averages Obese Women</td>
<td>36.1 ± 1.5</td>
<td>141 ± 1</td>
<td>84 ± 3</td>
<td>160 ± 2</td>
<td>80 ± 3</td>
<td>31.3 ± 1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean men</td>
<td>35</td>
<td>172</td>
<td>64</td>
<td>22</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>Drinks socially</td>
<td>No</td>
<td>Not applicable</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-----------</td>
<td>---</td>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td>----------------</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean men</td>
<td>37</td>
<td>120</td>
<td>62</td>
<td>170</td>
<td>65</td>
<td>22</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Not applicable</td>
<td>No</td>
</tr>
<tr>
<td>Lean men</td>
<td>32</td>
<td>124</td>
<td>79</td>
<td>184</td>
<td>78</td>
<td>23</td>
<td>No</td>
<td>Walking (>5 hours/week)</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>Drinks socially</td>
<td>Yes</td>
<td>Not applicable</td>
<td>No</td>
</tr>
<tr>
<td>Lean men</td>
<td>37</td>
<td>110</td>
<td>70</td>
<td>179</td>
<td>74</td>
<td>23</td>
<td>No</td>
<td>Walking (>5 hours/week)</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>Drinks socially</td>
<td>No</td>
<td>Not applicable</td>
<td>No</td>
</tr>
<tr>
<td>Lean men</td>
<td>38</td>
<td>113</td>
<td>65</td>
<td>184</td>
<td>79</td>
<td>23</td>
<td>No</td>
<td>Walking (>2.5 hours/week)</td>
<td>Diet high in vegetables, fiber and white meat</td>
<td>No</td>
<td>Drinks socially</td>
<td>No</td>
<td>Not applicable</td>
<td>No</td>
</tr>
<tr>
<td>Lean men</td>
<td>32</td>
<td>170</td>
<td>68</td>
<td>24</td>
<td>No</td>
<td>Sedentary</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Not applicable</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean men</td>
<td>36</td>
<td>174</td>
<td>74</td>
<td>24</td>
<td>No</td>
<td>Walking (>5 hours/week)</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>Drinks socially</td>
<td>No</td>
<td>Not applicable</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lean men</td>
<td>32</td>
<td>180</td>
<td>81</td>
<td>25</td>
<td>No</td>
<td>Walking (>5 hours/week)</td>
<td>Diet high in red meat and fat, few vegetables</td>
<td>No</td>
<td>Drinks socially</td>
<td>No</td>
<td>Not applicable</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Averages Lean Men

<table>
<thead>
<tr>
<th>Lean Men</th>
<th>35 ± 1</th>
<th>117 ± 1</th>
<th>69 ± 3</th>
<th>177 ± 2</th>
<th>73 ± 2</th>
<th>23.3 ± 0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obese men</td>
<td>38</td>
<td>110</td>
<td>70</td>
<td>184</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>Obese men</td>
<td>34</td>
<td>116</td>
<td>73</td>
<td>178</td>
<td>87</td>
<td>27</td>
</tr>
<tr>
<td>Obese men</td>
<td>37</td>
<td>110</td>
<td>85</td>
<td>170</td>
<td>80</td>
<td>28</td>
</tr>
<tr>
<td>Obese men</td>
<td>40</td>
<td>170</td>
<td>80</td>
<td>28</td>
<td>No</td>
<td>Sedentary</td>
</tr>
<tr>
<td>Obese men</td>
<td>38</td>
<td>117</td>
<td>80</td>
<td>174</td>
<td>92</td>
<td>30</td>
</tr>
<tr>
<td>Obese men</td>
<td>35</td>
<td>165</td>
<td>83</td>
<td>30</td>
<td>No</td>
<td>Sedentary</td>
</tr>
<tr>
<td>Obese men</td>
<td>34</td>
<td>175</td>
<td>94</td>
<td>31</td>
<td>No</td>
<td>Walking (>2.5 hours/week)</td>
</tr>
<tr>
<td>-----------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Obese men</td>
<td>34</td>
<td>180</td>
<td>115</td>
<td>35</td>
<td>No</td>
<td>Walking (>5 hours/week)</td>
</tr>
<tr>
<td>Obese men</td>
<td>35</td>
<td>187</td>
<td>130</td>
<td>37</td>
<td>No</td>
<td>Sedentary</td>
</tr>
<tr>
<td>Obese men</td>
<td>34</td>
<td>137</td>
<td>108</td>
<td>171</td>
<td>113</td>
<td>No</td>
</tr>
<tr>
<td>Averages Obese Men</td>
<td>36 ± 1</td>
<td>118 ± 4</td>
<td>83 ± 5</td>
<td>175 ± 2</td>
<td>97 ± 5</td>
<td>31.2 ± 1.4</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1 – Sera from lean rats increases β cell mitochondrial oxygen consumption. A. Weight progression of eight-week-old male rats on CR (blue) or AL (red) diets; *p < 0.05, **p < 0.005 compared to AL, unpaired t-student test, n = 6. B. Frequency (%) of islets from AL and CR rats versus area, in µm². C. Typical INS1-E cell oxygen consumption rate (OCR) traces. Cells were incubated in media in the presence of the sera indicated, with 11.1 mM glucose, and 1 µM oligomycin, 10 µM carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP) and 2 µM antimycin plus rotenone were added when indicated. D. Basal OCR quantified as initial minus antimycin plus rotenone-insensitive respiration, from traces such as those in panel B. E. Maximal OCR, quantified as FCCP-stimulated minus antimycin plus rotenone-insensitive respiration. F. ATP-linked OCR, quantified as initial minus oligomycin-insensitive respiration. Results are presented as means ± SEM. *p < 0.05, **p < 0.005, as indicated by one-way ANOVA with Tukey posttest; n = 15 - 19.

