
 1

Epigenome-wide meta-analysis of BMI in nine cohorts: examining the utility of epigenetic 1 
BMI in predicting metabolic health  2 

• Whitney L. Do1, Dianjianyi Sun2, Karlijn Meeks3, Pierre-Antoine Dugue4-6, Ellen 3 
Demerath7, Weihua Guan8, Shengxu Li9, Wei Chen9, Roger Milne4-6, Abedowale 4 
Adeyemo3, Charles Agyemang10, Rami Nassir11, JoAnn Manson12, Aladdin H Shadyab13, 5 
Lifang Hou14, Steve Horvath15, Themistocles L. Assimes16, Parveen Bhatti17, Kristina 6 
Jordahl18, Andrea Baccarelli19, Alicia Smith20, Lisa R. Staimez21, Aryeh Stein21, Eric A. 7 
Whitsel22, K.M. Venkat Narayan*21, Karen Conneely*23 8 

1Laney Graduate School, Emory University, Atlanta, GA, USA, 2School of Public Health and Tropical Medicine, Tulane University, 9 
New Orleans, LA, USA, 3Center for Research on Genomics and Global Health, National Human Genome Research Institute, 10 
National Institutes of Health, Bethesda, MD, USA, 4Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia, , 11 
5Precision Medicine, School of Clinical Sciences At Monash Health, Monash University, Clayton, VIC, Australia, 6Centre for 12 
Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 13 
3051, Australia7Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, 14 
USA, 8Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA, 9Children’s Minnesota 15 
Research Institute, Childrens Minnesota, Minneapolis, MN, USA, 10Department of Public and Occupational Health, Amsterdam 16 
Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands, 17 
11Department of Pathology, Umm Al-Qura University, Mecca, Saudi Arabia, 12Department of Medicine, Brigham and Women’s 18 
Hospital, Harvard Medical School, Boston, MA, USA, 13Herbert Wertheim School of Public Health and Human Longevity Science, 19 
University of California, San Diego 14Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 20 
Chicago, IL, USA, 15Department of Human Genetics, University of California, Los Angeles, 16Department of Medicine, School of 21 
Medicine, Stanford, CA, USA,  17Cancer Control Research, BC Cancer, Vancouver, BC, 18Department of Epidemiology, University of 22 
Washington, Seattle, WA, USA  19Department of Environmental Health Sciences, Columbia University, New York City, NY, USA, 23 
USA, 20Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA, 21Hubert Department of 24 
Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA 22Departments of Epidemiology and Medicine, 25 
University of North Carolina, Chapel Hill, NC, 23Department of Human Genetics, Emory University, Atlanta, GA, USA 26 

*Contributed equally  27 

Correspondence: Whitney L. Do, whitney.leet@nih.gov, Karen N. Conneely, kconnee@emory.edu 28 

Abstract 29 

This study sought to examine the association between DNA methylation and body mass index 30 

(BMI) and the potential utility of these cytosine-phosphate-guanine (CpG) sites in predicting 31 

metabolic health. We pooled summary statistics from six trans-ethnic EWAS of BMI 32 

representing nine cohorts (n=17058), replicated these findings in the Women’s Health Initiative 33 

(WHI, n=4822) and developed an epigenetic prediction score of BMI. In the pooled EWAS, 1265 34 

CpG sites were associated with BMI (p<1E-7), and 1238 replicated in the WHI (FDR < 0.05). 35 

We performed several stratified analyses to examine whether these associations differed 36 

between individuals of European descent and individuals of African descent. We found five CpG 37 

sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the 38 

significant CpG sites in predicting BMI, we used elastic net regression to predict log normalized 39 

