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Summary Paragraph:

Biomarkers of behavior and psychiatric illness for cognitive and clinical neuroscience remain out of reach1–4.
Suboptimal reliability of biological measurements, such as functional magnetic resonance imaging (fMRI), is
increasingly cited as a primary culprit for discouragingly large sample size requirements and poor
reproducibility of brain-based biomarker discovery1,5–7. In response, steps are being taken towards optimizing
MRI reliability and increasing sample sizes8–11, though this will not be enough. Optimizing biological
measurement reliability and increasing sample sizes are necessary but insufficient steps for biomarker
discovery; this focus has overlooked the ‘other side of the equation’ - the reliability of clinical and cognitive
assessments - which are often suboptimal or unassessed. Through a combination of simulation analysis and
empirical studies using neuroimaging data, we demonstrate that the joint reliability of both biological and
clinical/cognitive phenotypic measurements must be optimized in order to ensure biomarkers are reproducible
and accurate. Even with best-case scenario high reliability neuroimaging measurements and large sample sizes,
we show that suboptimal reliability of phenotypic data (i.e., clinical diagnosis, behavioral and cognitive
measurements) will continue to impede meaningful biomarker discovery for the field. Improving reliability
through development of novel assessments of phenotypic variation is needed, but it is not the sole solution. We
emphasize the potential to improve the reliability of established phenotypic methods through aggregation across
multiple raters and/or measurements12–15, which is becoming increasingly feasible with recent innovations in
data acquisition (e.g., web- and smart-phone-based administration, ecological momentary assessment, burst
sampling, wearable devices, multimodal recordings)16–20. We demonstrate that such aggregation can achieve
better biomarker discovery for a fraction of the cost engendered by large-scale samples. Although the current
study has been motivated by ongoing developments in neuroimaging, the prioritization of reliable phenotyping
will revolutionize neurobiological and clinical endeavors that are focused on brain and behavior.
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Introduction

Biomedical researchers are increasingly recognizing that measurement reliability is a critical determinant of the
reproducibility of scientific findings, as it mediates the relationship between sample size, statistical power, and
replication between studies1,2,6,7,21–26. In response, across a growing number of biological disciplines, researchers
are arduously working to optimize the reliability of their assays or tools of choice (e.g., genetics, multimodal
MRI, EEG)3–5,27. Although of critical importance, these efforts are typically carried out with a singular focus on
the biological measurement (e.g., neuroimaging), without ensuring sufficient reliability in the behavioral,
cognitive, and clinical (e.g., psychiatric) phenotyping assays commonly employed in studies of brain-behavior
relationships. Here, we assert that the lack of focus on optimization of reliability for measures characterizing
phenotypic variation is a critical misstep in human neuroscience. This process overlooks the ‘other side of the
equation’. It fails to acknowledge that it is the joint reliability (defined as the square root of the intraclass
correlation [ICC] of X x Y) of measurements that must be optimized to delineate reproducible brain-behavior
relationships.

We draw attention to behavioral, cognitive, and clinical phenotyping as a case in point. While summary
constructs for some assessments do show good reliability28, a National Institute of Mental Health (NIMH) report
outlined that many key cognitive and behavioral phenotypic measures have either not been assessed for their
reliability or been found to possess poor to moderate reliability (ICC 0.429,30). Test-retest reliability in tasks≤
common in cognitive neuroscience are often suboptimal and highly variable, or even incorrectly calculated31–36

(i.e., with correlation; e.g., N-back ICC = 0.54, 95% CI = 0.08-0.80; Verbal Memory ICC = 0.46, 95% CI =
0.19-0.64; Attention Network Task ICCs between 0.03-0.66). Furthermore, the most common psychiatric
clinical diagnoses have been found to have test-retest reliabilities that are suboptimal for biomarker discovery
(Intraclass Reliability [Kappa; K] 0.7; e.g., schizophrenia K = 0.46; bipolar K = 0.56, borderline personality≤
disorder K = 0.54) with a few being particularly low in field tests of the DSM-5 (e.g., mixed anxiety/depressive
disorder K = 0.00; anxiety K = 0.2, depression K = 0.28))37. Often regarded as the gold standard for clinical
diagnosis, the Structured Clinical Interviews for DSM (SCID) only show good test-retest reliability for
depression and specific phobia (2/8; Kappa 0.7), with moderately better reliability for symptom severity (5/10≥
diagnoses ICC 0.7; depression, substance use, post traumatic stress disorder, specific phobia, anxiety)38. This≥
has contributed to underwhelming performance and replicability in large-scale neuropsychiatric research39–42, as
well as to a string of failures in clinical trials and several large pharmaceutical companies moving out of this
space43. In comparison, MRI data tends to be more reliable than many behavioral measurements or clinical
diagnoses, with ICC values between 0.80-0.88 for structural MRI44 and up to 0.6-0.8 for more recent
‘optimized’ functional MRI protocols45.

Largely, critiques of low reproducibility in neuroimaging studies of individual differences have focused on the
inadequacies of MRI data1,3,46,47, preprocessing pipelines8, and analytic methods11,48,49. However, optimizing
reliability of one side of the equation (e.g., neuroimaging) without addressing reliability of the other (e.g.,
phenotyping) leads to underpowered and irreproducible results. This failure to consider the collective impact of
phenotypic and biological measure reliabilities is an economically inefficient use of research funding.
Additionally, this represents a critical threat to the efficacy of large-sample-focused research, which is likely
one of the most promising avenues for the discovery of reproducible brain-behavior associations and
biomarkers of mental illness3–5,50,51. Remedying this gap is an essential step towards overcoming the
reproducibility crisis in psychology and clinical/cognitive neuroscience.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501193doi: bioRxiv preprint 

