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Abstract: In a succession of journal papers published over 65 years ago, Sir Alan Lloyd Hodgkin and Sir Andrew 
Fielding Huxley discovered what now forms our contemporary understanding of excitation in nerve, and how axons 
conduct the action potential. Hodgkin and Huxley demonstrated that the nerve action potential is the result of a 
depolarizing event across a cell membrane. In an elegant theoretical framework, they established that when this 
depolarization event is complete, an abrupt increase in voltage gets produced that propagates longitudinally along the 
axon, accompanied by changes in axial conductance. Notwithstanding the elegance of Hodgkin and Huxley’s incisive 
and explicative series of discoveries, their model is relatively complex, relies on no small number of stochastic factors, 
and has no analytical solution; solving for the membrane action potential and the ionic currents requires integrations 
approximated using numerical methods. In this paper, we present a closed-form adaptation of the Hodgkin-Huxley 
membrane voltage potential. The basis of our model is rooted in core conductor theory and the cable properties of 
neurons, with fitting parameters adapted to the classical Hodgkin-Huxley model of excitation in nerve. From this 
model we synthesize a novel analog circuit that simulates the dynamics of a single action potential bioelectrically 
equivalent to the classical Hodgkin-Huxley membrane potential. The primary novelty of our model is that it offers a 
bioconductive, thermodynamic, and electromagnetic explanation of how an action potential propagates in nerve in a 
single mathematical construct. This is in contrast to the traditional Hodgkin-Huxley equations of ionic hypothesis, 
which are not analytically compliant. Computational results of our model are supported by well-established 
quantitative descriptions of Hodgkin-Huxley’s voltage response in the membrane of an axon. Our findings provide a 
mechanistic understanding of how intracellular conductance, the thermodynamics of magnetization, and current 
modulation function together to generate excitation in nerve in a unified closed-form description. In the same manner 
with Hodgkin-Huxley’s findings, the model presented here corroborates (1) that the action potential is the result of a 
depolarizing event across a cell membrane; (2) that a complete depolarization event is followed by an abrupt increase 
in voltage that propagates longitudinally along the axon; (3) that the latter is accompanied by a considerable increase 
in membrane conductance. The work presented in this paper provides compelling evidence that three basic factors 
contribute to the propagated signaling in the membrane of an axon in a single, closed-form model. From our model, 
we synthesize a novel analog conductance-level circuit that simulates the dynamics of a single action potential 
bioelectrically equivalent to the classical Hodgkin-Huxley membrane potential. It’s anticipated this work will compel 
those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and 
quantum features of membrane magnetization and signaling. Furthermore, it’s hoped that subsequent investigations 
of this sort will be advanced by the computational features of this model without having to resort to numerical methods 
of analysis. 

Attribution: A portion of this work is reprinted from R.F. Melendy, Resolving the biophysics of axon transmembrane 
polarization in a single closed-form description [1]. Journal of Applied Physics, 118(24), Copyright  (2015); and 
from R.F. Melendy, A subsequent closed-form description of propagated signaling phenomena in the membrane of an 
axon [2]. AIP Advances, 6(5), Copyright  (2016), with the permission of AIP Publishing. Said published works are 
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Summary: This work provides evidence that three basic factors contribute to propagated signaling in the membrane 
of an axon. The contributing factors are unified in a closed-form description. From this closed-form model we 
synthesize a novel analog circuit that simulates the dynamics of a single action potential that is bioelectrically 
equivalent to the classical Hodgkin-Huxley membrane potential. 
 
I. Overview and Scope 

There is abundant well-grounded research quantifying the electrical behavior of myelinated and unmyelinated nerve 
fibers [3-6]. This has come to include an understanding of membrane impedance properties, and the longitudinal 
voltage and current signals that propagate in axon membranes [7-10]. Of note is Hodgkin and Huxley’s quantification 
of ionic membrane currents and their relation to conductance and excitation in nerve [11]. Since this time, more than 
a few researchers have focused on rigorously describing membrane phenomena and structure. A fundamental 
advancement in this direction was the development and prolific use of cable theory in modeling the membrane of an 
axon [12-16]. In classic cable theory, axons are treated as core conducting cylinders of finite length, where the 
capacitive and conductance properties of the axon membrane are modeled as a distributed-parameter electric network 
[17,18]. Consequently, determination of the membrane action potential and ionic currents requires the solution of a 
boundary-value problem. This approach provides a systematic means for realistically describing the action potential 
and the axon membrane field properties [19,20]. Nevertheless, this method of modeling repeatedly depends on the use 
of numerical methods to solve the partial differential equations. Comparably, the Hodgkin-Huxley equations of ionic 
hypothesis are a relatively complex system of differential equations that have no analytical solution; solving for the 
membrane action potential and the ionic currents requires integrations approximated using numerical methods. 