BMI in the WHI (80% training/20% testing). This model found 397 sites could explain 32% of the 40 
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variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI overestimated 41 

their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides, and lower 42 

HDL-cholesterol and LDL-cholesterol compared to accurately predicted BMI. Individuals whose 43 

methylome-predicted BMI underestimated their BMI (low epigenetic BMI) had significantly 44 

higher HDL-cholesterol and lower glucose and triglycerides. This study identified 553 previously 45 

identified and 685 novel CpG sites associated with BMI. Participants with high epigenetic BMI 46 

had poorer metabolic health suggesting that the overestimation may be driven in part by 47 

cardiometabolic derangements characteristic of metabolic syndrome. 48 

 49 

 50 

 51 

 52 

  53 
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Introduction 54 

Globally, the prevalence of obesity is rising with an estimated 650 million adults obese, 55 

representing 19.5% of the adult population [1, 2]. Obesity has been found to accompany a 56 

multitude of molecular and metabolic perturbations including impaired cell signaling, insulin 57 

resistance, hyperlipidemia, and hypertension [3-5]. Ultimately these perturbations can lead to 58 

the early onset of chronic diseases with individual living with obesity having a 37% increased 59 

risk of type 2 diabetes [6] and 67-85% increased risk of cardiovascular disease compared to 60 

individuals living without obesity [7]. With a growing population of individuals living with obesity, 61 

it is increasingly important to understand the molecular mechanisms dysregulated by obesity to 62 

further elucidate both early markers of disease progression and novel therapeutic targets.    63 

Epigenetic mechanisms are molecularly-mediated changes in gene function which do 64 

not change the DNA sequence. DNA methylation, the most widely characterized epigenetic 65 

mechanism, occurs when a methyl group attaches to the cytosine in a cytosine-guanine 66 

nucleotide (CpG) pair [8]. DNA methylation has been shown to influence gene expression by 67 

blocking transcription factor binding and recruiting chromatin remodelers [9]. As a functional 68 

mechanism influencing gene expression, DNA methylation may be on a disease pathway and 69 

could provide insight into important therapeutic targets. DNA methylation has also become an 70 

important biomarker of health, for example with the development of epigenetic clocks, which can 71 

provide accurate estimates of individual age based on the methylation status of a representative 72 

set of CpG sites [10]. Individuals whose DNA methylation deviate from their actual chronological 73 

age, such that their epigenetically predicted age is higher than their actual age, have been 74 

shown to have higher rates of cancer, cardiovascular disease, diabetes, and mortality [11]. All of 75 

these properties may be relevant in the relationship between DNA methylation and obesity. 76 

Several studies have examined the relationship between DNA methylation and body 77 

mass index (BMI), a commonly used measure of obesity [12-21]. Obesity has been significantly 78 
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associated with differential DNA methylation, and Mendelian randomization analyses have 79 

suggested that while this differential methylation appears to be a consequence of the state of 80 

obesity at many CpG sites, some CpGs show evidence consistent with causal roles in obesity 81 

[13, 18]. While several large-scale studies have identified sites associated with obesity, it is 82 

likely that additional sites will be detectable only with large sample sizes, as observed DNA 83 

methylation differences are often subtle [22]. Thus, a goal of this study is to conduct the largest 84 

epigenome-wide association study (EWAS) meta-analysis of BMI in nine population-based 85 

cohort studies to identify novel sites associated with obesity. The identification of novel sites can 86 

reveal unique molecular signatures of various BMI phenotypes (including metabolically 87 

healthy/unhealthy BMI) and may enable improved prediction of BMI. Previous studies have 88 

reported that a collection of methylation-based predictors can explain between 4.7-18% of the 89 

variance in BMI [13, 21, 23, 24]. In conducting the largest EWAS, we may have better predictive 90 

capacity by incorporating the novel CpG sites identified in the EWAS meta-analysis. As such, a 91 

secondary aim of this study is to examine whether BMI-associated CpG sites can predict BMI. 92 

As with epigenetic age, deviations from epigenetically predicted BMI may be associated with 93 

several relevant health outcomes and could be used as an informative metric of overall health 94 

and/or a predictor of future cardiovascular disease. Thus, we examined whether individuals 95 

whose BMI was poorly predicted by DNA methylation (DNA methylation over predicts their 96 

actual BMI or DNA methylation under predicts their actual BMI) have differential metabolic 97 

health status.  98 

Methods 99 

Participants 100 

Our discovery analysis used data from 17,034 participants from six published EWAS 101 

studies of individuals of European descent (n=11220), African descent (n=2587), and South 102 