https://paperpile.com/c/xoD7Mc/LSPF+CWTF+xEY9+TIRA+KrOH+rO3N+IRHo+lotW+Cj32+eKz2
https://paperpile.com/c/xoD7Mc/Sljv+YeZl+n0Oa+ks4h
https://paperpile.com/c/xoD7Mc/PVj3
https://paperpile.com/c/xoD7Mc/AuhM+Bpas
https://paperpile.com/c/xoD7Mc/BcXl+a9Mc+y38E+dzmX+Zel9+VMTR
https://paperpile.com/c/xoD7Mc/EXNG
https://paperpile.com/c/xoD7Mc/Us4j
https://paperpile.com/c/xoD7Mc/VR96+kxN8+7kc4+DRjg
https://paperpile.com/c/xoD7Mc/QkGGi
https://paperpile.com/c/xoD7Mc/N6q9
https://paperpile.com/c/xoD7Mc/L3I5
https://paperpile.com/c/xoD7Mc/YQnp+QiTz+Sljv+KrOH
https://paperpile.com/c/xoD7Mc/CqJA
https://paperpile.com/c/xoD7Mc/Ljx3+7URK+bbr0
https://paperpile.com/c/xoD7Mc/Sljv+YeZl+n0Oa
https://paperpile.com/c/xoD7Mc/0ObJ
https://paperpile.com/c/xoD7Mc/k0FU
https://doi.org/10.1101/2022.07.22.501193
http://creativecommons.org/licenses/by-nc-nd/4.0/


In the current work, we demonstrate that the suboptimal reliability in phenotyping is one of the most significant,
and unaddressed, obstacles to biomarker discovery in human neuroscience. Through a combination of
experiments on publicly available phenotypic and structural MRI data, simulations, and formal mathematical
analyses, we make key takeaway points regarding core issues in biomarker reproducibility. We conclude by
offering recommendations for reaching robust conclusions about brain-behavior relationships that are both
pertinent to both researchers and funding institutions.

We have also created an interactive statistical exploration tool (Shiny App) available online52 to increase the
clarity of our findings and to help researchers design well-powered studies. The app will allow readers to
examine the complex interactions between study cost, true effect size, estimated effect size, effect size
attenuation, statistical power, reliability of brain and behavior measurement, and number of participants and
repeated measurements. We offer a guided tour through the Shiny App in the Supplement (S; See S. Figure 1).

Results and Discussion

Biomarker discovery depends on joint reliability
In figures A and B, we show that optimizing reliability of one domain (i.e., brain imaging data) without
addressing reliability of the other domain (phenotyping) can leave the joint reliability low. This in turn
attenuates effect sizes towards zero. We also show that even when neuroimaging ICC is fixed at 1.0, suboptimal
phenotypic reliability increases variability in effect size estimates (i.e., correlations) in both normally distributed
simulation data (Figure A) and in correlations between structural MRI (sMRI) and IQ data (Figure B). These
results drive home the point that even achieving extremely high reliability in one measurement (i.e.,
neuroimaging) will not enable studies to find effect sizes close to the true effect when the reliability of the other
measurement (i.e., phenotyping) is low (e.g., 0.2). We also show that even with moderate joint ICC (0.6),
estimated effect sizes can be decreased up to 60% compared to their true effect (S. Figure 2). This happens
because suboptimal joint reliability leads to a combination of both downward bias (attenuation) and variability
in effect sizes. When joint reliability is low, the estimated effect sizes may often include zero or be negative,
which contributes to failures to replicate when these effects are aggregated across studies.

Another important takeaway is that effect size attenuation is maximal for strong effects with low joint reliability
(S. Figure 3). All effect sizes are reduced to zero as joint reliability decreases, therefore the size of the
attenuation scales with the size of the true effect. Thus, even a very strong effect (e.g., a correlation of 0.9) will
be progressively attenuated to zero as joint ICC decreases, meaning that effect size attenuation becomes
especially punishing in the search for strong effects. These results emphasize the importance of using multiple
raters/measurements or timepoints to increase joint reliability for all effect sizes.

The implications of these findings are of paramount importance. Given the impact of joint reliability on effect
size attenuation, we would like to question the acceptance of established brain-behavior effect sizes - as the
effects in the literature may be heavily attenuated. Our results show that under an additive error model, the
suboptimal joint reliability of current phenotypic and imaging measurements biases brain-behavior effect sizes
to zero, making it difficult to assess the statistical validity of brain-behavior relationships. While small and
variable estimated effect sizes are highly prevalent in the neuroimaging literature, these effects are strongly
attenuated and variable due to imperfect reliability, especially due to suboptimal reliability in phenotyping. In
many studies these effects are further compounded by suboptimal reliability in neuroimaging when best
practices are not followed9,11,46,53–57. We caution readers against interpreting the small effect sizes that are
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commonly found in large-scale samples1,58 as definitive indications of weak or null effects. Furthermore, the
replication crisis in neuroimaging is likely due in part to the greater variability in estimated effect sizes that
stems from suboptimal joint reliability.

Effect size attenuation can be corrected using reliability
The impact of effect size attenuation can be corrected if the reliability of data are known (See Supplement). We
show in S. Figure 4 that imperfect joint ICC attenuates correlations to zero, but that using joint reliability (i.e.,
by multiplying estimated correlation by the inverse of joint reliability; see Supplement) corrects these attenuated
correlations and can yield effect size estimates that are unbiased by imperfect reliability9,59. For example, across
both sMRI-IQ correlations and simulated data with moderate effects (r = 0.3) or large effects (r = 0.9), as joint
ICC drops, mean estimated effect sizes fall to zero. Notably, correcting for correlation attenuation is most
effective for higher ranges of reliability. Lower joint reliability values (< 0.35) show noise in the correction,
yielding effect sizes that can be higher or lower than the true effect. However, these corrected values are still
much closer to the true effect size than the uncorrected effect size. On the other hand, joint reliabilities above
0.35 tend to yield estimates of effect sizes that consistently reflect the underlying true effect size. This method
can be applied to correcting correlation attenuation, though in principle it also applies across other effect size
calculations.