The scope of this article is to derive an original, quantitative description of the membrane potential Vm. From 
this description, we will synthesize an electric circuit that simulates the dynamics of a single action potential and that 
is bioelectrically equivalent to the classical Hodgkin-Huxley membrane potential. The order in which to accomplish 
this will be: (1) to present evidence that three principal factors form a basis on which the displacement of the membrane 
potential (i.e., from its resting value of ≈ –70 mV) is described; (2) to synthesize these factors into a single, closed-
form expression for analytically computing Vm; (3) to demonstrate the range of phenomena to which the mathematical 
form is relevant. The latter will be achieved by: (a) substitution of established membrane parameters into the 
mathematical form, followed by; (b) computation of the membrane electric field, Em; (c) computation of Vm from its 
resting value through the hyperpolarizing afterpotential. Computational results will be compared with classical 
standards. It is from this model that we will synthesize an electric circuit whose response is electrically equivalent to 
a single action potential. 
 
II. Synthesis of the Membrane Potential Analytical Model 

In this section, both electrodynamic and thermodynamic evidence will be presented in forming a basis on which the 
displacement of the membrane potential Vm is described. These phenomena – in due course – will be presented in a 
unified, analytical description of membrane excitability, followed by a description of Vm in terms of a single, nonlinear, 
homogeneous differential equation. The basis of the analytical model will be established in neuronal cable theory. 
Only certain features resulting from cable theory are of relevance to the development of the analytical model. 
Accordingly, the applicable research will be sufficiently referenced. 
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A. The Leaky Cable Conductance Property of an Axon 

One solution to the neuronal cable equations is a function describing the input resistance Rin (Ω) of a leaky cable along 
the longitudinal length of neuronal fiber [21,22]: 
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where R∞ is the input resistance of a semi-infinite cable and is proportional to the characteristic length, λ (m) of a 
membrane cylinder. Rm represents the resistance across a unit area of membrane (Ω⋅cm2), ρ© is the resistivity of the 
intracellular medium (Ω⋅cm), and d is the diameter of the membrane cylinder (∼µm). The property of intracellular 
resistivity is related to the axoplasmatic resistance to movement of electric charge q © [23,24]. Extracellular resistance 
is considered negligible. Χ (Chi) is a normalized length (dimensionless). Normalized length is often given the notation 
“L” in the literature, but this is too easily confused with an actual (physical) length (m). In this article, Χ is used in 
place of L. A non-ideal Χ will not be constant but will vary along the physical length x of the axon [18,23]. It is defined 
by Χ = ∫ 1/λ dx for cylindrical membranes. This is integrated over the distances along successive (compartmental) 
cylindrical axes. 

It is elementary to rewrite the hyperbolic cotangent of (1a) as Rin = R∞ (1/tanh Χ) or R∞ (cosh Χ/sinh Χ). This 
is identical to writing (Rin/cosh Χ) = (R∞/sinh Χ) ⇒ (Rin/cosh Χ) = (R∞ csch Χ). Since resistance is the reciprocal of 
conductance G (Ω–1), the left-hand term may be expressed as (1/Gin cosh Χ). From this simple arrangement of terms, 
one can write: 

1 csch 
cosh in

R
G∞ Χ =

Χ
          (1b) 

The biophysical relevance of (1b) is it describes how a rapid drop in the input resistance of a semi-infinite 
cable (R∞) balances with a significant decrease in the leaky cable input resistance (Rin) along the longitudinal length 
of neuronal fiber. 

It’s traditional and convenient to express the movement of ionic charge and polarization changes in the 
membrane of an axon in terms of conductance. By and of itself, the hyperbolic conductance term (1b) is intrinsic to 
the displacement of the membrane potential, Vm (V) from its resting value: 
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The inverse variation (1c) is consistent with the fact that voltage varies inversely with conductance [25]. For 
initial generality, nπ multiples of Χ are initially included in the cosh argument. The left-hand units of (1c) is ohms 
(Ω). From Ohm’s law, (1c) is consistent with the fact that V ∝ R. 

B. Axon Intracellular Magnetization Hypothesis 

When a membrane depolarizes, a natural consequence is the generation of a changing magnetic field. There’s a body 
of established research corroborating the existence of time-varying magnetic fields in an axon during the nerve impulse 
[26-30]. 

A common thread that runs through these studies is that the bioelectric activity present during the action 
potential produces a current in a volume conductor. For instance, the current density J (A⋅m–2) throughout a volume 
conductor generates a biomagnetic field, B (T). Without exception, the latter exists in axon membranes and have been 
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experimentally shown to be of remarkably small magnitude [27,28]. These studies offer a classical description of 
biomagnetic field phenomena. 

In contrast, what can be understood about the biomagnetic field of an axon membrane from a statistical 
mechanics description? Could such a description be unified with the macroscopic conductance term (1c)? 

Biological tissue has been shown to have paramagnetic properties, particularly in the presence of Ca+ and 
Na+ ions [31-33]. It is therefore relevant to consider intracellular magnetization as an intrinsic membrane property 
(particularly, during the action potential event). Langevin’s paramagnetic equation is suitable in this circumstance: 
(M /µN) = tanh (µB/kT) [34]. Where M is magnetization (A⋅m–1 or J⋅T–1⋅m–3), N is the number of particles that make 
up the membrane material [with each particle having magnetic moment µ (J⋅T–1)], k is Boltzmann’s constant (1.38 × 
10−23 J⋅K–1), and T is temperature (K). 