Asian descent (n=2680). The six studies were based on nine cohorts: Atherosclerosis Risk in 103 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 27, 2022. ; https://doi.org/10.1101/2022.07.26.498234doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.498234


 5

Communities study (ARIC) [25], Melbourne Collaborative Cohort Study (MCCS) [26], Lifelines 104 

DEEP [27], Lothian Birth Cohort (LBC) 1921 and 1936 [28], Bogalusa Heart Study (BHS) [29], 105 

the Research on Obesity and Diabetes among African Migrants (RODAM) [30], the Kooperative 106 

Gesundheitsforschung in der Region Augsburg (KORA) [31], the London Life Sciences 107 

Prospective Population Study (LOLIPOP) [32], and Italian cardiovascular component of the 108 

European Prospective Investigation into Cancer and Nutrition (EPICORE) [33]. Replication 109 

analyses were conducted in three ancillary studies from the Women’s Health Initiative (WHI): 110 

Epigenetic Mechanisms of Particulate Matter-Mediated Cardiovascular Disease (EMPC, aka 111 

AS315), the Integrative Genomics for Risk of Coronary Heart Disease and Related Phenotypes 112 

in WHI cohort (BAA23), and Bladder Cancer and Leukocyte Methylation (AS311).  In the WHI, 113 

individuals were excluded if BMI and blood samples for DNA methylation were not measured 114 

within the same year. Extreme levels of BMI <17 kg/m2 and >75 kg/m2 were excluded.  Further 115 

description of the discovery and replication cohorts is described in Supplemental Methods. 116 

BMI, DNA methylation and covariates 117 

BMI was defined as weight in kg/height in m2. Methodologies obtaining weight and 118 

height differed among the studies, however all used standard methods. One study transformed 119 

BMI values to obtain a normal distribution [20]. Relevant variables in our replication analysis 120 

included race/ethnicity, age, physical activity and smoking status. Race/ethnicity, smoking and 121 

physical activity were self-reported. Smoking status was defined as current, former or never.  122 

DNA methylation was measured in several cell types including CD4+ T-cells, 123 

mononuclear cells and whole blood. DNA methylation in all studies was measured using the 124 

Illumina 450K Infinium Methylation BeadChip. DNA methylation was estimated as the proportion 125 

of methylated signal relative to combined unmethylated and methylated signal for a specific 126 

CpG site, defined as the β-value. Quality control procedures of the previous studies have been 127 

reported in detail and they did not differ substantially across studies. In the WHI, all methylation 128 
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data were quality controlled and normalized using beta-mixture quantile normalization. In 129 

replication analyses, chip and row were included as technical covariates in all models to adjust 130 

for batch effects. Cell composition was estimated using methods derived by Houseman et al. 131 

[34]. 132 

Statistical Analysis 133 

A summary of our analyses is included in Figure 1A. Our primary method was weighted 134 

sum of Z-score meta-analysis [35]. This method utilizes Z-scores from individual study summary 135 

statistics computed from inverse-normal p-values and the direction of effect to determine 136 

significant sites. This was chosen as the primary method for meta-analysis since the studies did 137 

not all have equivalent exposure-outcome definition (DNA methylation defined as exposure in 138 

two studies and outcome in four studies) and BMI was transformed in one study.  The EWAS 139 

was adjusted for genomic inflation and significance was defined as p < 1x10-7.  140 

The significant sites were examined for replication within WHI. Models were stratified by 141 

ancillary study. Covariates in this analysis included age, race/ethnicity, cell composition, the top 142 

three principal components of genetic relatedness, smoking status, clinical trial arm and case-143 

control status (BAA23 and AS311). To account for potential chip-to-chip differences in 144 

measurement and to adjust for batch effects, chip was included as a random effect for each 145 

BeadChip in our model. Stratified analyses were combined using inverse-variance weighted 146 

(IVW) meta-analysis [36]. Significance was defined by false discovery rate (FDR) q-value < 147 