Maximizing joint reliability
In simulated samples of 500 subjects with a true effect of 0.2 (Figure C), we show how the optimization of both
sides of measurement reliability is essential in order to reduce both the bias and the variability in estimated
effects. The red line shows where effect size attenuation and variability leads to the 95% confidence interval in
estimated effects crossing zero, meaning these effects that can no longer be detected consistently across studies.
We emphasize joint reliability over individual reliability due to the nature of the joint reliability equation (See
Supplemental Methods), which is defined as the square root of the product of ICC_X and ICC_Y. Therefore for
any given combination, joint reliability is maximized when both ICCs are equal (i.e., joint reliability when
ICC_X = 0.4, ICC_Y = 0.4 > joint reliability when ICC_X = 0.5, ICC_Y = 0.3; See Supplement). For example,
to achieve at least a joint ICC of 0.4 when ICC_Y = 0.2, ICC_X must be 0.8; however, if ICC_Y = 0.4 then≥
ICC_X can be as low as 0.4. With the continuing focus on improving reliability of neuroimaging measurement,
it becomes all the more important to assess the extent to which we can remedy the poor reliabilities presented
by many phenotypic measures. Recent calls for funding from the NIMH that focus on improving phenotypic
reliability highlight the urgency of this need60.

How to improve estimates of reliability
We show in S. Figure 5 that smaller samples yield estimates of reliability (e.g., test-retest, inter-rater) that are
highly variable. For example, a study estimating an ICC of 0.4 with only 50 subjects produces estimates of
reliability that can vary by over 50%, as is the case even in the DSM-5 field trials37. Measures of reliability are
subject to a variability proportional to the sample size used in their calculation. For example, an ICC of 0.4
estimated in a larger sample (i.e., n = 500) shows less than 20% variability in the 95% confidence interval. In
order to achieve sufficient stability in estimates of reliability, greater sample sizes are required than have been
used in most investigations to date.

Aside from increasing sample sizes, inconsistency in estimates of reliability can also be improved by using
more than two measurements61. As an illustrative example, we calculated the ICC of the Child Behavior Check
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List (CBCL) and NIH Toolbox items for the longitudinal ABCD study50 between the first two years of data
acquisition (n = 7,249). We show in S. Figure 6 that the reliability of these variables (ICC = 0.40-0.70) would
continue to improve with acquisition of multiple repeated measurements (e.g., four measurements ICC =
0.66-0.91).

Test-retest reliability is also subject to inconsistency as a function of the level of ICC. Lower ICC estimates will
have significantly more inconsistency than high ICC estimates. This means that for measures with low
reliability, larger samples (n 500) are required to achieve accurate estimates of ICC. Our Shiny App allows>
readers to investigate the interactions of these factors in producing accurate estimates of reliability52.

These difficulties in accurately estimating reliability prompt the need for large-scale datasets to incorporate
repeated measurements (e.g., test-retest, longitudinal data). When large-scale studies collect repeated
measurements, joint reliability can be improved, which leads to decreases in effect size attenuation and
variability. Furthermore, this practice also enables researchers to accurately measure the reliability of their data,
thereby enabling them to correct for the effect size attenuation and recover effect sizes closer to the true effects
in question.

Large samples with low reliability are underpowered
Perhaps most noteworthy is that low reliability in phenotyping makes the collection of large sample sizes
ineffective. If the joint reliability of the biological and phenotypic measurements are low, then increasing
sample size no longer achieves sufficient statistical power, as demonstrated in Figure D. This shows that if joint
reliability is very low (ICC < 0.15), consortium sized samples do not provide sufficient power to detect
small-to-moderate effects (r = 0.2), even with five thousand subjects. Conversely, with high joint reliability
(ICC > 0.85) even a study with 200 subjects will be better powered to discover reproducible brain-behavior
associations than a sample of 5,000 with low reliability.

Moreover, many power calculations (e.g., G*Power) assume the joint reliability of data are perfect, and
therefore produce overly optimistic estimates of statistical power62. We show here that when statistical power is
calculated properly using joint reliability, even moderately sized samples (n ≈ 500) require high joint reliability
(>0.6) to achieve sufficient power. When low reliability phenotyping is combined with low reliability brain
measurements, such as short resting state scans46, or task-based fMRI acquisitions63,64, even large-scale samples
will not be able to produce robust brain-behavior associations. This finding is consistent with results of recent
high-profile work on large-scale samples that have pointed to difficulties in finding consistent brain-behavior
associations9,48,49,51.

Repeated measurements achieve higher accuracy
Figure E demonstrates the impact of different sampling strategies on the accuracy of estimated effects as a
function of joint ICC. Comparing mean squared error (MSE) between 1,000 subjects with two phenotypic
measurements to either 10,000 or 100,000 subjects with only one measurement shows that repeated
measurements lead to much lower MSE for only 13% or 1.3% of the cost respectively. Furthermore, increasing
sample size beyond a certain point does not significantly impact the accuracy of effect sizes. This effect is
driven by the relationship between joint reliability and bias of the effect in question. Bias reflects the average
accuracy with which the strength of a brain-behavior relationship is truthfully represented, and bias increases as
joint reliability decreases. As a result, increasing joint reliability through aggregating repeated measures yields
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more accurate estimates of the underlying true brain-behavior relationship. Large-scale (n 10,000) studies≥
with only a single time-point of phenotyping are a costly and ineffective approach to achieving robust
biomarker discovery. We demonstrate that averaging repeated phenotypic measurements can improve
reliability13,14, though more sophisticated aggregation methods have been shown to perform even better12,65,66.

Large cross-sectional studies are uneconomical
In Figure F, we show that increasing sample size significantly reduces variance in estimated effect sizes, though
it does so at a steep price. Increasing sample sizes offers diminishing returns in variance reduction, while
increasing study cost linearly. For example, 87% of the reduction in effect size variance achieved from
increasing a sample size from 100 to 10,000 is accomplished solely by increasing sample size from 100 to 1,000
participants (Figure F). Assuming a fixed cost of $2000 USD per neuroimaging session and $1000 per clinical
and cognitive evaluation, a study with 1,000 subjects with two phenotypic measures can be conducted for only
13% of the cost ($4M USD) of the larger sample ($30M USD; n = 10,000). Critically, this smaller-scale study
yields similar variance and much greater accuracy of effect sizes compared to the larger 10,000 subject study.