Langevin’s equation predicts that a paramagnetic material saturates asymptotically to the line (M /µN) as 
(µB/kT) → 2 [35]. In this instance, the fast-microscopic variables are the statistical averages of the noise generated by 
the thermal fluctuation of electrons in the conducting axon. The thermodynamic derivation of this noise predicts the 
electrical response of the axon to the resting and membrane response potentials quantified by the conductance. During 
polarization for instance, there’s a considerable increase in the sodium conductance gNa of the membrane. This 
produces a marked increase in the current density throughout the conducting medium [36] and subsequently, an 
appreciable increase in the magnetization of the intracellular membrane. By Langevin’s relation, it stands to reason 
that this intracellular magnetization saturates as all the moments become aligned against the biomagnetic field during 
a complete polarization event. 

On the basis of this hypothesis, the hyperbolic conductance term (1c) and Langevin’s thermodynamic relation 
are asserted to vary together, according to: 
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Observe that (2) has left-hand units of Ω (i.e., since the hyperbolic tangent term is dimensionless). As with 
(1c), nπ multiples of (µB/kT) are initially included in the hyperbolic argument for generality. From Ohm’s law, (2) is 
consistent with the fact that V ∝ R. 

C. The Membrane Current Modulation Hypothesis 

An accepted and reliable method for depolarizing the excitable cells of a membrane involves variations in voltage-
clamping techniques [37,38]. Regardless of method, the sensors utilized in voltage-clamping exploit the properties of 
the membrane potential and ionic current signals [39]. These signals are not fundamental. They’re constructed of 
sinusoidally-varying harmonics of the form A cosω t, B sinω t, or some convolution of these functions. Some signals 
have been shown to be unstable depending on the initial conditions in the membrane [40,41]. Irrespective of harmonics 
or stability, the usual practice is to quantify these signals as functions of time. The same holds true for the description 
of biomagnetic signals in an axon. This raised the question: Can the membrane current that accompanies the action 
potential be quantified in terms of the biomagnetic field, i.e., I = I(B)? 

    1. Field-Dependent Current Premise 

One can deduce a priori that a current I(B) inevitably propagates through an axon of physical length l for the period 
of a depolarizing event. This is perfectly reasonable since time-varying magnetic fields have been measured in axon 
membranes during depolarization and hyperpolarization (as previously discusses and referenced on p.4). By Ampere’s 
law, a field-dependent current I(B) must therefore exist, such that ∮𝐵𝐵 ∙ dl = µ0 I(B). 
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This prompts the question: Can one quantify variations in I(B) for the period of a depolarizing event? This 
would suggest the presence of a current modulation signal, d 2 I(B) /dB2 (A⋅T –2). As is characteristic of the classically 
understood  Na+ and K+ time-dependent currents, it’s reasonable to assert I(B) would also exhibit non-fundamental 
oscillatory-like behavior. It is well understood that a membrane response to a depolarization current pulse is 
accompanied by a rapid drop in the leaky cable resistance (and hence, a net increase in intracellular conductance). 
This necessitates a marked rate of increase in I(B) during depolarization (as discovered and referenced by Roth and 
Wikswo, p.4) [27]. 

To mathematically synthesize a function for I(B) (and to demonstrate the range to which its mathematical 
form is relevant), the cylindrical geometry of a classic axon [23-25] and its intrinsic electromagnetic behavior are 
considered basic. This is a perfectly reasonable deduction, and lends itself to physical problems involving cylindrical 
coordinates. For instance, the description of electromagnetic fields in cavities (e.g., field strength behavior far-from 
and close-to cavity walls) [42,43] makes use of spherical Bessel functions, jn(x). In series notation, the spherical Bessel 
function is written jn(x) = (–1)n xn (x–1 d /dx)n (sin x) / x, where n is an integer (0, 1, 2, 3,…, n). 

Axiom: The existence of a field-dependent current I(B) induced in the membrane of an axon must be a 
response to some input excitation. Even if this excitation were an ideal impulse δ (x), the membrane could never 
produce a δ  response (this would be physically impossible, and no experimental results have ever shown this to be 
the case). This would necessitate that the series sin(x / l ) /πx → δ (x) in the limit as the axon length l → 0 (physically 
impracticable). Since l can never → 0 in the limit, it follows that I(B) must consists of a finite number of quantitative 
terms. If I(B) is therefore to be modeled by a collection of spherical Bessel functions, then by the arguments made 
here, I(B) would consist of only the first few integer values of n [44]. 

Neurons of membranes have been shown to have natural frequency-selective feedback properties [45,46]. It 
stands to reason that such properties would influence how the field-strength current I(B) gets transmitted, absorbed, 
reflected, etc., based on frequency during the action potential. This seems particularly true when one considers the 
observation of close to subcritical Hopf bifurcations in neurons, with membrane conductances and currents 
functioning as bifurcation parameters [41,47,48]. These phenomena support the presence of the current modulation 
signal, d 2 I(B)/dB2. 