0.05.  148 

BMI Prediction Score 149 

 To examine the degree to which methylation can predict BMI and the secondary 150 

cardiometabolic outcomes associated with BMI, we used elastic net regression models with the 151 

significant sites to predict log-normalized BMI. The WHI cohorts were randomly divided into a 152 
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training and test set (80% and 20%, respectively) with an equal BMI distribution. We used 153 

elastic net regression on the training set with 10-fold cross validation to select a predictive 154 

model, which we subsequently tested in the test set. Using the significant sites and coefficients 155 

selected by the model, a DNA methylation prediction score was developed by multiplying the 156 

coefficient by the individual β-value and summing over all the sites for each individual. We then 157 

evaluated the performance of the DNA methylation score in the test set, both in terms of how 158 

accurately it predicted BMI (metrics: R2 and median absolute deviation) and how well it 159 

predicted obesity status (BMI ≥ 30 kg/m2) (metrics: sensitivity and specificity).  160 

 Using the predicted BMI values, we examined the patterns among outliers in the prediction 161 

model. Individuals were split into categories based on regressing the predicted BMI on the 162 

actual BMI. Accurately predicted individuals were defined as those with residuals between -0.04 163 

to 0.04 (accurate epigenetic BMI). Individuals outside of this range were split into two groups: 164 

residual below -0.04 (low epigenetic BMI or individuals whose methylome-predicted BMI 165 

underestimated their BMI) and residual above 0.04 (high epigenetic BMI or individuals whose 166 

methylome-predicted BMI overestimated their BMI). These thresholds were defined based on 167 

the 10% and the 90% distribution of the residuals. Using these categories, we examined 168 

cardiometabolic differences including waist circumference, triglycerides, HDL-cholesterol, LDL-169 

cholesterol, and blood glucose among these categories using linear regression models 170 

regressing log-normalized cardiometabolic markers on DNA methylation prediction category 171 

adjusted for age, race/ethnicity, smoking status and physical activity. To aid interpretability, 172 

results were reported based on the change in average value in the text. We additionally 173 

examined results using thresholds defined by the 20% and 80% distribution of residuals and 174 

found consistent findings.  175 

Sensitivity Analyses 176 
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We conducted several sensitivity analyses. In the discovery meta-analysis, we examined 177 

the influence of specific studies on the results using leave-one out analyses to examine the 178 

degree that each study is influencing the results. We also compared results from the weighted 179 

sum of z-score meta-analysis with results that would be obtained using an IVW meta-analysis in 180 

studies with the same exposure-outcome definition. We examined several sites for interaction 181 

by self-reported race/ethnicity and BMI using linear mixed-effect models adjusting for age, cell 182 

composition, smoking status, WHI study randomization arm, case-control status, row with a 183 

random effect for chip. In our replication analysis in WHI, models were additionally adjusted for 184 

diet quality, physical activity level and socioeconomic status.  185 

Results 186 

Our discovery analysis included 17058 participants from six EWAS (Figure 1A, Table 1 187 

and Supplementary Table 1). The definition of BMI and DNA methylation differed with several 188 

transforming these values in the models (Table 1). The covariates in the model also differed 189 

with all studies adjusting for age and sex, and the majority adjusting for cell composition and 190 

smoking status. When pooling results from all studies, 1265 CpG sites were associated with 191 

BMI (Figure 1B, Supplementary Table 2, p < 1E-7) with 498 of the sites having a consistent 192 

direction of effect in all of the cohorts meta-analyzed. More than half of the significant sites (726 193 

CpG sites) were positively associated with BMI.  194 

In the WHI, 367 women were excluded due to missing BMI, extreme levels of BMI, or 195 

overlap leaving 4822 women included in the replication cohort (Supplementary Table 3).  Of 196 

the 1265 sites identified in the discovery analysis, 1254 were analyzed after QC. In the WHI, 197 