Importantly, this cost savings becomes even more pronounced as subject sizes increase further to 100,000
subjects and beyond. Recent estimates have shown that large samples (n > 2,000) are required to discover
robust brain-wide associations with behavior1. Our results demonstrate similar effects, showing how large
sample sizes are helpful, but up to a point. Prioritizing ever larger samples without improving measurement
reliability becomes increasingly less helpful for establishing brain-behavior relationships that are both
reproducible and accurate. We demonstrate that more moderately sized samples (n = 1,000) with aggregated
repeated measurements will both save time and cost while leading to significant increases in robust biomarker
discovery through improved phenotypic measurement reliability.

When to prioritize reliability versus sample size
S. Figure 7 shows that for every point in the possible three-dimensional space of sample size, joint ICC, and
effect size, that there is an optimal study design choice that will lead to the largest reductions in MSE. For
smaller studies, it tends to be most effective to increase sample size, but as samples become larger (n > 500),
improving joint reliability starts to lead to relatively greater decreases in MSE compared to increasing sample
sizes. This demonstrates that for larger samples, improving measurement reliability through repeated
measurements become especially helpful in producing robust estimates of brain-behavior associations.
Importantly, this holds regardless of the effect size or joint reliability in question. For strong effects (r 0.7),≥
increasing joint reliability always leads to greater reductions in MSE than increasing sample sizes. We provide
an interactive version of this plot with a path-finding function in the Shiny app to help researchers explore the
possibility-space of these choices in the design of their study and how they interact with MSE, variance, and
statistical power.

S. Figure 8 demonstrates the variability in effect sizes as a function of sample size and joint ICC. Increasing
sample sizes decreases the range of the upper and lower bounds of estimated effect sizes, with most of the
decrease in variability coming from increasing samples from 0 to 500 subjects. Notably, prioritizing even larger
sample sizes when joint reliability is low (< 0.2) can still produce effect sizes with lower bounds that cross zero,
indicating these effects are not likely to reproduce across studies. These results demonstrate the consequence of
optimizing joint reliability of measurement, as for most effect sizes and moderately large samples (n > 500), the
best way to improve the accuracy and replicability of a study is by increasing joint reliability.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501193doi: bioRxiv preprint 

https://paperpile.com/c/xoD7Mc/zpep+fzzU
https://paperpile.com/c/xoD7Mc/E6JN+N5Mo+uh5U
https://paperpile.com/c/xoD7Mc/KrOH
https://doi.org/10.1101/2022.07.22.501193
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recommendations for Researchers and Funders

Discouragingly small estimates of brain-behavior effect sizes and the large samples needed to detect them have
grown increasingly concerning67. A key question is: can the points made here help change the picture? We
believe the current work demonstrates that the optimization of reliable phenotypic measures, in a fashion similar
to what has been labored over in the neuroimaging community3–5,11, opens up the potential to appreciate larger
and more reproducible effects for brain-behavior relationships than reported to date. We provide suggestions for
researchers and funding bodies when considering new research projects to maximize the likelihood of
biomarker discovery.

Use reliability as a guide: Researchers should use inter-rater and test-retest estimates of reliability to evaluate if
their variables of interest are reliable enough to find reproducible brain-behavior relationships9,46,68. The results
demonstrated here on ICC can be generalized to other measurements of reliability (e.g., Kappa) given that the
underlying generative function is similar. Prior work has demonstrated comparable closed form solutions for
ICC and weighted Kappa69. If a study aims to examine phenotypic variables known for low reliability (e.g.,
DSM depression diagnosis), it is important to not only acquire repeated phenotypic measurements or multiple
raters, but moreover to focus on brain measurements with the highest reliability (i.e., structural measures or long
acquisition functional connectivity [>20 minutes]). Conversely, for a study looking for brain-behavior
associations with neuroimaging measurements that have low reliability, use only the most reliable phenotypic
measures possible (e.g., age, sex, IQ, etc), and not cognitive or clinical measures with suboptimal reliability.

Do not pursue statistical validity over reliability: Reliability places an upper bound on statistical validity (i.e.,
effect sizes). As such, any effort to maximize statistical validity would benefit from consideration of reliability.
Statistical validity of brain-behavior associations cannot be assessed or prioritized accurately or reliably without
achieving sufficient measurement reliability first. In low reliability scenarios, any estimates of statistical validity
(e.g. brain-behavior correlation) will be highly variable and attenuated close to zero (Fig A & B). Estimates of
statistical validity are subject to noise, and studies prioritizing strength of statistical validity over reliability must
contend with both inaccurate and variable estimates of effect sizes as a result of suboptimal reliability. This
means that in one study effect sizes may appear large, but small in another study, impeding the ability to find
consistent strong effects across studies and inducing failures to replicate. Optimizing for reliability alone is also
insufficient however, as sources of noise can be highly reliable and will only serve to reduce interpretational
validity, even if they improve reliability and statistical validity3–5. For example, head motion in fMRI corrupts
the interpretational validity of fMRI connectivity while being both highly reliable70 and sensitive to clinical
presentation71 and associated brain-behavior relationships72.

Regardless of the considerations of optimizing study design for either reliability or statistical validity, any study
should include assessments of reliability to improve their ability to detect effects. Incorporating measurement
reliability into efforts to optimize effect sizes enables correction for effect size attenuation, which is a
significant issue in clinical and cognitive neuroscience, and is most severe for large effect sizes.

Prioritize repeated measurements more than large samples: Collecting multiple raters/measurements/time points
per participant is often a more economical method for maximizing scientific reproducibility than increasing
sample size (Figure E, F)12–15. When possible, we recommend using multiple clinicians and/or repeated assays to
evaluate clinical presentation and cognition. Given the challenges of collecting repeated measurements, recent
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advances in data collection strategies may enable such repeated assessments outside the laboratory setting (e.g.,
ecological momentary assessment and cognitive burst sampling via smartphone- or web-based assessments).
These approaches can be leveraged to mitigate experimenter and participant burden, as well as to increase the
accessibility of participation and reduce participant dropout16–20.

