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Abstract 
Brain size differs substantially between human males and females. This difference in total 
intracranial volume (TIV) can cause bias when employing machine-learning approaches for 
the investigation of sex differences in brain morphology. TIV-biased models will likely not 
capture actual qualitative sex differences in brain organization but rather learn to classify an 
individual’s sex based on brain size differences, thus leading to spurious and misleading 
conclusions, for example when comparing brain morphology between cisgender- and 
transgender individuals. Here, TIV bias in sex classification models applied to cis- and 
transgender individuals was systematically investigated by controlling for brain size either 
through featurewise confound removal or by matching training samples for TIV. Our results 
provide evidence that non-TIV-biased models can classify the sex of both cis- and 
transgender individuals with high accuracy, highlighting the importance of appropriate 
modelling to avoid bias in automated decision making.  
 
Teaser 
Accurate non-biased structural sex classification in cis- and transgender individuals by 
matching training samples for TIV  
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Introduction  
  
Sex differences in brain and behaviour have long been of central interest in psychology and 
neurosciences and are still being hotly discussed amid several controversies. Recent 
availability of big brain imaging data sets combined with machine-learning (ML) methods has 
opened new ways to address this question together with the promise for individual level 
predictions that can help in precision diagnosis and care as sex differences in the brain are 
closely related to neuropsychiatric health risks [1-4]. Recently, ML-based sex prediction 
models have also been employed to investigate the brain representation of sex and gender 
interaction [5-7]. However, data-induced biases in ML models can produce biased 
predictions and in turn lead to misleading conclusions. In this study, we investigate the bias 
due to the well-known and reliable structural difference between female and male brain size 
[8, 9]. 
  
ML-based investigations of sex differences, in behaviour, cognition as well as neurobiology, 
build upon a long history of research. Studies employing group comparisons have found 
differences between females and males on the behavioural and cognitive level, e.g., for 
language [10-12] and visual-spatial tasks [13-15], as well as other cognitive domains. 
Similarly, structural differences in the white and grey matter measures in both cortical and 
subcortical brain areas are reported by recent studies employing very large sample sizes [16-
18] as well as a meta-analysis [19]. On the other hand, several studies have suggested that 
behavioural and cognitive sex differences are small and might result from limited sample 
sizes and other moderating variables [20-23]. Furthermore, due to a large overlap of the 
distribution of grey and white matter and other structural measures, it has been suggested 
that human brains should rather be regarded as a “mosaic'' of features, contradicting the 
dimorphic view of a ‘female brain’ and a ‘male brain’ [24].  
 
Recently, ML approaches have been successfully applied for studying sex differences in the 
brain. Here, brain imaging data, e.g. regional grey matter volume (GMV), are used to train a 
classifier to predict sex. Such a sex classifier is expected to capture brain organizational 
patterns that differ between the sexes. High classification accuracies on out-of-sample data 
[25, 26] are taken as evidence for qualitative sex differences in the brain [27, 28]. So far, 
studies using sex classification approaches based on resting-state functional brain imaging 
data achieved classification accuracies from 75% [28] up to 86% [29]. Even higher 
classification accuracies ranging from 82% up to 94% were accomplished when employing 
structural brain features [5, 6, 25, 26, 30]. Here, we focus on structural, rather than 
functional, magnetic resonance imaging (MRI) data as structural data is more stable in time 
and also cheap to acquire appealing more attractive for clinical applications, also given the 
higher sex classification accuracies.  
 
In addition to understanding sex differences, sex classifiers have been recently employed to 
understand “gender incongruence” where a person´s sex and gender identity differ [31]. In 
the present paper, following the linguistic guidelines provided by the Professional 
Association of Transgender Health [32], the term “sex” is used to refer to the sex that a 
person was assigned at birth based on their anatomical sexual characteristics, whereas the 
term “gender (identity)” is used to denote the subjective identification of an individual as 
female, male, or one of the other gender identities which might be also fluid or non-binary. 
While the coherence of sex and gender is termed cisgender for cisgender men and women 
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(CM, CW), gender incongruent individuals are denoted as transgender men and women (TM, 
TW, [31]). To date, it is not fully understood to which extend local and global brain 
organization of transgender individuals is driven by factors matching their sex and by factors 
matching their gender identity. So, the sex classification approach—first building a classifier 
on cisgender individuals’ data and then applying it to transgender individuals— is one 
approach promising new insights into previously suggested brain differences between cis- 
and transgender individuals [33-36].   
 

For example, some studies comparing groups of cisgender and transgender individuals have 
described regional differences in grey matter volume (GMV) in the putamen [37] and insula 
[5]. Additionally, transgender individuals undergoing cross-sex hormone treatment (CHT) 
were reported to show structural alterations in the hypothalamus and the third ventricle 
[38]. Furthermore, a recent mega-analysis reported differences in the surface area of the 
brain, as well as in cortical and subcortical brain volumes [33]. Overall, there is some 
evidence indicating that transgender individuals display local brain volume differences that 
increased or decreased towards proportions aligning with their gender identity [38]. 
 
Extending those results, sex classification approaches have reported reduced sex 
classification accuracies for transgender compared to cisgender samples (76.2% vs. 82.6% 
[6]; 61.5% vs. 93.2-94.9% [5]), when training a classifier on cisgender data. Increased rates of 
misclassification of sex in transgender as opposed to cisgender samples are taken to indicate 
that transgender brains might differ from those typical for both their sex and their perceived 
gender identity, implying an interaction between sex and gender at the neuroanatomical 
level [5-7]. 
 
However, when using brain imaging data from cisgender individuals to build a sex classifier, 
brain size can induce biases owing to the well-known differences in brain size between 
females and males across all age groups [8, 9]. Classifications of a brain-size-biased model 
are driven by brain size differences rather than actual sex differences in brain organization, 
as predictions are based on variance that is systematically and intrinsically shared by the 
confound (brain size) and the target variable (sex), which is a well-known problem [39-41]. 
Thus, such a model is likely to classify males with higher brain size and females with lower 
brain size in a sex congruent manner, while making more mistakes on individuals with 
intermediate brain size. When investigating sex differences, such a model would lead to 
questionable insights. However, employing a brain-size-biased sex classifier for transgender 
individuals is even more problematic as some studies have reported total intracranial 
volume (TIV) of transgender individuals to differ from cisgender individuals of the same sex 
[38], even though others did not find such differences [36]. It is at least possible, that brains 
of transgender individuals are affected by hormonal influences early in life [42], which might 
result in brain size of transgender individuals falling between those of cisgender individuals 
[38]. If so, the results of a TIV-biased classifier might erroneously be interpreted as evidence 
for transgender brain organization to align more with gender identity, as has been reported 
before [5, 7]. 
 
Based on these considerations, the present study aims to investigate the impact of brain size 
bias on the performance of sex classifiers. To this end, we examine two approaches to 
control for confounding effects of TIV [41]. In the first approach, we obtained debiased 
models through featurewise control by removing confounding effects during training (Figure 
1, [39, 43]). In the second approach, we trained models on a stratified sample where females 
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and males were matched for TIV. Model performance and brain size bias was assessed on 
hold-out samples of cisgender individuals to compare performance of the debiased models 
to the biased model. We hypothesized that a TIV-biased model should achieve high 
performance but also exhibit a biased output pattern. In contrast, a non-TIV-biased model 
might exhibit a drop in classification accuracy. However, importantly, misclassifications of 
such a model should be largely independent of TIV. In the last step, models were applied to 
test samples comprising both cisgender and transgender individuals to examine whether 
models without a TIV bias provide any evidence for an interaction of sex and gender 
influences on structural brain organization, as previously suggested [6].  
 
 

 
Figure 1. Workflow of the sex classification analysis  
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Table 1. Age (years) and TIV (ml) for AM- and ATM-sample as well as for both application 
samples. 