1238 CpG sites were significantly associated with BMI (Supplementary Table 4, FDR q-value < 198 

0.05).  These 1238 CpG sites annotated to 742 unique genes. Additionally, 147 of these genes 199 

were annotated to more than one BMI-associated CpG site, with 382 CpG sites annotated to 200 

these 147 genes. With the large sample size, we were able to discover 685 novel CpG sites that 201 
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had not previously been identified in EWAS of BMI as well as 553 CpG sites previously 202 

identified in the literature. We examined how the replicated sites associated with differential 203 

gene expression based on previously published analyses of the Grady Trauma Project (GTP) 204 

and Multi-Ethnic Study of Atherosclerosis (MESA) cohort [37]. The 1238 CpG sites associated 205 

with 1103 CpG-mRNA associations in MESA (Supplementary Table 5) and 79 CpG-mRNA 206 

associations in GTP (Supplementary Table 6). One site associated with the same mRNA 207 

transcript in both cohorts, cg25653947, which was positively associated with expression in 208 

TOP1MT.  We performed a gene ontology (GO) analysis of the differentially expressed genes 209 

and found enrichment in pathways related to the adaptive immune system with regulation in B- 210 

and T-cell pathways (Figure 1C, Supplementary Table 7).  211 

We next re-performed our discovery EWAS stratified by European vs. African descent. 212 

We found 936 and 130 CpG sites that were associated with BMI in the analyses restricted to 213 

individuals from European (n=11,220) and African (n=2,587) descent, respectively. Of the 130 214 

significant CpG sites in the analysis of individuals of African descent, 43 unique sites were only 215 

significant in that population (Supplementary Table 8-9). We examined these sites for 216 

interaction in the WHI non-Hispanic white and African American individuals. We found that five 217 

CpG sites had a significant interaction with BMI by race/ethnicity (Table 2, Supplementary 218 

Fig.1). Two sites were quantitative trait methylation loci in the GTP cohort: cg25212453 219 

negatively associated with TNFRSF13B and COCH and cg08122652 negatively associated with 220 

LGALS3BP and OTOF (Supplementary Table 10).  221 

We next explored the potential of DNA methylation to predict BMI using the 1238 CpG 222 

sites from the replication analysis. After model tuning using elastic-net regression in a training 223 

set (N=3858), 398 sites were selected for the model (Supplementary Table 11). These sites 224 

accounted for 32% of the variance in BMI in the test set (MAD = 0.04, N=964). The addition of 225 

age, race/ethnicity, physical activity, and cell composition as predictors only marginally 226 
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improved the adjusted R2 (Table 4). In the combined training and test set (N=4822), these sites 227 

accounted for 36% of the variance in BMI. For comparison we examined how well the predictors 228 

from Mendelson et al. [13] estimated BMI in the WHI cohort. In the full WHI cohort, the 83 CpG 229 

sites accounted for 29% of the variance.  230 

We next assessed the potential of this DNA methylation-based BMI score to predict 231 

obesity, defined as BMI>30.  In our test set (N=964), the sensitivity was 0.82 and the specificity 232 

was 0.57 with an area under the curve of 0.69 (Figure 2A). Individuals were then categorized 233 

based on how well methylation predicted BMI. On average, DNA methylation tended to 234 

underpredict BMI (Figure 2B). Individuals with high epigenetic BMI had 20.5 mg/dL higher 235 

blood glucose (SE: 2.0, p<2E-16), 31 mg/dL higher triglycerides (SE: 4.3, p=9.24E-08), 4.3 236 

mg/dL lower HDL-cholesterol (SE: 0.68, p=1.06E-07) and 3.3 mg/dL lower LDL-cholesterol (SE: 237 

2.0, p=0.047) compared with accurate predicted BMI. In contrast, individuals with low epigenetic 238 

BMI had 5.2 mg/dL lower blood glucose (SE: 2.2, p<2E-16), 23.7 mg/dL lower triglycerides (SE: 239 

4.8, p=2.39E-08) and 3.0 mg/dL higher HDL-cholesterol (Figure 2C, SE: 0.8, p=0.0004) 240 

compared to accurate predicted BMI.  241 

We conducted several sensitivity analyses. We first examined how the results changed 242 

in a leave-one out meta-analysis (Supplementary Table 12). Excluding the results from Wahl 243 

et al. [18] led to the largest reduction in significant sites resulting in 536 significant CpG sites. 244 

However, this is likely due to a reduction in power. We next compared results obtained using Z-245 

score vs. IVW meta-analysis in cohorts with the same exposure-outcome relationship (ARIC, 246 