Figure 2 – Female lean donor plasma increases β cell mitochondrial oxygen consumption. A. Typical OCR traces, conducted under the same conditions as Fig. 1, with plasma samples from male, female, lean, and obese donors. B-D. Basal, maximal and ATP-linked OCR. Results are presented as means ± SEM. *p <0.05, **p < 0.005***, p < 0.0005, ****p < 0.00005, one-way ANOVA test, with Tukey posttest, n = 8-13.

Figure 3 – Gender and nutritional status alter the amount of circulating adiponectin. A. Quantification of adiponectin in serum samples from AL and CR rats; mean ± SEM, *p < 0.05, unpaired t-student test, n = 12-14. B. Quantification of adiponectin in plasma samples from lean or obese men and women; means ± SEM; ***p < 0.0005, ****p < 0.00005, one-way ANOVA test with Tukey posttest, n = 9.

Figure 4 – β cell metabolic fluxes are strongly induced by adiponectin present in sera. Experiments were conducted under similar conditions to Fig. 1, in the presence of FBS, no sera, and/or 10 µg/mL adiponectin, as indicated. A. Typical traces. B-D. Basal, maximal and ATP-linked OCR. E. Insulin secretion corrected for cellular insulin content was measured after one hour of incubation with 5.6, 11.3 or 16.7 mM glucose, in the presence of FBS or adiponectin, as indicated. Results are presented as means ± SEM. *p <0.05, ****p < 0.00005, one-way ANOVA with Tukey posttest, n = 3-5.

Figure 5 – Serum adiponectin is necessary to maintain islet function and integrity. Islet insulin secretion was measured after 60 min as described in the Methods section with low (5.6 mM, Panel A) or high (16.7 mM, Panel B) glucose in the presence of FBS, no serum, or 10 µg/mL adiponectin, as indicated. C. Insulin secretion collected from islets incubated in 10 mM glucose over a 24 h period. D. LDH activity measured in the culture media. *p <0.05, one-way ANOVA with Tukey posttest, n = 3-4.

Figure 6 – Low β cell metabolic fluxes in obese and male sera are reversed by adiponectin. A. Typical OCR traces, conducted under the same conditions as
Fig. 1, with plasma samples from male, female, lean, and obese donors, in the presence of 10 µg/mL adiponectin, where indicated. **B-D.** Basal, maximal, and ATP-linked OCR. Results are presented as means ± SEM. ****p < 0.00005, one-way ANOVA test, with Tukey posttest, n = 4-13.

Figure 7 – Adiponectin protects pancreatic β cell function and integrity against damage promoted by plasma from obese donors. A, C. Insulin secretion corrected for cellular insulin content after one hour of incubation with 5.6, 11.3 or 16.7 mM glucose, as indicated. Mean ± SEM, **p < 0.005, ***p < 0.0005, ****p < 0.00005, one-way ANOVA test with Tukey posttest, n = 5. B, D. Lactate dehydrogenase (LDH) in culture media after incubation with 10% FBS or plasma from lean or obese men and women, with or without adiponectin, as shown. Mean ± SEM, *p < 0.05, ***p < 0.0005, one-way ANOVA with Tukey posttest, n = 5-12.
Figure 1

A. Body mass (grams) over time (weeks) for AL (red) and CR (blue) groups.

B. Pancreatic islet area frequency (%) across different area categories for AL (red) and CR (blue) groups.

C. OCR (pmol min⁻¹) over time (minutes) with various treatments: Oligomycin, FCCP, AA + Rotenone, FBS, CR, and AL.

D. Basal OCR (pmol min⁻¹) for FBS, CR, and AL.

E. Maximal OCR (pmol min⁻¹) for FBS, CR, and AL.

F. ATP-linked OCR (pmol min⁻¹) for FBS, CR, and AL.

Munhoz et al, 2022, Fig. 1
Munhoz et al, 2022, Fig. 2
Munhoz et al, 2022, Fig. 3
Munhoz et al, 2022, Fig. 4

ATP-linked OCR (pmol·min⁻¹·6 x 10⁴ cells⁻¹)

FBS
No serum
Adiponectin

0
50
100
150
200
250

Basal OCR (pmol·min⁻¹·6 x 10⁴ cells⁻¹)

FBS
No serum
Adiponectin

0
200
400
600
800

Maximal OCR (pmol·min⁻¹·6 x 10⁴ cells⁻¹)

FBS
No serum
Adiponectin

0
200
400
600
800

Insulin (ng secreted /ng content)

FBS
Adipo

5.6
11.3
16.7

MCC-BY-NC-ND 4.0 International license made available under a (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
Munhoz et al, 2022, Fig. 5

A

5.6 mM glucose

B

16.7 mM glucose

C

24 h secreted insulin (ng/ml)

D

LDH (U/L)
Munhoz et al, 2022, Fig. 6
Munhoz et al, 2022, Fig. 7