     

 AM sample 

 females males 

N 807 807 

mean age (SD) 37.96 (15.28) 37.95 (15.28) 

mean TIV (SD) 1338.2 (103.56) 1655.8 (105.42) 

     

 ATM sample 

 females males 

N 807 807 

mean age (SD) 38.16 (15.33) 38.15 (15.38) 

mean TIV (SD) 1487.4 (94.01) 1493.2 (93.27) 

     

 Sample A 

 CW CM TM TW 

N 25 24 33 33 

mean age (SD) 31.84 (11.25) 33.42 (10.53) 24.42 (6.88) 33.03 (12.62) 

mean TIV (SD) 1491.4 (118.33) 1653.0 (97.86) 1436.8 (103.49) 1612.3 (106.08) 

     

 Sample B 

 CW CM TM TW 

N 22 19 29 17 

mean age (SD) 19.64 (2.42) 22.21 (4.35) 24.72 (6.19) 21.35 (3.94) 

mean TIV (SD) 1454.8 (94.39) 1587.5 (118.02) 1330.0 (102.69) 1561.3 (139.12) 
 
 
Results  
  
Sex classifiers were trained on whole-brain voxelwise GMV data of two large, non-
overlapping cisgender samples (n= 1614 each). In the first sample, females and males were 
matched for age (AM), while in the second sample females and males were matched for 
both age and TIV (ATM; see Table 1 and Figure S1 for demographic details and TIV 
distribution of the samples). To evaluate model performance on hold-out data, each sample 
was split into a training sample (80%) and a test sample (20%). Then, models with and 
without featurewise TIV removal were trained to classify birth assigned sex on each training 
sample, resulting in four different models (Figure 1):   
(1) trained on the AM sample without featurewise TIV removal (AM model);  
(2) trained on the AM sample with featurewise TIV removal (AM+cr model);   
(3) trained on the ATM sample without featurewise TIV removal (ATM model); 
(4) trained on the ATM sample with featurewise TIV removal (ATM+cr model). 
Subsequently, all models were calibrated with regards to the prediction probabilities to gain 
confidence in the predictions themselves (Figure S2-3, Supplementary Results). The models 
were tested on the two hold-out samples as well as two independent application samples 
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comprising transgender and cisgender individuals (sample A, sample B, see Table 1 and 
Figure S1 for demographic details and TIV distribution of the samples).  
  
Evidence for TIV bias in the AM model   
The application of the AM model to the AM test sample resulted in a high classification 
accuracy of 96.89% (Table 2, Table S1). Accordingly, the assigned probability of being 
classified as male (prediction probability) was higher for males than for females (Figure 2a). 
The comparison of TIV distributions revealed that sex congruent classified males had a 
significantly higher TIV than incongruent classified males (Figure 2b). Similarly, sex 
incongruent classified females on average had a higher TIV than congruent classified 
females, even though this difference was not significant (details in Table 3).  
When applied to the ATM test sample, the AM model resulted in a much lower classification 
accuracy of 79.19% (Table 2, Table S1), presumably as the model could not rely on TIV for 
classifying in the ATM sample. Still, we observed a similar pattern as above, with males 
having a higher prediction probability than females (Figure 3a) and sex congruent classified 
males having a significantly higher TIV than incongruent classified males whereas the pattern 
was vice versa for females (Figure 3b, Table 3). Altogether, across both test samples, this 
model classified subjects with a higher TIV as male and those with a lower TIV as female, as 
expected for a biased model.  
 
Reducing TIV bias by confound removal  
Featurewise control for TIV in the AM+cr model resulted in decreased classification 
accuracies both for the AM (61.80%) and the ATM (72.98%; further details in Table 2 and 
Table S1) test samples. The prediction probability displayed a much larger overlap between 
females and males (Figure 2c) compared to the AM model with no TIV control (Figure 2a). 
Further evaluation did not reveal evidence of TIV bias — i.e. neither did sex congruent 
classified males show higher TIV than incongruent classified males nor did sex 
congruent classified females show lower TIV than incongruent classified females in both the 
AM (Figure 2d) and the ATM (Figure 3d, Table S1) test samples.   
 
Reducing bias by matching the training sample for TIV  
The application of the two models built using TIV matched data with and without 
featurewise TIV control (ATM and ATM+cr model, respectively) to the AM test sample 
resulted in similarly high classification accuracy (86.65% for ATM, 85.71% for ATM+cr model, 
details in Table 2 and Table S1), which were somewhat lower than those of the AM model 
but higher than of the AM+cr model. Thus, for the ATM models, additional featurewise TIV 
control did not result in decreased model performance. This is further reflected in similar 
prediction probability distributions (Figure 2 e, g), which were higher for males than for 
females. Likewise, the TIV of sex congruent and incongruent classified individuals did not 
differ significantly from each other for females and males, respectively (Figure 2f, h, Table 3). 
Application to the ATM test sample (details in Table 2, Table S1), displayed a better 
performance (92.55%) than on the AM test sample. Furthermore, prediction probability 
distributions showed a comparable (Figure 3e, g) but more pronounced pattern as opposed 
to the application of these models on the AM sample. Again, when testing on the ATM test 
sample, there was no difference between TIV of individuals classified as either female or 
male without (Figure 3f, Table 3) and with additional confound removal (Figure 3h, Table 3).  
 

Overall, the AM model achieved highest classification accuracy, but evaluation of the model 
output identified evidence for a TIV bias of this model. Reducing TIV-related variance by  
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Table 2. Model performance of all models applied to the test and application samples. 

(BA: Balanced Accuracy)    

     

a) Model performance for the AM test sample   

     

 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.9503 0.7329 0.8820 0.8571 

Specificity: 0.9876 0.5031 0.8509 0.8571 

F1: 0.9684 0.6574 0.8685 0.8571 

BA: 0.9689 0.6180 0.8665 0.8571 

     

b) Model performance for the ATM test sample   

     

 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.7453 0.8323 0.9255 0.9193 

Specificity: 0.8385 0.6273 0.9255 0.9317 

F1: 0.7818 0.7549 0.9255 0.9250 

BA: 0.7919 0.7298 0.9255 0.9255 

     

c) Model performance for sample A   

     

 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.9474 0.7895 1 0.9474 

Specificity: 0.8276 0.7241 0.8276 0.8448 

F1: 0.8926 0.7627 0.9194 0.9000 

BA: 0.8875 0.7568 0.9138 0.8961 

     

d) Model performance for sample B   

     

 AM model AM+cr model ATM model ATM+cr model 

Recall: 0.8889 0.8333 0.9722 0.8889 

Specificity: 0.9608 0.5882 0.9020 0.9020 

F1: 0.9143 0.6897 0.9211 0.8767 

BA: 0.9248 0.7108 0.9371 0.8954 
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Table 3. Comparison of individuals classified as female vs male (Wilcoxon rank sum 
tests) for the AM and ATM-test sample   

   

 TIV women classified as female vs. classified as male TIV men classified as male vs. classified as female 

   

 AM test sample 

AM model T = 12722, z = -2.3885, p = 0.0169, η2 = 0.0354  T = 12829, z = 3.3879, p < 0.001, η2 = 0.0713 

AM+cr model T = 7514, z = 3.2204, p = 0.0013, η2 = 0.0644 T = 8858, z = -2.6727, p = 0.0075, η2 = 0.0444  

ATM model T = 11004, z = -0.4390, p = 0.6606, η2 = 0.0012 T = 11507, z = 0.0236, p = 0.9812, η2 < 0.001 

ATM+cr model T = 11236, z = 0.2778, p = 0.7812, η2 < 0.001 T = 11284, z = 0.5097, p = 0.6103, η2 = 0.0016 

   

 ATM test sample 

AM model T = 9908, z = -4.7156, p < 0.001, η2 = 0.1381 T = 11325, z = 6.2257, p < 0.001, η2 = 0.2407 

AM+cr model T = 8425, z = 0.8513, p = 0.3946, η2 = 0.0045 T = 10341, z = -2.3190, p = 0.0204, η2 = 0.0334 

ATM model T = 12284, z = 1.3806, p = 0.1674, η2 = 0.0118 T = 12239, z = 1.0910, p = 0.2753, η2 = 0.0074 

ATM+cr model T = 12403, z = 1.6918, p = 0.0907, η2 = 0.0178 T = 12130, z = 0.8780, p = 0.3800, η2 = 0.0048 
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Figure 2. Prediction probability (upper row) and TIV distribution (bottom row) of sex congruent and incongruent classified females (red) and males 
(blue) of all four models applied to the AM test sample. (W/f: women classified as female; W/m: women classified as male; M/m: men classified as 
male; M/f: men classified as female). 
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Figure 3. Prediction probability (upper row) and TIV distribution (bottom row) of sex congruent and incongruent classified females (red) and males 
(blue) of all four models applied to the ATM test sample. (W/f: women classified as female; W/m: women classified as male; M/m: men classified 
as male; M/f: men classified as female)
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featurewise confound removal in the AM+cr model resulted in a less biased model, which 
also displayed a pronounced decrease in model performance, especially for the AM test 
sample. Both models trained on the TIV balanced sample (ATM, ATM+cr model) did not 
show TIV bias while still retaining high classification performance and appropriate calibration 
curves (Figure S2, S3), indicating that — at least for the present classification problem — 
training on a matched sample is more appropriate than featurewise confound removal. 
Thus, in the following, we will focus on comparing the performance of the biased AM model 
and the nonbiased ATM model on the application samples comprising cisgender and 
transgender individuals (sample A, sample B) to examine whether these models behave 
similarly or differently for cisgender and transgender individuals. Results for the AM+cr and 
ATM+cr models is provided in the Supplementary Results and Figure S4-5.  
  