Use the provided Shiny app: Plan out studies regarding expected ICC, true effect size, and sample size using our
Shiny App. A study is likely to replicate when the lower bound of the 95% confidence interval (S. Figure 1;
Panel A) in estimated correlations falls in the direction of the expected true effect.

Conclusions

In the current work we offer perspectives on how suboptimal behavioral, clinical, and cognitive phenotypic
reliability hinders biomarker discovery through its interaction with sample size and estimated effect sizes in
brain-behavior relationships. We have shown that optimizing joint reliability must be prioritized to improve the
accuracy and reproducibility of our estimated brain-behavior correlations. Using more reliable measures allows
for robust estimates of true effects even at smaller sample sizes, and repeated measurements can be leveraged to
provide more accurate estimates of brain-behavior relationships with one tenth the sample size and for a fraction
of the cost. We expect the impact of aggregating repeated measurements to improve reliability will hold under
most conditions, though the exact relationship or performance observed may differ under more complicated
error structures. We hope that the perspective shared here will inform the design of new studies and the analysis
of already collected data.

Data Availability

All data used in the current work are available through the Healthy Brain Network, an open source resource for
transdiagnostic mental health research: http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/

Code Availability

We provide an open source Shiny App for researchers to evaluate our results:
https://andrew-a-chen.shinyapps.io/reliability-app/. All additional codes in the current work will be made
publicly available upon publication of the manuscript.
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Figure 1. A) We show the distribution of estimated effect sizes in simulation data with 500 subjects and a true
brain-behavior correlation of 0.3. Even when ICC_X (brain measurement) is perfect (ICC = 1.0), lack of
phenotypic reliability significantly attenuates the estimated correlation to zero. This demonstrates that
suboptimal joint reliability is an important cause of lack of reproducibility in neuroimaging studies and reason
why large-scale samples often demonstrate very small effect sizes. B) We perform the same calculation as in A,
but with synthetic data created from real effect sizes and distributions taken from two structural scans in 568
individuals associating cortical thickness measures with intelligence. These results confirm that the results of
the simulations hold in real data. C) This heatmap shows the relationship between joint ICC and the attenuation
and variability in effect sizes (n = 500). As joint ICC increases, effect size attenuation and variability decrease,
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meaning estimated effect sizes will become both more accurate and reproducible from study to study. The red
line shows the minimum ICC required for phenotyping and brain measurements to be able to consistently
estimate a positive relationship across studies when the true underlying correlation = 0.2. D) This heatmap
shows the relationship between statistical power and joint reliability (ICC) of brain measurement and
phenotypic data as a function of sample size with a true effect of 0.2. When sample sizes are exceedingly low (n
< 200), only the most reliable data will be well powered to discover brain-behavior correlations. As joint
reliability drops however, even large-scale samples are no longer well-powered. When joint reliability is low
(ICC < 0.2), even samples with thousands of participants are not sufficiently powered to recover true
brain-behavior correlations. E) We investigate the power of repeated phenotypic measurements to increase
reliability and improve the accuracy of brain-behavior correlations as a function of joint ICC (fixed
neuroimaging ICC = 0.5). The red, blue, green, and purple lines correspond to the average accuracy (MSE) of
samples with 100 subjects (1x neuroimaging/phenotyping), 1000 subjects (1x neuroimaging, 2x phenotyping),
10,000 subjects (1x neuroimaging/phenotyping), and 100,000 subjects (1x neuroimaging/phenotyping).
Assuming a fixed cost of $2000 per neuroimaging session and $1000 for clinical and cognitive phenotypic
evaluation the study design with 1,000 subjects measured twice is able to achieve better accuracy for $4M USD,
a fraction of the cost of larger samples ($30M USD, n = 10,000; $300M USD, n = 100,000). Notably, increasing
sample size from 10,000 to 100,000 does not yield a notable increase in mean accuracy. F) The primary value of
acquiring large sample sizes lies in the decrease in variance of estimated effect sizes. We compare the variance
in estimated effect sizes as a function of joint ICC and different sampling strategies. Increasing samples from
100 subjects measured once to 10,000 subjects measured once yields a large decrease in variance in estimated
effects. However, most of the gain in variance reduction happens in the first 1,000 subjects. 87.5% of the
variance reduction in moving from 100 to 10,000 subjects is achieved by 1,000 subjects with phenotyping
measured twice, for less than a seventh of the total cost. Increasing sample size from 10,000 to 100,000 yields
only a small reduction in variance in effect sizes for 10x the cost. This points to the fact that increasing sample
sizes impacts the variance in estimated effect sizes logarithmically, while study costs continue to increase
linearly. A much more cost effective approach would be to measure subjects twice to increase the reliability of
the measurements, thereby achieving most of the variance reduction while also significantly increasing accuracy
of estimated brain-behavior associations.
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Methods

Overview: We evaluate the impact of low phenotypic reliability primarily through simulation data and synthetic
data derived from publicly available structural MRI and IQ data to examine: 1) the impact on the power,
accuracy, and variability of brain-behavior associations from increased reliability versus increased sample size;
2) the bias in correlation estimation with unreliable data at a given sample size, and in our Shiny App52, we
show how estimates of reliability can be used to correct for this attenuation; 3) the impact of collecting multiple
measurements per individual to improve reliability; 4) the relative cost and likelihood of accurate effect size
estimation (MSE and variance) of studies with different sample sizes and numbers of measurements per person.