RODAM,  BHS White and BHS Black). In the IVW and Z-score meta-analysis of these four 247 

studies, 1939 CpG sites and 1433 CpG sites, respectively, were significantly associated with 248 

BMI (p < 1E-7) with 935 overlapping sites among methods. Among the sites identified significant 249 

in either analysis, the correlation between the test statistics obtained using Z-score vs. IVW 250 

meta-analysis was 0.98. The meta test statistics tend to be smaller when identified using 251 
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weighted sum of Z-score meta-analysis, suggesting our main results may be more conservative 252 

than what would be obtained using IVW meta-analysis. Finally, in the main EWAS, we 253 

examined how the results changed when adjusted for diet, physical activity and income status. 254 

Overall, 1161, 1167 and 1160 CpG sites remained associated with BMI when additional 255 

covariates were included to adjust for diet quality, physical activity and income, respectively.  256 

Discussion 257 

This study identified a unique methylomic signature of BMI and obesity. In the WHI, the 258 

majority of the sites identified in the discovery cohort (99%) were replicated and found to predict 259 

several metabolic and inflammatory pathways. Moreover, we found five CpG sites that are 260 

differentially associated with BMI between non-Hispanic whites and African Americans, two of 261 

which may play a role in gene expression. Finally, we constructed a score based on 398 CpG 262 

sites that was able to predict BMI as well as several other cardiometabolic risk factors.  263 

Individuals whose measured BMI was higher than predicted by their methylome were found to 264 

have poorer metabolic health including higher blood glucose and triglycerides and lower HDL-265 

cholesterol compared to individuals whose BMI was accurately predicted.  266 

This study identified 1238 CpG sites that were significantly associated with BMI in 267 

several race/ethnicity groups. The 1238 CpG sites were associated with differential gene 268 

expression in MESA and GTP. In the GO analysis of the differentially expressed transcripts, the 269 

most significant enriched pathways were immune response pathways, particularly the adaptive 270 

immune response. The top pathways regulated B- and T-cell signaling. Low-grade inflammation 271 

in obesity is a hallmark of the disease, which leads to significant metabolic dysregulation [38]. 272 

Several studies have found BMI-associated CpG sites are enriched for immune pathways [13, 273 

39]. Mechanistic studies have identified DNA methylation as playing a key role in promoting 274 

macrophage polarization in response to obesity, with more M1 macrophages associated with 275 

obesity [40].    276 
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We were also able to examine how these associations differed when stratified by 277 

race/ethnicity. Racial and ethnic differences in adiposity have been well established. While 278 

African Americans have been found to have higher risk for cardiovascular diseases compared to 279 

non-Hispanic whites, they have consistently been shown to have lower visceral adipose tissue 280 

and lower body fat percentage compared to non-Hispanic whites [41, 42]. Of the five sites with a 281 

significant interaction between BMI and race/ethnicity, two CpG sites were associated with 282 

differential expression in four mRNA transcripts. These gene transcripts are related to 283 

inflammatory pathways and hearing. TNFRSF13B and LGALS3BP were differentially expressed 284 

in association with two CpG sites. These two genes have been found to be regulators of NF-285 

kappa-B signaling and to be upregulated with obesity [43-45].  Our study found a positive 286 

association between BMI and methylation in cg25212453 and cg08122652 (in WHI) and a 287 

negative association between methylation in these two sites and expression in LGALS3BP and 288 

TNFRSF13B (in GTP). Thus, as BMI increases in African Americans, gene expression may be 289 

decreasing in these sites, suggesting a potentially advantageous effect on inflammatory profiles 290 

in African Americans. Low-grade inflammation in obesity leads to significant metabolic 291 

dysregulation [38]. However, there is some epidemiological data that suggests individuals of 292 

African descent may not be as prone to an increased inflammatory profiles when living with 293 

obesity [46, 47]. Our study may provide some mechanistic explanation to these differences in 294 

the relationship between inflammation and adiposity in individuals of African descent.  295 

We also found that DNA methylation was predictive of BMI, with the score we developed 296 

based on 398 CpG sites explaining 32% of the variance in BMI in an independent test set. 297 