Biased performance for cisgender and transgender individuals in the AM model 
The application of the TIV-biased AM model resulted in an overall high performance of 
88.70% for sample A, with an accuracy of 81.63% for cisgender and 93.43% for transgender 
individuals (detailed measures in Table 2, 3 and S2). Likewise, for sample B, the model 
achieved an overall accuracy of 93.10% (Table 2 and S2), performing with an accuracy of 
90.24% for cisgender individuals and 95.65% for transgender individuals. Matching the high 
accuracies, the prediction probability showed a sex congruent pattern with higher prediction 
probabilities for CM and TW (assigned male at birth) than for CW and TM (assigned female 
at birth) in both sample A (Figure 4a, c) and sample B (Figure 5a, c). A comparison of 
probability distributions of cis- and transgender individuals with the same sex revealed a 
trend of CW showing lower prediction probability than TM in sample A (t = 1.98, p = 0.0527, 
Cohen´s d = 0.53), which was significant in sample B (t = 3.58, p < 0.001, Cohen´s d = 1.01), 
matching the predicted pattern of a TIV-biased model with regards to the TIV-distributions 
of CW and TM (figure S1). The comparison for CM vs. TW was not significant in both samples 
(Sample A: t = -0.55, p = 0.5820, Cohen´s d = -0.15; Sample B: t = 1.07, p = 0.2922, Cohen´s d 
= 0.36), while the effect size indicated a trend of lower prediction probability for TW than 
CM. While TIV-distributions for sex congruent and incongruent classified individuals did not 
differ significantly (Table 4), sex congruent classified CW and TM classified had a lower TIV 
than those classified in a sex incongruent manner as male. Sex congruent classified CM and 
TW classified had a higher TIV than those classified sex incongruent as female (Figure 4b, d, 
5b, d), indicating a similar bias of this model for both cisgender and transgender individuals.  
 

Nonbiased ATM model: Similar performances for cisgender and transgender individuals  
The application of the ATM model to sample A displayed a high overall sex classification 
accuracy of 91.30% (91.84% for cisgender and 90.01% for transgender individuals). This 
model also performed accurately on sample B with an overall accuracy of 93.10% (92.68% 
for cisgender and 93.48% for transgender individuals, details in Table 2 and S2). In both 
samples, the ATM model yielded sex congruent prediction probabilities for all four groups 
(Figure 4e, g Figure 5 e, g). However, TM showed a trend in effect size of higher prediction 
probability than CW in Sample B (CW vs TM: t = -1.27, p = 0.2093, Cohen´s d = -0.36; Sample 
A: t 0 -0.47, p = 0.6425, Cohen´s d = -0.12;). This gender congruent trend was not observed 
for TW (CM vs. TW: Sample A: t = 0.31, p = 0.7577, Cohen´s d = 0.08; Sample B: t = -2.02, p = 
0.0510, Cohen´s d = -0.68). The comparison of TIV distributions between sex congruent and 
incongruent classified individuals (Figure 4f, h, Figure 5f, h) did not reveal any significant 
differences (Table 4), neither for cisgender nor for transgender individuals, thus displaying 
no evidence for a TIV bias of this model.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.499576


 12 

Table 4. Comparison of individuals classified as female vs male (Wilcoxon rank sum tests) for Sample A (a) and Sample B (b)  
a) TIV CW classified as female vs. classified as male TIV CM classified as male vs. classified as female 

AM model T = 203, z = -1.8459, p = 0.0649, η2 = 0.1363 T = 286, z = 1.0967, p = 0.2728, η2 = 0.0501 

AM+cr model T = 249, z = 0.8776, p = 0.3802, η2 = 0.0308 T = 236, z = -1.0457, p = 0.2957, η2 = 0.0456 

ATM model T = 268, z = -0.3336, p = 0.7387, η2 = 0.0045 no CM classified as female 

ATM+cr model T = 268, z = -0.3336, p = 0.7387, η2 = 0.0045 T = 294, z = 0.8668, p = 0.3861, η2 = 0.0313 

   

 TIV TM classified as female vs. classified as male TIV TW classified as male vs. classified as female 

AM model T = 472, z = -2.3483, p = 0.0189, η2 = 0.1671 T = 558, z = 1.4178, p = 0.1563, η2 = 0.0609 

AM+cr model T = 477, z = 2.7689, p = 0.0056, η2 = 0.2323 T = 442, z = 0.6931, p = 0.4882, η2 = 0.0146 

ATM model T = 499, z = 1.8437, p = 0.0652, η2 = 0.1030 no TW classified as female 

ATM+cr model T = 506, z = 1.4812, p = 0.1386, η2 = 0.0665 T = 532, z = 0.3395, p = 0.7342, η2 = 0.0035 

   

b) TIV CW classified as female vs. classified as male TIV CM classified as male vs. classified as female 

AM model T = 224, z = -0.6281, p = 0.5299, η2 = 0.0179 T = 186, z = 2.0591, p = 0.0395, η2 = 0.2231 

AM+cr model T = 199, z = 1.8328, p = 0.0668, η2 = 0.1527 T = 159, z = -1.3948, p = 0.1631, η2 = 0.1024 

ATM model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 178, z = -0.2739, p = 0.7842, η2 = 0.0039 

ATM+cr model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 138, z = -1.1500, p = 0.2501, η2 = 0.0696 

   

 TIV TM classified as female vs. classified as male TIV TW classified as male vs. classified as female 

AM model no TM classified as male T = 145, z = 1.4162, p = 0.1567, η2 = 0.1180 

AM+cr model T = 289, z = 2.7714, p = 0.0056, η2 = 0.2648 T = 115, z = -0.1698, p = 0.8651, η2 = 0.0017 

ATM model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female 

ATM+cr model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female 
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Figure 4. Prediction probability (upper row) and TIV distribution (bottom row) of sex congruent and incongruent classified CM, CW, TM and TW 
for the AM and ATM model in sample A. (CW/f: CW classified as female; CW/m: CW classified as male; CM/m: CM classified as male; CM/f: CM 
classified as female; TM/f: TM classified as female; TM/m: TM classified as male; TW/m: TW classified as male; TW/f: TW classified as female).  
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Figure 5. Prediction probability (upper row) and TIV distribution (bottom row) of sex congruent and incongruent classified CM, CW, TM and TW 
for the AM and ATM model in sample B. (CW/f: CW classified as female; CW/m: CW classified as male; CM/m: CM classified as male; CM/f: CM 
classified as female; TM/f: TM classified as female; TM/m: TM classified as male; TW/m: TW classified as male; TW/f: TW classified as female). 
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Discussion  
  
A difference in brain size, measured as TIV, is the most prominent structural brain difference 
between females and males. Therefore, when employing ML methods to examine sex 
differences in brain imaging data, care must be taken to avoid TIV bias in the models. In the 
present study we aimed at investigating the impact of TIV bias in sex classification and 
systematically compared two debiasing approaches, featurewise confound removal and 
sample stratification. To this end, we trained four models to classify birth assigned sex on 
training samples of cisgender individuals. Using data from two large samples with grey 
matter volumes as features we trained a Support Vector Machine (SVM) classifier with radial 
basis function (RBF) kernel where the hyperparameters were tuned using Bayesian 
optimization, following methodology similar to Flint et al. (2020, [5]). Importantly, these 
models were able to provide the probability of classification in addition to a class label, 
making it possible to quantify whether the models were biased by TIV.   
  