    2. Field-Dependent Signal Convolution Postulate 

On the premise of the preceding discussion, it’s reasonable to expect that d 2 I (B) /dB2 would exhibit fluctuations 
through the membrane for the period of a depolarizing event. This is supported by the elementary fact that a magnetic 
field cannot instantaneously collapse in an axon as the action potential transitions from depolarization to the 
hyperpolarizing afterpotential. One plausible conjecture is that the current modulation signal would behave according 
to d 2 I(B) /dB2 ∝ f (B) ⊗ jn(B), where f (B) is some induced electromagnetic response signal and ⊗ is convolution. For 
now, it must be postulated that f (B) is not constant but varies nonlinearly in response to B(t). Furthermore, the magnetic 
field must be of relatively adequate strength such that the membrane energy density (J⋅m–3) is sufficient to completely 
depolarize the membrane. 

    3. Synthesis of the Current Modulation Function Postulate 

There are chaotic nonlinearities associated with initiation of the nerve impulse by membrane depolarization [49,50]. 
This, taken in conjunction with the oscillatory nature of the spherical Bessel functions jn(x) (particularly, for n = 0 to 
2), one could reasonably hypothesize that d 2 I(B) /dB2 will exhibit unstable oscillations for the period of a depolarizing 
event [51-53]. 

Without exception, unstable eigenvalues are nearly always present in dynamic systems. In biological systems, 
there are intrinsic control mechanisms that operate in the presence of unstable equilibrium points to produce a stable 
response, often after a margin of instability [40,54-56]. On the premise of unstable oscillations, the simplest of cases 
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would be a signal quantified by the Bessel function (–1)n  xn (x–1 d/dx)n sin x/x multiplied with f (B) = x2 for n = 0, 
yielding x2 j0 (x) = x sin x. The initial prediction is therefore a modulation signal of the form d 2 I(B) /dB2 = (2πa /µ0) × 
(t sin nπ ω t), where the inclusion of (2πa /µ0) is a consequence of Ampere’s law, a being the axon radius (~µm), and 
µ0 the vacuum permeability (4π × 10–7 H⋅m–1). 

    4. An Initial Quantitative Description of the Action Potential 

The question posed in this section (p.4) – Can the membrane current that accompanies the action potential be 
quantified in terms of the biomagnetic field, i.e., such that I = I(B)? – can now be addressed. By Ohm’s law, V ∝ I. 
Hence, the displacement of the membrane potential Vm must be in proportional variation to I(B) and any nth derivative 
of I(B), such that:  

( )
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where ΙΦ″ = (2π a/µ0) × (t sin nπω t). The intracellular resting potential of the membrane V0 (i.e., relative to the outside 
of the cell) must also be accounted for. As before, nπ multiples are initially included in the transcendental for 
computational generality. 

The term ( )''I G NΦ 

 has units of V⋅T–2. In order to reduce this term to units of volts, a constant of 

proportionality κ having units of T2 is introduced. A postulate is that κ = the square of the membrane magnetic field 
Bm (T), such that: 
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The numerator ( )( )2
02 / sinmB a t n tπ µ πω of (3b) is a current term having units of amps (A). The denominator of (3b) 

is conductance (Ω–1). From Ohm’s law, (3b) is consistent with the fact that V = IR. (3b) offers an initial analytical 
description of the membrane action potential Vm. As per the scope of this article (p.2), the next step will be to re-
write (3b) in terms of the accompanying cell membrane electric field, Em. 

III. The Membrane Electric Field Hypothesis 

Consider once again the current term ( )( )2
02 / sinmB a t n tπ µ πω in (3b). Electric current I in the axon per unit area of 

the axon cross section is J = I/A (A⋅m–2), where A = πa2 and a is the axon radius. The current density may also be 
written as J = Em /ρm, where Em is the axon membrane electric field (V⋅m–1) and ρm is the longitudinal membrane 
resistivity (Ω⋅cm or Ω⋅m). Hence, the axon current flow may be expressed as I = JA = (πa2)Em /ρm. By the laws of 
electrodynamics [57], the numerator of (3b) may therefore be re-written as 

( )( ) ( ) ( )2 2 1
02 / sin sinm m mB a t n t E a t n tπ µ πω π ρ πω−= (amps). 

The electric field is constant along the axon longitudinal axis but is radial dependent, such that Em = Emûr, 
where ûr is a unit vector in the axon radial direction. It’s more practical therefore to express

( ) ( )2 1 sinm ma t n tπ ρ πω−E in terms of the axon thickness, ∆r [18,23-25] (i.e., such that Emûr ∝ ∆rEm). Consider the 

introduction of the proportionality constant k, such that k∆rEm produces units of amps (A). Then k would need to 
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have units of (F⋅m–1) × (V⋅m–1)2. The conjecture therefore is that 0 ,mk Eε= where 0ε is the vacuum permittivity of 

free space (8.854 × 10–12 F⋅m–1). Substituting these relations into (3b) gives:  

( )
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2
0

0

sin

tanh cosh 

m
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in

rE t n t
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µπ π
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= +
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        (3c) 

The units of volts are preserved in going from (3b) to (3c). It will be subsequently shown that (3c) gives a 
correct description of the classic nerve action potential and the cell membrane electric field. Computational results 
for Vm and Em will be validated by comparison with standardized values in the literature. 