Previous studies constructing scores based on smaller samples have been able to explain 298 

between 4.7-18% of the variance in BMI [13, 21, 23, 24]. DNA methylation has been found to be 299 

an accurate predictor of current BMI and a poor predictor of future BMI [24]. Outliers in the 300 

epigenetic BMI model predicted a unique phenotype. Individuals with high epigenetic BMI or 301 
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whose BMI was over-predicted by the epigenetic markers had poorer cardiometabolic markers 302 

compared to accurately predicted BMI. This may suggest that epigenetic BMI prediction may be 303 

identifying individuals with poor health regardless of their BMI and that these sites may be 304 

useful biomarkers to examine further. Our findings related to LDL-C were inconsistent with other 305 

cardiometabolic markers. We found that individuals with high epigenetic BMI had lower LDL-C 306 

as compared to individuals with accurate epigenetic BMI. These results were verging on null 307 

(p=0.0497), thus they should be interpreted with caution.   308 

Some of our findings should be interpreted with caution given several important 309 

limitations. In the discovery analysis, we stratified this analysis based on race/ethnicity as it was 310 

defined within each of the individual studies. This differed between studies with most based on 311 

self-report of race/ethnicity. Thus, it is unclear whether we are identifying molecular differences 312 

due to ancestry or social construct. Moreover, these populations, which include African 313 

Americans, Ghanaians, and European-residing Ghanaians, are not homogenous in genetic 314 

ancestry, living environment, lifestyles and other factors. Nevertheless, our interaction and 315 

expression analyses were conducted in African American populations from the WHI and GTP, 316 

so these results may only be generalizable for this population. In particular, the racial disparities 317 

in the US may be an underlying cause of these results, as opposed to differences in ancestry. 318 

For example in the US, African Americans are much more likely to live in poverty compared to 319 

non-Hispanic whites [48]. In our results, we may be identifying compensatory mechanisms of 320 

structural racism which may be driven by environmental exposures for example, ambient 321 

particulate matter exposure, stress, lack of access to health care as well as obesity. Another 322 

potential limitation is that the training and test set in our prediction analyses come from the 323 

same population (WHI). Future research efforts could test this model in another population to 324 

examine the reproducibility of these findings.  325 
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Overall, this study yields several important discoveries. We identified novel sites 326 

associated with BMI and found a unique molecular profile associated with obesity in individuals 327 

of African descent. We additionally found that epigenetic markers can predict BMI well and may 328 

be able to distinguish individuals whose metabolic health does not align with their BMI. Future 329 

studies should examine whether BMI-associated methylation is differential by metabolic health 330 

status.  331 
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Figure Legends 528 

Figure 1.  529 

1A Description of study analyses. 1B Manhattan plot of the association between DNA 530 

methylation and BMI. 1C Top pathways identified in gene ontology analysis.  531 

 532 

Figure 2.  533 

2A Receiver operating characteristic curve showing the performance of the DNA methylation 534 

prediction score identifying obesity.  AUC denotes area under the curve. Y-axis is the sensitivity 535 

(true positive rate) and the x-axis is 1-specificity (false positive rate). 2B Scatter plot of predicted 536 

BMI from elastic net regression of 398 CpG sites by actual BMI. Individuals categorized based 537 

on the residual of predicted BMI regressed on actual BMI. 2C Boxplot of the association 538 

between epigenetic prediction category and blood glucose (mg/dL), high density lipoprotein 539 

(HDL-C, mg/dL), low density lipoprotein (LDL-C, mg/dL) and triglycerides (mg/dL). 540 

 541 
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 542 

Tables  543 

Table 1.  Study characteristics of discovery analyses. 544 

Reference Study 
Population 

N Exposure Outcome Sample Covariates 

Demerath, 
et al., 
2015, Hum 
Mol Genet 

Atherosclerosis 
Risk in 
Communities 
(ARIC) 

2097 BMI DNA 
methylation 
β-value 

Leucocytes Age, sex, study center, total white blood cell 
differentials, education, household income, 
cigarette smoking, current alcohol use, leisure 
physical activity, cell composition (Housman), top 
10 PCs of genetic relatedness and batch effects 
(row, plate number and chip number) 

Geurts, et 
al., 2018, 
Int J Obes 

Melbourne 
Collaborative 
Cohort Study 
(MCCS) 

5361 BMI Z-
score 

DNA 
methylation 
M-values 

Dried blood 
spot, 
mononuclear 
cells, buffy 
coats 

Age, sex, smoking status, country of birth, sample 
type, cell composition (Houseman), and study, 
plate and chip included as random effects.  