By evaluating on out-of-sample test sets comprising cisgender individuals, we found that 
models debiased through data-based TIV control, i.e. training on a TIV-matched sample, 
showed high sex classification accuracies with no evidence of TIV bias. While featurewise TIV 
confound removal produced unbiased models it resulted in a much lower accuracy.  
Further, we applied the cisgender trained models to transgender individuals, which – 
according to some reports [5, 33, 34, 37, 38] – differ in local and global brain size [38]. 
Previous studies have suggested that differences in performance of sex classification models 
on cisgender and transgender samples might indicate qualitative differences in structural 
brain organization between cisgender and transgender brains and thus for a modulation of 
brain structure by the interaction of sex and gender identity [5, 6]. However, such 
statements only hold if a sex classification model is not biased by TIV, in which case 
misclassifications might be driven by overall differences in brain size rather than local GMV 
differences.  
  

TIV bias in the AM model   
Following standard practice, we first evaluated a model which does not take TIV bias into 
account. The data for training this model comprised cisgender individuals with their 
naturally occurring TIV distribution, where, on average males have higher TIV than females 
(Figure S1). The sample was, however, matched for age to avoid possible biases due to 
differential ageing effects for GMV [44-47]. As grey matter volume is correlated with TIV it is 
easy for a ML model to learn TIV as a proxy for sex resulting in a TIV-biased model. TIV bias is 
not unexpected given that brain size is the most prominent structural difference between 
female and male brains [8, 9]. Obviously, such a model will, on average, provide high 
classification accuracy for data that follows natural TIV distribution but it will make mistakes 
on individuals falling within the overlap of the female-male TIV distribution.   
  

Our observation of near-perfect sex classification accuracy of the model trained on the AM 
data on the similarly sampled hold-out AM test sample is in line with previous results [5, 6, 
25, 26]. However, we identified a TIV bias in this model. Specifically, individuals with higher 
TIV were more likely to be classified as males while individuals with lower TIV were more 
likely to be classified as females. Consequently, males with a low TIV and females with a high 
TIV were misclassified (Figure 2b). This bias was even more obvious on the ATM test sample 
consisting of individuals matched on age and TIV. As the female and male TIV distribution in 
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the ATM data largely overlap, a TIV-biased model should make many mistakes. We indeed 
observed a much lower accuracy for the ATM test sample together with a high variance in 
the distributions of the probability of being classified as male (Figure 3a). Importantly, the 
model was more likely to make mistakes for males with relatively lower TIV and females 
with relatively higher TIV, further confirming the TIV bias in the AM model.  
Consequently, any conclusions on sex differences in structural GMV organization drawn 
from the high accuracies of such model might be confounded by a TIV bias. Such a 
pronounced TIV bias is especially interesting, since the GMV data employed here were 
scaled for TIV during preprocessing of structural data using the inverse of the affine scaling 
factor, meaning that the AM model is, in fact, not fully TIV-naive. In this sense, our results 
underline previous claims that while the absolute amount of tissue is corrected for individual 
brain size, such scaling does not fully remove TIV-related variance ([48], 
http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf).  
 
Reducing bias by featurewise TIV control    
For the AM+cr model, where a featurewise removal of TIV was performed on the AM data, 
the misclassifications of both female and male individuals were not systematically related to 
TIV differences. In other words, males with low and females with high TIV were not more 
likely to be misclassified, indicating that this model was not biased by TIV. However, in line 
with previous studies [39, 43, 49, 50], we did observe decreased classification accuracies for 
both the AM and the ATM test samples. This decrease in accuracy might result from the 
featurewise confound removal of TIV likely removing relatively large amounts of (TIV-
related) variance from the features, which in turn reduced the amount of information 
available to the model to accurately learn sex classification. This is in line with the results of 
a previous study suggesting that TIV alone contains enough information to classify sex at a 
similar level as TIV-uncorrected GMV [50]. Considering that features in the AM sample can 
be assumed to contain more TIV-related variance than the ATM sample presumably explains 
why the drop in accuracy — when comparing performance of the AM and AM+cr model — is 
less pronounced for the ATM test sample than for the AM sample.   
Altogether, the featurewise confound removal of TIV reduced the bias but at the cost of 
classification accuracies. While a lack of bias in a model is desirable, so is high accuracy, 
suggesting that featurewise confound removal might not be the ideal approach to reduce 
TIV bias in structural sex classification. 
 

Reducing bias by training on a TIV matched sample   
In contrast to the models trained on the AM sample, both models trained on the ATM 
sample (ATM and ATM+cr) resulted in comparably high accuracies for both the AM and ATM 
test samples. The slightly higher accuracy for the ATM test sample is likely due to the ATM 
test sample better matching the characteristics of the ATM training sample, in particular 
with respect to TIV distribution, which is highly related to the target variable sex [43]. The 
better performance of the ATM and ATM+cr model on the ATM test samples also supports 
the relevance of stratifying training and test samples with respect to relevant variables that 
may interact with the target [51, 52].  
The comparison of TIV of sex congruent and incongruent classified females and males did 
not give any indication of a TIV bias, which is in line with a study proposing beforehand 
matching to be a more efficient approach than feature-wise confound removal in the 
statistical analysis [40]. However, another study argued against the matching of data, 
mentioning that matching for specific characteristics creates a sample that is not 
representative of the whole population [39]. While we agree that the ATM sample does not 
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strictly represent the population but rather comprises males with relatively low and females 
with relatively high TIV, the ensuing models achieved high classification accuracies, even 
when applied to the AM test sample which reflects the natural TIV distribution. This 
indicates that the models themselves are not biased by training sample characteristics, 
especially the restricted TIV range. In fact, the models correctly capture sex differences in a 
generalizable manner as exemplified by their performance on the two test samples. All 
things considered, we propose that matching females and males for TIV in the training 
sample provides an appropriate approach for creating unbiased and accurate models.   
   
However, in practice, TIV stratification will reduce the number of samples that can be 
included in the training sample, which often is not desirable. The present study used a large 
data pool collected from several databases, allowing for a large training sample even after 
matching. This might not be feasible in studies with a smaller sample size, and further 
studies are needed to find a good balance in sample size and appropriate TIV-control. 
Altogether, importantly, the results of the ATM and ATM+cr model show that an accurate 
sex classification based on structural brain imaging data is possible while appropriately 
accounting for TIV bias. These findings further support previous studies reporting sex 
differences in the structural organization of the human brain [16, 19], and they match 
previously reported sex classification studies reporting accurate classifications of a person´s 
sex based on structural brain features [25, 26, 30].  
 
Application of the models to cisgender and transgender application samples  
The application of the AM model to two samples consisting of cisgender and transgender 
individuals resulted in similarly high classification accuracy for cisgender and transgender 
individuals. Furthermore, classification of cisgender and transgender individuals were 
equally affected by the TIV bias in the AM model. Specifically, both CM and TW with a 
relatively high TIV were more likely to be classified in congruence with their sex (male) while 
CM and TW with a relatively lower TIV were more likely to be classified sex congruent as 
female. Similarly, the biased model often classified CW and TM with lower TIV as female 
while CW and TM with higher TIV values were often classified as male (Figure 4 and 5).  
Interestingly, TM showed lower prediction probabilities than CW, which could be 
interpreted as TM individual’s brains being more similar to female cisgender brains. In 
contrast, at least for sample B, TW showed lower prediction probabilities than CM, which 
could be interpreted as TW individual’s brains being modulated by their female gender.  
However, in the present samples, TIV of TM was lower than that of CW (Table 1, Figure S1) 
while TIV of TW falls between those of CM and CW (Table 1, Figure S1). Considering the TIV 
bias of the model, TM brains appearing closer to same sex brains and TW brains appearing 
closer to same gender brains is rather driven by the TIV distribution of the present sample, 
rather than by actual qualitative differences in brain organization.  
 
In contrast, the ATM model accurately assigned sex to both cisgender and transgender 
individuals without any indication of a TIV bias. Thus, with regards to the absolute 
classification accuracies, our findings do not corroborate previous studies reporting a 
decrease in classification accuracy for transgender individuals as opposed to accurate sex 
classification for cisgender individuals [5, 6]. However, for the unbiased models, prediction 
probabilities for TM showed a trend of being higher than those of CW (Supplementary 
Results), thus providing some weak indication of an interaction of sex and gender identity in 
modulating structural brain organization, as suggested in previous studies [5, 7], at least for 
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TM. Furthermore, our results highlight the relevance of differential effects for TM and TW as 
well as model calibration and appropriate TIV control. Appropriate control for confounds 
does not only apply TIV and sex classification, but can also be generalized to any other 
confounding variables that are intrinsically and systematically related to the target variable 
[40, 41]. 
 