IV. Materials and Methods 

A Matlab algorithm was developed to computationally test the biophysical adaptation of the model (3c). This 
required a practical choice of membrane physical parameters [14,23,25,35,36] (Table 1): 

Physical Parameters Symbol and Value 

Axon thickness (myelinated-constant) Δr = 2 μm 

Axon (“cable”) length 0 ≤ x ≤ 4000 μm 

Length constant λ = 1000 μm 

Resistance (unit area of membrane) Rm = 2.56 Ω⋅m2 

Intracellular resistivity ρi = 0.4 Ω⋅m 

Input resistance (semi-infinite cable) R∞ = 20.3718(32) MΩ 

Nonlinear magnetization (unitless) 0 ≤ (μB/kT) ≤ 4 

Action potential cycle time 0 ≤ t ≤ 5 msec 

Vacuum permittivity ε0 = 8.854(10–12) F/m 

 
Table 1: The physical parameters used to compute the voltage potential (3c). 

 

But testing the accuracy of (3c) also requires gauging it against a scientifically accepted standard, namely, the 
numerically integrated membrane potential Vm from the Hodgkin-Huxley equations of ionic hypothesis [9]. 

Hodgkin and Huxley hypothesized that the net current Im which flows into a unit area of membrane surface 
is the sum of the current lC flowing into the membrane capacitance Cm (per unit area) and the ionic current Ii 
associated primarily with sodium and potassium species: 

( ) ( ) ( )Na K L
m

m m Na m K m L m
dV

I m hg V V n g V V g V V C
dt

 = − + − + − +  
 

3 4      (4a) 

( )1m m
dm m m
dt

α β  = − − 
 

          (4b) 
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( )1h h
dh h h
dt

α β  = − − 
 

          (4c) 

( )1n n
dn n n
dt

α β  = − − 
 

          (4d) 

where Vm is the membrane action potential (mV). The potential of the sodium, potassium, and leakage channels are 
denoted by VNa, VK, and VL, respectively. The maximum conductance associated with each species are denoted by 

Nag , Kg , and Lg , respectively (mmhos/ cm2). The controlling parameters m, h, and n are time-varying coefficients 
∈  (0, 1) and represent the probability that any channel is open to the flow of ionic currents INa and IK (m and hare 
associated with two types of sodium channels, whereas n is associated solely with potassium). Eachα and β is an 

experimentally observed rate-constant derived from kinetic theory [5-7,9], and each is approximated by a smooth 
function of the membrane voltage Vm. For the squid axon at a temperature of 6.3oC: 
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( )55 /10

0.01 55
1 m

m
h V

V
e

α
− +

+
=

−
          (4i) 

( )/800.0555 mV
m eβ −=           (4j) 

A Matlab code was written using a fourth-order Runge-Kutta algorithm to numerically integrate 
differential equations (4a) through (4d). Furthermore, the Matlab algorithm was coded to solve for the stochastic 
rate constants (4e) through (4j) [this was necessary to simultaneously integrate (4a) through (4d)]. The primary goal 
was to obtain a numerically integrated vector containing the data points for the action potential curve, Vm. 

In keeping consistent with Hodgkin and Huxley’s original experiment, we used standard published values 
of the membrane parameters [5,9] in our simulation (Table 2). Upon execution of our Matlab code, we 
successfully obtained a numerically integrated vector containing the data points for the action potential curve, Vm. 
This enabled us to numerically fit (as close as possible) the latter to the unknown parameters of the adaptation model 
(3c). Namely, the integer values n in each of the transcendental arguments and the radial frequency term ω 
(radians/sec or s–1) in the numerator term of (3c). 
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Physical Parameters Symbol and Value 

Sodium Potential VNa = 50 mV 

Sodium Conductance Nag = 120 mmho/cm2 

Potassium Potential VK = – 77 mV 

Potassium Conductance Kg = 36 mmho/cm2 

Leakage Potential VL = – 54.387 mV 

Leakage Conductance Lg = 0.3 mmho/cm2 

Membrane capacitance Cm = 1 μF/cm2 

Membrane resting potential V0 = – 63.1 mV 

Initial controlling parameter m0 = 0.0355402 

Initial controlling parameter h0 = 0.705487 

Initial controlling parameter n0 = 0.260777 

Applied stimulus current IS(t) = – 0.2 mA 

 
Table 2: The physical parameters necessary to compute the classical Hodgkin-Huxley action potential (4a) through (4j). 