MRI and Phenotypic Data Acquisition: The sample included 568 children and adolescents from the Healthy
Brain Network cohort73 with 364 males and 204 females. All participants were between ages 6-17 (mean 10.45,
SD 2.69). Participants’ IQ (mean 102.34, SD 17.36) was measured using the Wechsler Intelligence Scale for
Children (WISC-V)74. Participants were recruited on a community self-referred basis through the distribution of
advertisements and announcements to community members, educators, local care providers, and parents. Main
exclusion criteria included the presence of acute safety concerns (e.g., danger to self or others), cognitive or
behavioral impairments that could interfere with participation (e.g., being non-verbal, IQ less than 66), or
medical concerns that are expected to confound brain-related findings73. Anatomical MRI scans were acquired
for all participants using both standard HCP T1w and VNAV T1w MPRAGE. Acquisitions for all participants
were obtained at a single site from the Cornell Brain Imaging Center (CBIC) using a 3 T Siemens Prisma
scanner. The full set of T1 image acquisition parameters can be found in the HBN data release
documentation73,75

MRI Preprocessing: The skull-stripped anatomical images and raw functional images were preprocessed
through the Configurable Pipeline for Connectomes (C-PAC76,77. Anatomical images were nonlinearly registered
to the MNI152 template78 (2 mm isotropic) using Freesurfer79,80 and segmented into gray matter (probability
threshold = 0.95), white matter (probability threshold = 0.95) and cerebrospinal fluid (CSF; probability
threshold = 0.95). We used Mindboggle81 to extract a total of 70 cortical thickness values from the left and right
hemisphere (35 features per hemisphere). Mindboggle achieves high accuracy gray matter extraction by
merging structural mesh models from both Freesurfer and ANTs82. We extracted cortical thickness values for
both HCP-T1 and VNAV T1 MPRAGE images. Cortical thickness values from HCP-T1 and VNAV T1 were
then harmonized to correct for acquisition differences using a version of ComBat specialized for longitudinal
data83.

MRI Analysis: We avoided univariate analysis between structural features and IQ to prevent overfitting, opting
for a multivariate dimensional approach. We performed Partial Least Squares (PLS) on the 70 cortical thickness
values, to identify the primary dimensions of structural variance associated with IQ. PLS, similar to principal
component analysis (PCA), creates components that are a linear combination of each of the cortical thickness
values that maximize their covariance with IQ. PLS was performed separately on harmonized HCP-T1 and
VNAV T1 features. All PLS components were then matched based on correlation across participants, and the
component that showed high alignment between HCP and VNAV T1 scans and strongest average association
with IQ (r = 0.175) was selected for further MRI-IQ analysis and synthetic data analysis.
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Synthetic and Simulation Data Analysis: Using both real data (MRI, IQ) and simulated data, we generated
correlated datasets from bivariate normal distributions with varying amounts of added measurement errors to
obtain variables with desired ICC levels (details in Supplementary section, “Simulation Setup”). In brief, we
generated simulated brain imaging (X) and phenotypic variables (Y) based on an additive error model. Across
all simulated sample sizes (50-10,000) and true correlation values (0.1-0.9), noise free X and Y are generated
with a fixed true correlation. We manipulate the ICC by adding variance to the noise term. After calculating
variances, we simulate noise for X and Y 1,000 times and this gives an X and Y pairing for each ICC value,
sample size, and true correlation value. We calculate the upper and lower confidence intervals and mean
estimated correlation. This process is then repeated 100 times and the average of upper and lower confidence
intervals for estimated correlation are calculated. Using these confidence intervals we can then calculate power
at each given ICC value for the brain (ICC_X) and behavior (ICC_Y) measurements. Under each scenario, we
calculate correlations with and without attenuation correction using known ICC (See Shiny App). We performed
the same process for synthetic data analysis, using the real sMRI and IQ values and covariances to form our
synthetic data. PLS components were extracted from both T1 images and matched based on correlation across
participants (r>0.9). The average between component scores correlation with IQ was regarded as the
approximated “True” effect size (r = 0.175). The VNAV scan was considered an approximated “True”
measurement in order to synthetically create a perfectly reliable estimate of the PLS component. We corrupted
this component with Gaussian noise in a stepwise fashion to create brain measurements across several levels of
ICC.

Supplementary Methods

1. Interactive visualizations of simulation and theoretical results

We provide a set of R Shiny-based interactive visualizations for researchers to explore our main results.
Supplementary Figure 1 shows screenshots of each tab in the shiny app, which we describe briefly below:

Simulation results across ICC values (A)
We examine how varying degrees of reliability impacts correlation estimation, shown through several
evaluation metrics using both simulated and real data. 3D surface plots are used to display various simulation
results, including the mean correlation estimates and variability of those estimates. Data for the correlation
between structural MRI and IQ is from the Healthy Brain Network cohort, with details available in Methods.
For real data, normally distributed measurement error is used to simulate varying ICC of fMRI and IQ data.

Theoretical results for averaging repeated measures (B)
We assess theoretically, what are the relative benefits of increasing sample size using a single measurement vs.
using repeated measures in a smaller sample. We use line plots to display the theoretical benefits of averaging
repeated measures in a subsample over using a larger sample with single measurements. Points at which ICC
estimation in the subsample with repeated measurements has a lower MSE or lower variance than the full
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sample are displayed across graphs. Users can change several parameters including sample size, number of
repeated measures, ICC, and true correlation.

Increasing sample size versus collecting another repeated measure (C)
This plot helps readers evaluate for a given correlation, reliability, and sample size: is it more advantageous to
increase sample size or collect a repeated measure for each subject? Using simulation results, cone plots provide
guidance on whether to increase sample size or collect more repeated measures for various outcome measures
of interest. The direction of the cone reflects whether the outcome measure increases more if a researcher
collects more samples or improves reliability by 0.1 through collecting repeated measures. Clicking on a cone
will draw a line toward the directions of maximal benefit. The size of each cone represents the relative size of
the benefit in the direction of the cone.

Deflation of correlation (D)
This plot examines how reliable measurements need to be in order for estimated correlations to stay above a
designated threshold. The left of each line on the plot is the region of values at which the estimated correlation
in simulation drops below a specified threshold. True correlation values are displayed as different colors.
Options are provided to vary the sample size and also to view the results across all sample sizes in the
simulation.

Accuracy of ICC estimation (E)
We examine the uncertainty of ICC estimates over varying sample sizes. Plots are used to show the accuracy of
intraclass correlation estimation across sample size and the proportion of subjects with repeated measures.
Results are shown from the main simulations, where the chosen proportion of subjects have a single repeated
measure.