This discrepancy of present findings to previously published results may partly be explained 
by the fact that TIV of the transgender individuals in the present samples matched TIV of 
cisgender subjects of the same sex rather than aligning with gender identity. This effect was 
even more pronounced for TM whose mean TIV was even lower than CW leading to the sex 
congruent effects in the biased AM-model (Table 1). For TW whose mean TIV fell between 
that of CM and CW, we found some indication of gender congruent trends matching the 
results of previous studies [5, 7]. To better understand present results in comparison to 
those studies, it would be interesting to compare TIV distributions of our application 
samples with those used in previous studies. Another explanation might be that our 
classifiers learnt fundamentally different models, e.g. employing different feature weights 
than those in previous studies, which in turn might be caused by differences in 
characteristics of the training samples and a different choice of parameters during model 
optimization. Beside the differences due to a different training-sample, other factors 
affecting ML- models and respective results might relate to differences in age-distribution. 
Here, we not only balanced for sex but also employed an exact female-to-male matching 
with regards to age which might have reduced variance in comparison to the training-
samples of other studies [5, 7] leading to differences in the fundamental model and results. 
In addition to age in the training sample, the age distribution of the application sample could 
also play a role, due to age-related GMV decline. Thus, older TW could be misclassified due 
to age-related GMV changes.  
 
To our knowledge, most studies applying a sex classifier trained on structural data of 
cisgender individuals used test samples only comprising TW [5, 7], limiting conclusions to TW 
rather than transgender individuals in general. The one study employing data of both TW 
and TM reported not significantly lower classification accuracy for transgender data [6]. 
While we did not find decreased sex classification accuracy for transgender individuals, we 
found some evidence for TM tending to be classified in congruence with their gender, which 
might be attributed to the previously reported altered brain structure for TM in comparison 
to CW [33, 36].  
Previous studies employing group comparisons reported structural alterations for TW in 
comparison to CM in regions as e.g. putamen, insula, hypothalamus and ventricles as well as 
altered white matter connectivity [5, 34, 35, 37, 38, 53]. These changes might be related to 
plasticity of the brain following sex reassignment and CHT for transgender individuals 
following the desire to resemble the experienced gender identity also physically, which has 
been reported to cause a development of transgender brains towards brain volumetric 
proportions that align with their gender identity [38, 54]. The similarly high or even higher 
classification accuracies achieved here for transgender in comparison to cisgender 
individuals cannot be taken to prove an absence of such structural brain differences, which 
might be revealed by the investigation of different sets of brain features or different analysis 
approaches.  
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Apart from training a binary female – male classifier on cisgender data, structural brain 
differences between cisgender and transgender individuals could also be examined by 
training a multiclass classifier to distinguish the four classes of CM, CW, TM and TW [55]. 
Studies using such an approach might allow for a more thorough examination of the 
influence of an interaction of sex and gender identity on structural brain organization. 
However, sufficiently large samples to allow such modelling are currently lacking. Hence, to 
further explore structural changes in transgender individuals through the use of multi-class 
classifiers, larger as well as longitudinal transgender samples are needed. Longitudinal data 
across the course of CHT might further enable researchers to evaluate the effects of CHT on 
local and global structural brain alterations as proposed previously [38]. Such data will also 
help addressing the question of whether the brain structure of transgender individuals 
differs from cisgender individuals even before CHT onset. The application of calibrated and 
non-TIV-biased sex classification models together with large data sets of cisgender and 
transgender individuals could ultimately contribute to broadening the simplistic view of a 
pure sexual dimorphism of the brain to a more continuous view including all facets of gender 
identity [42].  
  
Altogether, the present study contributes to the understanding of the principles of structural 
brain organization in relation to sex, specifically by demonstrating that the structural 
organization as captured by GMV differs between the sexes to an extend that allows for a 
highly accurate sex classification. This finding is relevant for future brain imaging studies 
which should consider sex as a relevant variable in explaining structural brain variability and 
drawing conclusions for structure-function relationships in the brain. Furthermore, while 
present results did not replicate previous studies demonstrating reduced classification 
accuracies for transgender individuals [5, 6], we observed some evidence of gender 
congruent brain organization in transgender individuals in prediction probabilities, further 
emphasizing the need for appropriate TIV-control. Consequently, we do not interpret our 
results as an indication for a sexual dimorphism of the human brain. Rather, brain 
anatomical features might be also modulated by environmental and cultural factors 
represented in societal gender roles, among other influencing variables [42]. These external 
influences further interact with gender stereotypes and hormone levels (e.g. menstrual 
cycle) in complex ways that have not been fully understood yet.  
  
Limitations  
In line with previous studies, we used whole-brain voxelwise GMV as features for training 
our classifiers. For this type of features, training the classifiers on a sample matched for age 
and TIV proved superior to featurewise removal of TIV. However, we have not tested these 
different approaches on classifiers built on other types of brain features as employed in 
other sex classification studies e.g. diffusion weighted imaging, regional homogeneity or 
functional connectivity [25, 28, 30, 56]. Thus, the findings might be specific to the GMV 
features employed here.  
Additionally, in line with a previous study [5] and to avoid overfitting due to the large 
number of whole-brain voxelwise GMV features, we reduced the dimensionality of the 
feature set by applying Principal Component Analysis (PCA) before training the structural sex 
classifier, leading to a reduced spatial interpretability. Future studies could complement the 
present findings by employing different approaches to dimensionality reduction, for 
example by using parcel-wise rather than voxel-wise data extraction as used in previous 
studies [37]. Such an approach would make it possible to determine which brain regions best 
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classify females and males. Furthermore, we did not control for the sexual orientation of a 
person. Since sexual orientation can influence human brain structure [57, 58], future studies 
might establish sexual orientation as a further variable of interest to investigate its possible 
effects. Finally, and importantly, while the present study considers transgender samples, we 
acknowledge that this is a reductionist approach that does not consider individuals who 
identify between, outside or beyond the binary gender identity. Therefore, the present 
study does not fully cover all nuanced facets of gender identity [59].  
 
  
Conclusions  
Our results demonstrate the feasibility of building accurate and non-TIV-biased sex 
classification models based on structural brain imaging data. Training on a large sample in 
which females and males were matched for TIV resulted in a classifier that was able to 
achieve high accuracies without displaying a TIV bias. The high classification accuracies 
achieved by our unbiased classifier strongly indicate that local GMV organization provides 
sufficient information to discriminate between the sexes, thus pointing to qualitative sex 
differences in the brain structure which are, at least in part, driven by birth assigned sex. 
However, in addition to sex congruent effects, we also found some evidence for gender 
congruent trends in brain organization of transgender individuals. Altogether, results 
underline the importance of appropriate TIV-control in structural sex classification especially 
when dealing with samples which are reported to differ in local GMV organization but also in 
global TIV. Employing TIV-control in future studies will help to fully disentangle the 
complexity of interaction of sex and gender identity and also other factors modulating 
structural (and also functional) brain anatomy.  
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Material and Methods 
 
Data 
 
Data pool for model training and evaluation 
To ensure a heterogeneous data basis for training the classifiers, we combined data from 10 
large cohorts into one data pool of structural MRI images from subjects differing in 
nationality, imaging parameters and age range. Supplementary table S3 gives further details 
on the composition of the data pool, and details of the MRI data acquisition parameters can 
be found elsewhere (Supplementary Material). We only included subjects who were aged 
between 18 and 65 years with no indication of any psychiatric disorder, resulting in a total N 
of 5557 subjects.  
However, it is important to note, that the majority of large datasets, which have been 
employed for sex classification studies so far, likely report sex based on the “presented sex”, 
i.e. the name and outer appearance of participants or on self-reported data on sex only 
without explicitly collecting information on gender identity. We assume that among subjects 
not describing themselves as transgender, self-reported gender identity is equivalent to sex 
assigned at birth of cisgender individuals, while acknowledging that this match may neither 
be perfect nor binary. 
Sixteen subjects whose TIV values that differed more than three standard deviations from 
the mean TIV of the data pool were excluded. Two non-overlapping samples were extracted 
from the data pool. Possible differences between samples and sites in scanning acquisition 
were controlled for by including similar numbers of subjects from the different samples in 
the AM and ATM-sample, resulting in robust models trained on heterogenous samples. 
Therefore, both the AM and ATM sample comprised 276 subjects from 1000Brains, 146 
subjects from Cam-CAN, 168 subjects from CoRR, 50 subjects from DLBS, 94 subjects from 
eNKI, 192 subjects from GOBS, 396 subjects from HCP, 96 subjects from IXI, 76 subjects from 
OASIS3, and 120 subjects from PNC. An exact distribution of the samples within the 
matching process is given in Supplementary Table S3 and imaging parameters in the 
Supplementary Materials. In the first sample (AM), females and males were matched for age 
to control for age-related GMV decline [44-47]. In the second sample (ATM), females and 
males were matched for both age and TIV. Both samples were split into training (80%) and 
test sample (20%). 
 