 
For the cosh (conductance) argument in (3c), a best-fit iteration returned a value of n ≈ 1. The 

dimensionless magnetization factor tanh (nπµB/kT) of (3c) was not providing the parameterization necessary to 
correctly model the unique dynamics of a classical membrane action potential. An asymptotic series expansion [58] 
of this expression was performed to reveal the sensitivities associated with each of the terms in the tanh argument. It 

was found that this term was best-fit to an exponential function, such that ( )tanh /n B kTb πµ . 
In fitting our Matlab algorithm to the numerically integrated vector containing the data points for the 

Hodgkin-Huxley action potential (4a) through (4j), we discovered that b ≈ 0.475. For n in the tanh argument of (3c), 
the algorithm returned a best-fit iteration of n ≈ 4. In parameterizing the field current term ( )2

0 sinmrE t n tε πω∆ , the 

Matlab algorithm returned a best-fit iteration of n ≈ 1 and ω ≈ ½ s–1 for the sin argument. However, the simulation 
kept resuming a somewhat abnormally-shaped action potential response. It was concluded that the hypothesized 
field term was not suitably parameterized based on postulates (1) through (3) (p. 4-6). This raised the question: Was 
this term displaying a sensitivity-dependence on the initial conditions? This reasoning supported the notion of 
Lyapunov’s stability criterion, and the possible need for computing a Lyapunov characteristic number, ξ [59]. The 
Lyapunov characteristic number provides information about the rate of separation of infinitesimally close 
trajectories. Classically, λ is used for the Lyapunov characteristic number, but λ has been used in this article for the 
axon length constant, so ξ was chosen. A double-precision floating point Matlab algorithm was written to compute 
ξ from the physical parameters chosen. This resulted in the estimate ξ = 2.704(77) ≈ e. The fact that ξ > 0 was not 
surprising since the field current signal was predicted to exhibit unstable oscillations during membrane polarization 
(p.6). This term was corrected to account for the sensitivity-dependence of the field current signal. 

On the basis of these computations, the closed-form model (3c) can thus be amended: 
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A. Reliability of the Hypothesized Model (5a): Computation of the Membrane Electric Field, Em 

Our Matlab algorithm was used to establish an estimate of the term 2
0 mrEε ∆ to initiate complete depolarization of 

the axon, converging to a value of 2
0 mrEε ∆ ≈ 2.070(39) × 10–8 V2⋅F⋅m–2. The average thickness of a myelinated cell 

membrane is ∆r ≈ 2 µm (Table 1) [23,60,61]. It follows that 2
0 mrEε ∆  = (8.854×10–12 F⋅m–1) × (2 µm) × Em

2 = 

2.070(39) × 10–8 V2⋅F⋅m–2. This results in Em = 3.418(95) × 104 V⋅m–1. A classic axon membrane model will have a 
potential difference between the interior and exterior side of the membrane of ∆Vm ≈ –70 mV [62]. The theoretical 
electric field for a myelinated membrane of 2 µm thickness is therefore Em = – dVm /d(∆r) = – (–70 mV)/(2 µm) = 
3.5 × 104 V⋅m–1 [23,60,63]. This result is favorably consistent with the computation from the hypothesized model 
(5a), having a percent error on the order of ≈ 2.3%. This is an initial confirmation that (5a) is a correct description of 

the classical membrane action potential, Vm [11]. In compact notation, we let ( )2 1
0 sin 0.5 .e

mrE t tε π−
Ε∆ = Ιs  

B. Reliability of the Hypothesized Model (5a): Computation of the Membrane Potential, Vm 
 

To further substantiate that (5a) is an equivalent adaptation of the nerve action potential established by Hodgkin and 
Huxley [11], a computational profile of Vm was completed for 0 ≤ t ≤ 5 msec. Compiling all preceding factors into the 
Matlab algorithm gives a restoration voltage V0 ≈ –70.0 mV. In completed form, (5a) is now expressed as: 
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− Ε

 
 
 

− × <

∆  Ι=
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 Χ 

370.0 10  V             0 5 msec t−



 − × ≤ ≤


 (5b) 

Fig. 1 is a plot of Vm vs. t from: (i) (4a)-(4j); (ii) (5b). Both plots demonstrates the classical action potential 
voltage signal in nerve under stable equilibrium conditions [11,18,23,25,36,61,63]. 

 

 

 

 

 

 

 

Fig. 1. Comparison of Hodgkin-Huxley’s action potential from (4a)-(4j) and the closed-form adaptation of (5b). 
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V. Discussion: Inference of the Ionic Current Flow 

For the Hodgkin-Huxley equations of ionic hypothesis (4a)-(4j), it’s a well-established fact that the lipid bilayer of 
the axon membrane is modeled as a lumped-capacitance Cm (F) [11,64]. This concept is illustrated in Fig. 2. Also 
well-established is the quantification of the ionic current flow IC through this bilayer, such that IC = Cm × (dVm /dt) 
[(as described in (4a)]. 

 
 
 

 

 

Fig. 2. Neuronal membranes behave in part as if it were composed of a lumped capacitance. The membrane represents the 
dielectric while the extracellular fluid and the axoplasm represent the conductors. 

The relationship between the membrane electric and magnetic fields Em and Bm, respectively, may be 
expressed in terms of the time rate-of-change of the membrane potential, such that dVm /dt = Em

2/ Bm. The current 
flow through the membrane lipid bilayer may likewise be expressed in terms of these fields, such that: Cm × (dVm /dt) 
= Cm × ( 2 Bm mE ). Thus, a novel feature of (5b) is that of offering an alternative description to the classical model for 

the time-dependence of the membrane current IC in terms of Em. 