In real data examples, ICC themselves are often estimated with a small subset of the samples with repetitions.
Here we demonstrate the uncertainty associated with estimating an empirical ICCs based on the subset of the
full samples. Line plots are used to show the accuracy of intraclass correlation estimation across sample size
and the proportion of subjects with repeated measures. Results are shown from the main simulations, where the
chosen proportion of subjects have a single repeated measure.
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S. Figure 1. Pictured above are each of the tabs of the Shiny App as explained above.

2. Simulation setups

We design simulations to assess the impact of reliability and effectiveness of the attenuation correction across a
broad range of parameters. Let measurements without error and , be drawn from correlated 𝐴
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Using true ICC
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We first compare the estimated correlation with and without the correction, assuming we know the underlying
ICC values and . We first sample simulated observations without error and then for every set of𝐼𝐶𝐶

𝑋
𝐼𝐶𝐶

𝑌
 𝐴

𝑖
𝐵

𝑖 

ICC values, we draw 1,000 sets of measurements and , from the proposed model and then𝑋
𝑖

𝑌
𝑖

𝑖 = 1, 2, ..., 𝑛

calculate the uncorrected correlation and corrected correlation for each set. Across𝑟
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these 1,000 draws, we compute key summary statistics including the mean, variance, and 95% confidence
interval (2.5th and 97.5th percentiles). We then repeat these steps for 100 random draws of and and report 𝐴

𝑖
𝐵

𝑖 

the average of those summary statistics.

Estimating ICCs from repeated measures
To account for uncertainty in ICC estimation, we extend the simulation to include repeated draws for a
proportion of the observations under the same measurement error model𝑝

and𝑋
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each of the 1,000 sets of measurements with error, we obtain ICC estimates and from these𝐼𝐶𝐶
𝑋

𝐼𝐶𝐶
𝑌

observations with repeated measures and report the mean, variance, and 95% confidence interval of these

estimates. We now use these estimated ICC values to calculate the corrected correlation as 𝑟
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.

Synthetic data setup using Healthy Brain Network sMRI and IQ data
We modify our simulation setup to incorporate data from the Healthy Brain Network cohort to show how
measurement error can impact the estimated correlation between structural MRI and IQ. Instead of simulating

and , we repeat our simulations using the top PLS component from the cortical thickness features (see𝐴
𝑖

𝐵
𝑖

Methods) as and IQ as where Individual simulations are conducted by sampling subjects𝐴
𝑖

𝐵
𝑖

𝑖 = 1, 2, ..., 𝑛. 𝑛

from the full 568 HBN observations with replacement. The subsequent simulation steps are the same as
previously outlined.

Software
All analyses are performed using R version 4.1.1. ICCs are calculated using the psych package (Version 2.1.9)
using ICC1 from the ICC function.

3. Measurement error and attenuation bias in estimating correlations

Measurement error and its impact has been commonly studied in the statistical literature. For the problem of our
concern, we suppose X’s are brain signatures (e.g., functional connectivity metrics) and Y’s are clinical or
cognitive phenotypic measurements. The observed data are measured repeatedly with noise. For each
individual, we assume a simple additive measurement error model as
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where and are random noise with mean 0 and variance and , respectively. The population ICCs for𝑒
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The population Pearson’s correlation with a single measurement of X and Y could be then written as
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*
𝑠

𝐴
2

𝑠
𝑋

2
*

𝑠
𝐵

2

𝑠
𝑌

2
+ 𝑜(1)

Correction of Pearson’s correlation by attenuation factor
Based on (1) and (2), it becomes straightforward that if there exist external estimates of the corresponding ICCs,
we could apply a correction to adjust for the bias in estimating via:ρ

𝐴,𝐵

𝑟
𝐴,𝐵

= 1

𝐼𝐶𝐶
𝑋

𝐼𝐶𝐶
𝑌

𝑟
𝑋,𝑌

We could approximate the variance as

𝑉𝑎𝑟(𝑟
𝑋,𝑌

) ≈
(1−ρ

𝑋,𝑌
)2

𝑛−2 ≈
(1−𝐼𝐶𝐶

𝑋
𝐼𝐶𝐶

𝑌
ρ

𝐴,𝐵
)2

𝑛−2

This means that, the lower the ICCs are for each of the measures, the higher the variability is in the obtained
correlations between X and Y. If corrected values exceed an absolute value of 1, these corrected correlations can
be constrained to -1 to 1. Corrected correlation exceeding an absolute value of 1 is likely due to variance in the
estimated correlation. The variance of the ICC-corrected correlations between A and B can then be
approximated as:
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    𝑉𝑎𝑟(𝑟
𝐴,𝐵

) ≈ 1
𝐼𝐶𝐶

𝑋
𝐼𝐶𝐶

𝑌
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𝑋
𝐼𝐶𝐶

𝑌
− ρ

𝐴,𝐵
2)

Still the lower the ICCs are, the larger the variances are. So far we haven’t accounted for the uncertainty in
estimating ICCs as we assume that those could be consistently estimated using external datasets with large
enough sample size.