Age-matched (AM) sample 
For the AM sample (N = 1614, 807 females), females and males were matched for age within 
each site (including multiple sites within one sample) by including for each female subject a 
male counterpart from the same site whose age differed by no more than one year. The age 
range in this sample was 18 – 65 years (M = 37.96, SD = 15.28). Further detailed information 
can be found in Table 1, and a plot of the TIV distribution of females and males is displayed 
in Figure S1. There was no significant difference in age between females and males (t = 0.01, 
p = 0.99); however, the sexes differed significantly with respect to TIV (t = -61.06, p < 0.001). 
Splitting the sample into training (80%) and test samples (20%) resulted in 1292 subjects 
(646 females) for training and 322 subjects (161 females) for testing. The training and test 
samples did not differ with respect to age (two-sample t-test; t = 0.98, p = 0.33) or TIV (t = -
0.11, p = 0.91). The age difference between sexes remained nonsignificant within both the 
training (t = -0.00, p = 0.99) and the test sample (t = 0.03, p = 0.97), whereas the TIV 
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difference was significant for both the training (t = -54.79, p < 0.001) and test-sample (t = -
26.90, p < 0.001). 
Age-TIV-matched (ATM) sample 
For the ATM sample (N = 1614, 807 females), females and males were matched for age and 
TIV within each site. For each female subject, a male counterpart was included whose age 
differed by no more than one year and whose TIV differed by no more than 3%. The age 
range in this sample comprised 18-65 years (M = 38.15, SD = 15.35). More detailed 
information is displayed in Table 1, and the distribution of TIV for females and males in this 
sample is shown in Figure S1. In this sample, females and males did not differ significantly in 
age (t = 0.01, p = 0.99), or in TIV (t = -1.25, p = 0.21). The ATM sample was also divided into 
80% for training and 20% for testing, again resulting in 1292 subjects (646 females) for 
training and 322 subjects (161 females) for testing. The training and test samples did not 
differ with respect to age (t = 0.02, p = 0.98) or TIV (t = -0.53, p = 0.60). Additionally, there 
was no significant difference between females and males in age or TIV in the training (age: t 
= 0.01, p = 0.99; TIV: t = -0.99, p = 0.32) or test sample (age: t = -0.01, p = 0.99; TIV: t = -0.83, 
p = 0.41). 
 
Application samples 
The first application sample (Sample A) was acquired in Aachen (Germany). All cisgender 
participants were recruited via a public announcement around Aachen, whereas TM and TW 
were recruited in self-help groups and at the Department of Gynaecological Endocrinology 
and Reproductive Medicine of the RWTH Aachen University Hospital, Germany. All cisgender 
and transgender subjects in this sample reported no presence of neurological disorders, 
other medical conditions affecting the brain metabolism or first-degree relatives with a 
history of mental disorders. The Ethics Committee of the Medial Faculty of the RWTH 
Aachen University approved the study (EK 088/09, [37]). Altogether, this dataset consisted of 
115 individuals (24 CM, 25 CW, 33 TM, 33 TW). At the time of MRI measurement, 15 TM and 
16 TW each were receiving hormone treatment. The age of the participants ranged from 18 
to 61 years (M = 30.38, SD = 11.03). More detailed demographic information can be found in 
Table 1 and Figure S1. 
 
The second application sample (Sample B) consisted of an open-source dataset acquired in 
Barcelona, available via (https://data.mendeley.com/datasets/hjmfrv6vmg/2, [60-62]. The 
dataset contained the structural MRI data of 87 subjects (19 CM, 22 CW, 29 TM, 17 TW) with 
an age range of 17 to 39 years (M = 22.23, SD = 4.97). More detailed information related to 
age and TIV in all four groups can be found in Table 1 and Figure S1, though no information 
were available regarding the status of potential hormone treatment. 
 
Preprocessing of structural data 
Structural T1-weighted MR images of all datasets were preprocessed using the 
Computational Anatomy Toolbox (CAT12.5 r1363, http://www.neuro.uni-jena.de/cat12/) in 
SPM (r6685) running Matlab 9.0. After initial denoising (spatial-adaptive Non-Local Means), 
the pipeline included spatial registration, bias-correction, skull-striping and segmentation by 
an adaptive maximum a posteriori approach [63] with using a partial volume model [64]. 
Subsequently, an optimized version of the Geodesic Shooting Algorithm [65] was applied for 
normalization to MNI space and the resulting Jacobians were used for non-linear only 
modulation of grey matter segments, before final resampling to a 3x3x3 mm resolution via 
FSL. The non-linear only modulated images (m0wp1) were globally scaled for TIV internally 
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with an approximation of TIV, i.e. every voxel was scaled by the relative linear 
transformation to the MNI152 template. Consequently, while the GMV data was not fully 
TIV-naive, TIV-related variance was at the same time not fully removed from the data. 
 
Predictive modelling 
For all subjects of the AM and ATM training samples, whole-brain voxelwise GMV were 
extracted, resulting in 77779 brain features (voxels) per subject. To evaluate model 
performance, each of the two samples was split into training (80%) and hold-out test sample 
(20%). For each of the two training samples, a sex classifier was trained to predict the sex of 
a participant with and without featurewise removal of variance related to TIV from the brain 
features, resulting in the four different models: AM, AM+cr, ATM and ATM+cr model (Figure 
1). 
For all four models, we employed a SVM classifier with rbf kernel [66] using Julearn 
(https://juaml.github.io/julearn). Stratified 10-fold cross-validation (CV) was performed to 
assess generalization performance. The two hyperparameters, C (1 – 1e8, log-uniform) and 
gamma (1e-7 – 1, log-uniform), were tuned via Bayesian Hyperparameter Optimization with 
250 iterations within a 5-fold CV inner loop following the analysis employed in a previous 
study [5]. Before training the classifier, PCA was performed to reduce the dimensionality of 
the data [5]. The maximum number of components (n = 1292, number of subjects in the 
training sample) was retained. For featurewise TIV control applied in two out of the four 
models, TIV-related variance was removed after dimensionality reduction by subtracting the 
fitted values of each feature given the TIV values in a CV-consistent manner to avoid data 
leakage [39, 43]. The best performing combination of hyperparameters from the Bayesian 
Hyperparameter Optimization was used to train the final model on the full sample (details 
depicted in Supplementary Material). 
 
The four final models resulting from this pipeline were then used to obtain predictions for 
both 20% hold-out AM and ATM test sets as well as both application samples, including cis- 
and transgender individuals (Figure 1). Before application of the models to the test samples, 
we assessed probabilities of classifying an individual into a respective class to ensure that 
the models were calibrated (https://scikit-
learn.org/stable/modules/calibration.html#calibration) and evaluated the predicted 
probabilities in relation to the actual labels of the individuals (Supplementary Figure S2-3). 
These calibrations allow for checking whether the models gave accurate estimates of class 
probabilities and support probability predictions, which was the case for the models in the 
present study. 
To explore model behaviour, we compared the TIV-distributions of individuals, who were 
classified in accordance with their sex and those who were not, visually with violin plots [67] 
and statistically by Wilcoxon rank sum tests. Due to the amount of comparisons conducted 
here, we chose a conservative significance level of 𝝰 = 0.005 with accordingly estimated 
effect sizes [68]. To assess potential differences between cis- and transgender individuals in 
prediction probabilities, we investigated probabilities of CM and TW as well as CW and TM 
employing t-tests. A power-analysis for these comparisons was conducted using G*Power to 
compute sample size required for effect sizes as found in previous work with a 𝝰–level of 
0.05 and power-level of 0.8 [7, 69, 70]. 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://juaml.github.io/julearn
https://scikit-learn.org/stable/modules/calibration.html#calibration
https://scikit-learn.org/stable/modules/calibration.html#calibration
https://doi.org/10.1101/2022.07.26.499576


 24 

Acknowledgements 
 
Funding: The work was supported by the Deutsche Forschungsgemeinschaft (DFG), the National 
Institute of Mental Health (R01-MH074457), the Helmholtz Portfolio Theme "Supercomputing and 
Modeling for the Human Brain“, and the European Union’s Horizon 2020 Research and Innovation 
Programme under Grant Agreement No. 945539 (HBP SGA3). Open access publication funded by the 
DFG – 491111487. 