The field current term ( )2 1
0 sin 0.5se

mrE t tε π−∆  of (5b) has units of amps (A), where 2
0 mrEε ∆  has units of 

V2⋅F⋅m–2 or T2. The point is that ( ) ( )2 1 2 2 2
0 sin 0.5s /e

m mrE t t B d I B dBε π−  ∆ =   ,  meaning that the time-dependent 

membrane current IC of the Hodgkin-Huxley model (4a) is inferred by the electric field-induced current term implicit 
in (5b). It is hoped this makes clear the implicit manifestation of the membrane current underlying the action 
potential and its relationship to the membrane electric field, Em. The concluding hypothesis is that (5b) resolves the 
biophysics of how an axon conducts the action potential in a unified closed-form adaptation. 
 
VI. Design Methodology: Synthesis of (5b) to a Novel Electric Circuit 

From Ohm’s law, (5c) is consistent with the fact that V = IR. For the time being, we ignore the restoration voltage V0 
term. The circuit design will consist of three basic systems: 

1. A circuit for the current modulation term: ( ) ( )2 1 8 1
0 sin 0.5s 2.070(39) 10 sin 0.5se e

mrE t t t tε π π− − −∆ = ×  

2. A circuit for the membrane resistance term: 
( ) ( )tanh 4

1 1
G 0.475 cosh

B
kT

inG
µπ π

 
 
 

=
Χ

 

3. Multiplier, amplifier, and clamping circuits. 

A. The Conceptual Circuit from Matlab Data 

The Matlab algorithm already exists to generate the necessary plots of the membrane current and resistance (Fig. 
3). These plots are the basis for selecting and determining the topology and components of the circuits. 
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Fig 3. Conceptual diagram of circuit to produce the desired action potential response (5b) through signal convolution. 
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B. Circuit Synthesis from the Current Modulation Function  

For the time being, we will ignore the numerical value 2 8
0 2.070(39) 10mrEε −∆ = × and focus our design efforts on the 

product 1sin 0.5s .et tπ−  We will (1) synthesize two circuits corresponding to each function [65,66]; (2) use an 
AD633 integrated circuit [67] to perform a convolution operation on the output responses of the latter (Fig. 3). For 
the term 1sin 0.5s tπ− we apply a sine source to the input (pin #3). The remaining problem is for the signal te. The 
value of te at t = 5 ms is 79.4347 ≈ 80. From this, we reasoned that the term 80e–t can be rationalized as a function of 
a discharging capacitor voltage response with an initial (step) value of 80 V. Graphs of 80e–t and te are nearly 
symmetrical about the vertical axis at t = 2.5 ms. We therefore considered the process of charging a capacitor to 
create the symmetric response te. The growth rate of te however is marginally slower than the rate of decrease of its 
symmetric function 80e–t. This necessitated the addition of an inductor to our design and an adjustment of the 
excitation pulse such that the slope of the response fitted the slope of te during 5ms of the process (Table 3). 

 

Interval to calculate slope Slope of te Slope of the plot of charging capacitor 

(0.5-1) msec 1.7 1.7 

(1-2) msec 5.58 5.88 

(2-3) msec 13.38 13.56 

(3-4) msec 23.49 22.18 

Table 3. Slopes of te and our charging capacitor prototype at various intervals of the action potential cycle. 

Our prototype is therefore predicted to be as a series RLC circuit having an initial capacitor voltage vC(0), an input 
excitation u(t), and an output response vC, such that: 

2

2
( )C C

C
d v dv

v
dtdt

LC RC u t+ + =          (6a) 

From the information in Table 3, we conclude that the time constant for the charging capacitor is τC  ≈ 2.3s = RC. 
Considering for now the homogeneous response of our prototype, we let u(t) = 0 and take the Laplace transform of 
(6a). This gives the s-domain equation for the capacitor voltage: 
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v

s LCv LCv LC s LCv LCv LC

=
+ − +

=
+ − + − − + − − − −

 (6b) 

The complete response of our prototype circuit will be of the form: 

( ) [ ] [ ] [ ] [ ]2 2125 2.3 (0) 125 2.3 (0) 4 125 2.3 (0) 125 2.3 (0) 4
1 2 ( )C C C CLCv LCv LCt LCv LCv LC

Cv t A e A e u t− − + − − − − − − −= + +    (6c) 

We ran a parameter sweep simulation in LTspice XVII [68] to identify a best-fit response slope of (6c) matching 
that of te during 5ms of the process. From this, our design values are R = 8Ω, L = 0.125H, and C = 0.29F (Fig. 4). 
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Fig 4. LTspice XVII simulation of te. The signal Vout1 (pin #7) represents the Matlab modulation response of Fig. 3. 