Trade-offs between repeated measures and large samples with a single observation
We now investigate the gains and costs in terms of estimation bias and variance when we have repeated
measures over relatively smaller samples versus when we have a large number of subjects with a single

observation. Denote this correlation where is the average of repeated measures. Under theρ
𝑋,𝑌

𝑋 =
𝑗=1

𝑚

∑ 𝑋
𝑗
/𝑚 𝑚

assumption that measurement errors are independent of each other and , it has variance𝐴
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2 = 𝑉𝑎𝑟( 1
𝑚 ( 
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𝑚
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𝑗
))) = σ

𝐴
2 + σ

𝑒
2/𝑚

Then the correlation with clinical or cognitive phenotypic measurements becomes:

ρ
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Denote . Note that as increases, approaches , soα = σ
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approaches and the deflation of due to measurement error inρ
𝑋,𝑌

=
σ

𝑋

σ
𝑋

 ρ
𝑋,𝑌
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ρ
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becomes increasingly negligible. The variance of the Pearson correlation estimate using the averaged values𝑋 
is now𝑋

𝑉𝑎𝑟(𝑟
𝑋,𝑌

) ≈
1−ρ

𝑋,𝑌
2

𝑛
𝑆
−2 =

1−α2ρ
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2

𝑛
𝑆
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Now, we aim to compare this to the variance of the Pearson correlation estimate across all subjects using only
their single measurement. The ratio between the variance of these two alternative estimates is
𝑉𝑎𝑟(𝑟
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Which depends on .𝑛, 𝑛
𝑆
, α,  𝑎𝑛𝑑  ρ

𝑋,𝑌

We can also compare these estimates via mean squared error (MSE) where the bias is calculated with respect to
the correlation between and (without measurement error)𝐴 𝐵
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which can then be compared via their difference.
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Similarly, suppose we also have repeated measures for and aim to evaluate the performance of the averaged𝑝 𝑌

measurements . We then find that𝑌 =
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Improvement in population ICC by averaging repeated measures
Under the additive measurement error model, we can derive the population ICC of averaged measurements in𝑚
terms of the original population ICC. Let denote repeated measures where indexes subjects 𝑋

𝑖𝑗
𝑖 = 1, 2, ..., 𝑛

and indexes the number of repeated measures, which is assumed to be constant across subjects.𝑗 = 1, 2, ..., 𝑚
We assume a simple additive measurement error model
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Denote the random variables obtained by averaging the repeated measures as . Based on the𝑚 𝑋
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=
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Using the fact that the error variance can be written in terms of and as , weσ
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can rewrite the population ICC for the averaged measurements as
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Supplementary Results

S. Figure 2. The 95% confidence interval of estimated effect sizes as a function of the ICC of X and Y. Upper
and lower bound correspond to the expected variability in effect sizes for a given joint ICC level. Sample size of
500, and a true effect size of r = 0.3 are used for this simulation. High ICC for both X and Y (>0.8) prevents
effect size attenuation. For an average joint ICC that may be observed in an imaging study (ICC X = 0.6, ICC Y
= 0.6), the lower bound correlation = 0.1, showing that even moderate reliability (ICC = 0.6) can suffer from
effect size reduction of up to ~ 60%.
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S. Figure 3. We summarize the severity of effect size attenuation as a function of Joint ICC and the true
underlying effect size. As Joint ICC decreases, attenuation increases, resulting in larger differences between the
average estimated effect size and the true effect size. Absolute level of attenuation also increases as a function
of the true underlying effect size, meaning that stronger effects will be attenuated more than weak effects. The
largest attenuation can be seen for strong effects where X and Y have poor joint reliability, as even the strongest
effect sizes will be attenuated to zero.
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S. Figure 4. The top row shows the attenuation of average estimated correlations at different levels of ICC_X
and ICC_Y. The bottom row shows the average estimated correlations for different levels of ICC_X & ICC_Y
after ICC-correction has been applied to remove attenuation effects. First, second, and third columns correspond
to MRI-IQ data (n = 500), simulation data with r = 0.3 (n = 500), and simulation data with r = 0.9 (n = 500),
respectively. Higher ICC results in more accurate corrections of attenuation, though even corrections with low
reliability yield estimates that are more accurate than the uncorrected effect sizes. Taken together, this shows
that any effect size can be attenuated to zero, but that this attenuation can be corrected in the reliability of X &
Y have been calculated.
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S. Figure 5. Variability in ICC estimation depends on both the ICC and the number of subjects. As ICC
increases, variability in the ICC estimation decreases. In other words, higher ICC values will on average be
more accurate representations of the true underlying ICC. Small samples create variable estimates of ICC, in A
we show the True ICC and variability in observed ICC as a function of ICC level for a sample of 50
participants. B shows the variability for 500 subjects, and shows much lower levels of variance compared to A.

S. Figure 6. We measure the test-retest reliability for the above cognitive and clinical measures for all subjects
from the ABCD study with complete data for years one and two (n = 7,249). This heatmap shows the estimated
improvements in reliability that can be expected by using repeated measurements. As the number of
measurements increases, all measures show large improvements in reliability. NIH-T: NIH Toolbox. PV: Picture
Vocabulary Test. PS: Pattern Comparison Processing Speed Test. FA: Flanker Inhibitory Control and Attention
Test. PSM: Picture Sequence Memory Test. ORR: Oral Reading Recognition Test.
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S. Figure 7. This point vector cloud informs researchers whether increasing either sample size or joint ICC
(yellow) will lead to greater reductions in MSE. The color spectrum and orientation of the cones correspond to
whether larger decreases in MSE are achieved by increasing sample size (blue), or increasing joint ICC
(yellow). The Z axis shows how this changes as a function of the strength of relationship between X & Y. Size
of cones indicate only the strength of the advantage of increasing either sample size by one level (i.e., from 200
to 500 subjects) or joint reliability by 0.1. At low sample sizes (n = 100), increasing sample size (i.e., from 100
to 200 subjects will lead to larger decreases in MSE than increasing in joint reliability. Stronger effects always
benefit more from improving reliability over increasing sample size. In general, as sample size increases,
increasing reliability matters more than increasing sample sizes regardless of effect size and joint ICC level.
Sample sizes simulated here: n = 100, 200, 500, 1,000, 2,000.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2022. ; https://doi.org/10.1101/2022.07.22.501193doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.22.501193
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Figure 8. The 95% confidence interval in estimated effect sizes as a function of sample size and joint ICC.
As joint ICC increases, effect size attenuation decreases and the upper and lower bounds converge on the true
effect size (r = 0.3). Increasing sample sizes decreases the range of the upper and lower bounds of estimated
effect sizes, with most of the decrease in variability coming from increasing samples from 0 to 500 subjects.
This plot shows that increasing sample sizes when joint reliability is low (<0.2) can still produce effect sizes
that are not reproducible (i.e., lower bounds that cross zero).
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