 
Author contributions: K.R.P developed the idea of the study. K.R.P., S.W., S.H and L.W. 
conceptualized the study. M.V., U.H., B.C. and B.D. contributed sample A, F.H. preprocessed 
all data. M.V., F.H., L.W. preprocessed sample A and B, L.W. prepared data for the ML-
analysis, which was conducted by S.H. and K.R.P., L.W. prepared the results, including figures 
and tables, L.W. drafted the manuscript together with S.W. All authors commented and 
contributed to the final manuscript. 
This work has been done in partial fulfilment of the requirements for a PhD thesis.  
 
Competing interests: Benjamin Clemens serves as scientific advisor for Dionysus Digital 
Health, Inc. and holds shares of this company. 
 
Data and materials availability:  
Information regarding data availability are provided with the structural scanning parameter 
in the supplements.  
Code is available on GitHub: https://github.com/juaml/sex_prediction_vbm 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://github.com/juaml/sex_prediction_vbm
https://doi.org/10.1101/2022.07.26.499576


 25 

References 
 

1. Bao, A.M. and D.F. Swaab, Sex differences in the brain, behavior, and neuropsychiatric 
disorders. Neuroscientist, 2010. 16(5): p. 550-65. 

2. Bao, A.M. and D.F. Swaab, Sexual differentiation of the human brain: relation to 
gender identity, sexual orientation and neuropsychiatric disorders. Front 
Neuroendocrinol, 2011. 32(2): p. 214-26. 

3. Schumacher Dimech, A., et al., The role of sex and gender differences in precision 
medicine: the work of the Women's Brain Project. Eur Heart J, 2021. 42(34): p. 3215-
3217. 

4. Dhamala, E., Ooi, L. Q., Chen, J., Kong, R., Anderson, K., Yeo, B. T., & Holmes, A., 
Using Large-Scale Datasets to Identify Sex and Age Specific Brain Behavior 
Relationships. Biological Psychiatry, 2022. 91(9): p. S41. 

5. Flint, C., et al., Biological sex classification with structural MRI data shows increased 
misclassification in transgender women. Neuropsychopharmacology, 2020. 

6. Baldinger-Melich, P., et al., Sex Matters: A Multivariate Pattern Analysis of Sex- and 
Gender-Related Neuroanatomical Differences in Cis- and Transgender Individuals 
Using Structural Magnetic Resonance Imaging. Cereb Cortex, 2020. 30(3): p. 1345-
1356. 

7. Kurth, F., et al., Brain Sex in Transgender Women Is Shifted towards Gender Identity. J 
Clin Med, 2022. 11(6). 

8. Eliot, L., et al., Dump the "dimorphism": Comprehensive synthesis of human brain 
studies reveals few male-female differences beyond size. Neurosci Biobehav Rev, 
2021. 

9. Kaczkurkin, A.N., A. Raznahan, and T.D. Satterthwaite, Sex differences in the 
developing brain: insights from multimodal neuroimaging. 
Neuropsychopharmacology, 2019. 44(1): p. 71-85. 

10. Harrington, G.S. and S.T. Farias, Sex differences in language processing: functional 
MRI methodological considerations. J Magn Reson Imaging, 2008. 27(6): p. 1221-8. 

11. Baxter, L.C., et al., Sex differences in semantic language processing: A functional MRI 
study. Brain and Language, 2003. 84(2): p. 264–272. 

12. Xu, M., et al., Sex Differences in Functional Brain Networks for Language. Cereb 
Cortex, 2020. 30(3): p. 1528-1537. 

13. Weiss, E.M., Kemmler, G., Deisenhammer, E. A., Fleischhacker, W. W., & Delazer, M., 
Sex differences in cognitive functions. Personality and individual differences, 2003. 
35(4): p. 863-875. 

14. Weiss, E., et al., Sex differences in brain activation pattern during a visuospatial 
cognitive task: a functional magnetic resonance imaging study in healthy volunteers. 
Neurosci Lett, 2003. 344(3): p. 169-72. 

15. Rubia, K., et al., Effects of age and sex on developmental neural networks of visual-
spatial attention allocation. Neuroimage, 2010. 51(2): p. 817-27. 

16. Zhang, X., et al., Gender Differences Are Encoded Differently in the Structure and 
Function of the Human Brain Revealed by Multimodal MRI. Front Hum Neurosci, 
2020. 14: p. 244. 

17. Ritchie, S.J., et al., Sex Differences in the Adult Human Brain: Evidence from 5216 UK 
Biobank Participants. Cerebral cortex (New York, N.Y. : 1991), 2018. 28(8): p. 2959–
2975. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.499576


 26 

18. Lotze, M., et al., Novel findings from 2,838 Adult Brains on Sex Differences in Gray 
Matter Brain Volume. Sci Rep, 2019. 9(1): p. 1671. 

19. Ruigrok, A.N., et al., A meta-analysis of sex differences in human brain structure. 
Neurosci Biobehav Rev, 2014. 39: p. 34-50. 

20. Wallentin, M., Putative sex differences in verbal abilities and language cortex: a 
critical review. Brain Lang, 2009. 108(3): p. 175-83. 

21. Voyer, D., S.D. Voyer, and J. Saint-Aubin, Sex differences in visual-spatial working 
memory: A meta-analysis. Psychon Bull Rev, 2017. 24(2): p. 307-334. 

22. Hyde, J.S., Gender similarities and differences. Annu Rev Psychol, 2014. 65: p. 373-98. 
23. Zell, E., Z. Krizan, and S.R. Teeter, Evaluating gender similarities and differences using 

metasynthesis. Am Psychol, 2015. 70(1): p. 10-20. 
24. Joel, D., et al., Sex beyond the genitalia: The human brain mosaic. Proceedings of the 

National Academy of Sciences, 2015. 112(50): p. 15468–15473. 
25. Feis, D.-L., et al., Decoding gender dimorphism of the human brain using multimodal 

anatomical and diffusion MRI data. NeuroImage, 2013. 70: p. 250–257. 
26. Chekroud, A.M., et al., Patterns in the human brain mosaic discriminate males from 

females. Proceedings of the National Academy of Sciences of the United States of 
America, 2016. 113(14): p. E1968. 

27. Bzdok, D., Classical Statistics and Statistical Learning in Imaging Neuroscience. Front 
Neurosci, 2017. 11: p. 543. 

28. Weis, S., et al., Sex Classification by Resting State Brain Connectivity. Cereb Cortex, 
2020. 30(2): p. 824-835. 

29. Zhang, C., et al., Functional connectivity predicts gender: Evidence for gender 
differences in resting brain connectivity. Human brain mapping, 2018. 39(4): p. 1765–
1776. 

30. Wang, L., et al., Combined structural and resting-state functional MRI analysis of 
sexual dimorphism in the young adult human brain: an MVPA approach. Neuroimage, 
2012. 61(4): p. 931-40. 

31. Smith, E., et al., Gender incongruence and the brain - Behavioral and neural correlates 
of voice gender perception in transgender people. Horm Behav, 2018. 105: p. 11-21. 

32. Bouman, W.P., Schwend, A. S., Motmans, J., Smiley, A., Safer, J. D., Deutsch, M. B., ... 
& Winter, S., Language and trans health. International Journal of Transgenderism, 
2017. 18(1): p. 1-6. 

33. Mueller, S.C., et al., The Neuroanatomy of Transgender Identity: Mega-Analytic 
Findings From the ENIGMA Transgender Persons Working Group. J Sex Med, 2021. 
18(6): p. 1122-1129. 