C. Circuit Synthesis from Membrane Resistance Term 

In Section B (p.13), we provisionally omitted the term 2 8
0 2.070(39) 10 .mrEε −∆ = ×  In order to synthesize a circuit 

having the same parametric scale as our preceding design (Fig. 4), we divide the membrane resistance term by 
2.070(39) × 10–8. The resulting plot is illustrated in Fig. 3 (p.12) and at first glance, appears to be exponential. This 
was suspicious due to the extremely large values of 1G−



 for very small t. We examined this distortion more closely 

by generating a semilog plot of 1G−


 vs. time (Fig. 5). The slope of log( 1G−


) for the first 5ms is tabulated in Table 4. 

 

Time (milliseconds) Resistance (109 Ω) Time Interval to Calculate 
Slope 

Slope of log (R) 

1 234,700 - - 

2 8,027 (1-2) msec –2,266 

3 336.1 (2-3) msec –7,690 

4 14.46 (3-4) msec –321.64 

5 0.6245 (4-5) msec –13.835 

Table 4. The slope of log( 1G−


) at various intervals of the action potential cycle. 

 
 
 
 
 
 
 
 

Fig 5. The plot of log(R) vs. time. 
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The process of discharging a capacitor was used to generate an output voltage corresponding to the 
behavior of membrane resistance as per Table 4. For the slope of a circuit response to coincide with the slope of the 
data in Table 4, we ran a parameter sweep simulation in LTspice XVII to identify a best-fit response slope 
coinciding with the slope of log( 1G−



) during 5 ms of the process. From this, we discovered that the time constant for 

a capacitor discharging through a 20 kΩ resistor is τC  ≈ 0.0002 s, or C ≈ 0.01 µF. The decay rate of log( 1G−


) was 

slower than the rate of decrease of RC simulated circuit. So as previously done we added an inductor to shape the 
slope of the circuit response to match the slope of log( 1G−



) during 5 ms of the process. For our 20 kΩ resistor, we 

discovered that the time constant for the RL portion of the circuit is τL  ≈ 0.001 s, or L ≈ 2 H. The diode D1 was 
included to force the capacitor C to discharge through the RL network (Fig. 6). 
 

Fig 6. LTspice XVII simulation. The signal at Vout2 represents the Matlab resistance function of Fig. 3. 

D. Convolution of the Responses 

The response of each of the filters (Fig. 4 and Fig. 5) must undergo a convolution process so as to produce a 

response that assimilates the action potential of (5b) (see Fig. 3). We again used an AD633 integrated circuit to 

perform this convolution operation on the signals Vout1 and Vout2 (Fig. 7). The analog multiplier connections are 

as follows: (1) input signal 1 comes from pin #7 of Fig. 4; (2) input signal 2 comes from the voltage response of Fig. 

5; (3) the response of the second AD633 (pin #7) is the result of the convolution product (Vout1⊗Vout2)+voltage 

value of pin #6 (the voltage at pin #6 is used to shift the level of the output signal). 

Fig. 7. A second AD633 IC is used to produce the convolution of Vout1 and Vout2. 
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E. Amplifier and Clamping Circuits 

Because the convolution of the responses is very small in magnitude, we designed two operational amplifiers to 

amplify the latter by 170 times. In the final circuit, we used a third multiplier to pull the initial value of the signal 

down to the resting potential of –70 mV (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Two OP27 op-amps are set up as noninverting amplifiers. The voltage source at pin 6 of the AD633 
multiplier determines the level of shifting down the output signal (pin #7 of the final AD 633 multiplier). 

 

VII. Summary 

The development of an original, quantitative description of the membrane (action) potential displacement 

Vm was presented in this article. This description is a conductance-based model rooted in cable theory. Unlike the 

traditional Hodgkin-Huxley model equations of ionic hypothesis, I did not explicitly describe the nerve action 

potential in the context of ion channels (i.e., the chemistry and physics behind the contribution of different ions to 

the action potential are not explicit or necessary features of my model). 

1. Evidence was presented that three principal factors form a basis on which the membrane potential 

displacement is described. These three factors are the axon leaky cable conductance, intracellular 

membrane magnetization, and membrane current modulation. 

2. The three hypothesized factors were put into a unified, quantitative form for analytically determining Vm. 
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3. Beginning with substitution of established membrane parameters into the mathematical form, the range of 

phenomena to which the mathematical form is relevant was demonstrated two ways: (a) Computation of 

the membrane electric field, Em; (b) computation of the membrane potential displacement, Vm. 

4. One of the novelties of this work is that it provides a mechanistic understanding of how intracellular 

conductance, the thermodynamics of magnetization, and current modulation function together to generate 

excitation in nerve. 

5. Another novel feature of this work is the statistical mechanics description of intracellular magnetization, 

and how this phenomenon relates to the presence of ions in the membrane channel. 

6. The significance of this model is that it offers an original and fundamental advancement in the 

understanding of the action potential in a unified, analytical description. It provides a conductive, 

thermodynamic, and electromagnetic explanation of how an action potential propagate in nerve in a single 

and simple mathematical construct. 

7. We synthesized a novel electronic circuit to mimic the electrical bioimpedance of our analytical model. 
solution. The AD633 multiplier IC is the main component used to produce signals corresponding to the 
membrane current and voltage and represents the full process of an action potential. 
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