Meeks, et 
al., 2017, 
Clin 
Epigenetics 

Research on 
Obesity and 
Diabetes 
among African 
Migrants 
(RODAM) 
study 

547 BMI DNA 
methylation 
M-values 

Whole Blood Age, sex, recruitment site, cell composition 
(Houseman), hybridization batch, array position 
and first PC of genetic relatedness 
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Shah, et 
al., 2015, 
Am J Hum 
Genet 

Lothian Birth 
Cohort (LBC) 
and Lifelines 
DEEP 

2116 Log-
transformed 
DNA 
methylation  

BMI Z-
score 

Whole Blood Age, sex, batch effects, complete blood cell count 
adjusted for in sensitivity analyses 

Sun, et al., 
2019, 
Circulation 

Bogalusa 
Heart Study 
(BHS) 

1485 BMI DNA 
methylation 
β-value 

Whole Blood Age, sex, current smoking status cell composition 
(Houseman) included as fixed effects with batch 
array as a random effect 

Wahl, et 
al., 2017, 
Nature 

KORA, 
LOLIPOP, 
EPICORE 

5458 DNA 
methylation 
β-value 

BMI Whole Blood Top 20 PCs of control probes, cell composition 
(Houseman), age, gender, smoking status, 
physical activity index and alcohol consumption 
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Table 2. Interaction between BMI and race/ethnicity in WHI between non-Hispanic whites and 546 

African Americans.  547 

CpG Site Effect Estimate Standard Error Z-score P-value 
cg25652701 -5.8E-04 1.4E-04 -4.29 1.76E-05 
cg25212453 5.01E-04 1.6E-04 3.05 0.002 
cg08122652 8.9E-04 3.6E-04 2.47 0.014 
cg27113059 -2.3E-04 9.59E-05 -2.36 0.018 
cg15391590 -2.4E-04 1.1E-04 -2.18 0.029 
 548 

 549 

Table 3. Predicting BMI from DNA methylation using elastic net regression 550 

Predictors RMSE Adjusted R2 Median Absolute 

Deviation 

398 CpG sites 0.07 0.32 0.040 

398 CpG sites + Age 0.07 0.32 0.036 

398 CpG sites + Age + 
Ethnicity  

0.07 0.35 0.035 

398 CpG sites + Age + 
Ethnicity + Cell 
Composition  

0.07 0.35 0.035 

 551 

Table 4. Outliers in the prediction model compared to log-normalized cardiometabolic risk 552 

factors. Model adjusted for race/ethnicity, smoking status, age and physical activity.  553 

 Estimate SE P-value 

Waist Circumference 

(n=4356) 

   

High Epigenetic BMI 5.88E-03 4.07E-03 0.14 

Low Epigenetic BMI 9.04E-04 3.98E-03 0.82 

Blood Glucose (n=3823)    

High Epigenetic BMI 6.00E-02 5.80E-03 <2E-16 

Low Epigenetic BMI -1.86E-02 648E-03 0.004 

Blood Triglycerides 

(n=3829) 

   

High Epigenetic BMI 7.63E-02 1.04E-02 2.64E-13 

Low Epigenetic BMI -6.34E-02 1.15E-02 4.41E-08 

HDL-cholesterol (n=3832)    

High Epigenetic BMI -3.75E-02 5.39E-03 4.55E-12 

Low Epigenetic BMI 2.46E-02 5.99E-03 4.27E-05 
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LDL-cholesterol (n=3740)    

High Epigenetic BMI -1.19E-02 6.05E-03 0.05 

Low Epigenetic BMI -239E-03 6.71E-03 0.72 

 554 

 555 

 556 

 557 

 558 

 559 

 560 
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