34. Spizzirri, G., et al., Grey and white matter volumes either in treatment-naive or 
hormone-treated transgender women: a voxel-based morphometry study. Sci Rep, 
2018. 8(1): p. 736. 

35. Zubiaurre-Elorza, L., Junque, C., Gómez-Gil, E., & Guillamon, A. , Effects of cross-sex 
hormone treatment on cortical thickness in transsexual individuals. The journal of 
sexual medicine, 2014. 11(5): p. 1248-1261. 

36. Fukao, T., K. Ohi, and T. Shioiri, Gray matter volume differences between transgender 
men and cisgender women: A voxel-based morphometry study. Aust N Z J Psychiatry, 
2022. 56(5): p. 535-541. 

37. Clemens, B., et al., Replication of Previous Findings? Comparing Gray Matter Volumes 
in Transgender Individuals with Gender Incongruence and Cisgender Individuals. J Clin 
Med, 2021. 10(7). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.499576


 27 

38. Pol, H.E.H., Cohen-Kettenis, P. T., Van Haren, N. E., Peper, J. S., Brans, R. G., Cahn, W., 
... & Kahn, R. S., Changing your sex changes your brain: influences of testosterone and 
estrogen on adult human brain structure. European Journal of Endocrinology, 2006. 
155(suppl_1): p. S107-S114. 

39. Snoek, L., S. Miletic, and H.S. Scholte, How to control for confounds in decoding 
analyses of neuroimaging data. Neuroimage, 2019. 184: p. 741-760. 

40. Sedgwick, P., Analysing case-control studies: adjusting for confounding. Bmj, 2013. 
346. 

41. McNamee, R., Regression modelling and other methods to control confounding. 
Occup Environ Med, 2005. 62(7): p. 500-6, 472. 

42. Reardon, S., The largest study involving transgender people is providing long-sought 
insights about their health. Nature, 2019. 568(7753): p. 446-449. 

43. More, S., Eickhoff, S. B., Caspers, J., & Patil, K. R., Confound removal and 
normalization in practice: A neuroimaging based sex prediction case study. Machine 
Learning and Knowledge Discovery in Databases. Applied Data Science and Demo 
Track, 2021. 12461(3). 

44. Resnick, S.M., et al., One-year age changes in MRI brain volumes in older adults. 
Cereb Cortex, 2000. 10(5): p. 464-72. 

45. Good, C.D., et al., A voxel-based morphometric study of ageing in 465 normal adult 
human brains. Neuroimage, 2001. 14(1 Pt 1): p. 21-36. 

46. Resnick, S.M., et al., Longitudinal magnetic resonance imaging studies of older adults: 
a shrinking brain. J Neurosci, 2003. 23(8): p. 3295-301. 

47. Taki, Y., et al., Correlations among Brain Gray Matter Volumes, Age, Gender, and 
Hemisphere in Healthy Individuals. Plos One, 2011. 6(7). 

48. Malone, I.B., et al., Accurate automatic estimation of total intracranial volume: a 
nuisance variable with less nuisance. Neuroimage, 2015. 104: p. 366-72. 

49. Sanchis-Segura, C., Aguirre, N., Cruz-Gómez, Á. J., Félix, S., & Forn, C., Beyond “Sex 
Prediction”: Estimating and Interpreting Multivariate Sex Differences and Similarities 
in the Brain. 2022. 

50. Sanchis-Segura, C., et al., Effects of different intracranial volume correction methods 
on univariate sex differences in grey matter volume and multivariate sex prediction. 
Sci Rep, 2020. 10(1): p. 12953. 

51. Farias, F., Ludermir, T., & Bastos-Filho, C., Similarity Based Stratified Splitting: an 
approach to train better classifiers. arXiv preprint arXiv:2010.06099, 2020. 

52. Uçar, M.K., Nour, M., Sindi, H., & Polat, K., The effect of training and testing process 
on machine learning in biomedical datasets. Mathematical Problems in Engineering, 
2020. 2020. 

53. Case, L.K., et al., Altered White Matter and Sensory Response to Bodily Sensation in 
Female-to-Male Transgender Individuals. Arch Sex Behav, 2017. 46(5): p. 1223-1237. 

54. Arcelus, J., et al., Systematic review and meta-analysis of prevalence studies in 
transsexualism. Eur Psychiatry, 2015. 30(6): p. 807-15. 

55. Clemens, B., et al., Predictive Pattern Classification Can Distinguish Gender Identity 
Subtypes from Behavior and Brain Imaging. Cereb Cortex, 2020. 30(5): p. 2755-2765. 

56. Weis, S., et al., Sex classification by resting state brain connectivity. 2019. 38. 
57. Votinov, M., et al., Brain structure changes associated with sexual orientation. Sci 

Rep, 2021. 11(1): p. 5078. 
58. Swaab, D.F., Sexual orientation and its basis in brain structure and function. Proc Natl 

Acad Sci U S A, 2008. 105(30): p. 10273-4. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.499576


 28 

59. Motmans, J., T.O. Nieder, and W.P. Bouman, Transforming the paradigm of 
nonbinary transgender health: A field in transition. Int J Transgend, 2019. 20(2-3): p. 
119-125. 

60. Uribe, C., original data of a functional MRI study in transgender individual, Mendeley 
Data, V2, doi: 10.17632/hjmfrv6vmg. 2020. 

61. Uribe, C., et al., Data for functional MRI connectivity in transgender people with 
gender incongruence and cisgender individuals. Data Brief, 2020. 31: p. 105691. 

62. Uribe, C., et al., Brain network interactions in transgender individuals with gender 
incongruence. Neuroimage, 2020. 211: p. 116613. 

63. Rajapakse, J.C., Giedd, J. N., & Rapoport, J. L., Statistical approach to segmentation of 
single-channel cerebral MR images. IEEE transactions on medical imaging, 1997. 
16(2): p. 176-186. 

64. Tohka, J., A. Zijdenbos, and A. Evans, Fast and robust parameter estimation for 
statistical partial volume models in brain MRI. Neuroimage, 2004. 23(1): p. 84-97. 

65. Ashburner, J. and K.J. Friston, Unified segmentation. NeuroImage, 2005. 26(3): p. 
839–851. 

66. Boser, B.E., Guyon, I. M., & Vapnik, V. N., A training algorithm for optimal margin 
classifiers. Proceedings of the fifth annual workshop on Computational learning 
theory, 1992: p. 144-152. 

67. Bechtold, B., Violin Plots for Matlab, Github Project  
https://github.com/bastibe/Violinplot-Matlab, DOI: 10.5281/zenodo.4559847. 2016. 

68. Fritz, C.O., P.E. Morris, and J.J. Richler, " Effect size estimates: Current use, 
calculations, and interpretation": Correction to Fritz et al.(2011). 2012. 

69. Faul, F., et al., G*Power 3: a flexible statistical power analysis program for the social, 
behavioral, and biomedical sciences. Behav Res Methods, 2007. 39(2): p. 175-91. 

70. Faul, F., et al., Statistical power analyses using G*Power 3.1: tests for correlation and 
regression analyses. Behav Res Methods, 2009. 41(4): p. 1149-60. 

71. Gignac, G.E., & Szodorai, E. T., Effect size guidelines for individual differences 
researchers. Personality and individual differences, 2016. 102: p. 74-78. 

72. Caspers, S., et al., Studying variability in human brain aging in a population-based 
German cohort-rationale and design of 1000BRAINS. Front Aging Neurosci, 2014. 6: 
p. 149. 

73. Taylor, J.R., et al., The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) 
data repository: Structural and functional MRI, MEG, and cognitive data from a cross-
sectional adult lifespan sample. Neuroimage, 2017. 144(Pt B): p. 262-269. 

74. Zuo, X.N., et al., An open science resource for establishing reliability and 
reproducibility in functional connectomics. Sci Data, 2014. 1: p. 140049. 

75. Zheng, F., et al., The Volume of Hippocampal Subfields in Relation to Decline of 
Memory Recall Across the Adult Lifespan. Front Aging Neurosci, 2018. 10: p. 320. 

76. Betzel, R.F., et al., Changes in structural and functional connectivity among resting-
state networks across the human lifespan. Neuroimage, 2014. 102 Pt 2: p. 345-57. 

77. Nooner, K.B., et al., The NKI-Rockland Sample: A Model for Accelerating the Pace of 
Discovery Science in Psychiatry. Frontiers in neuroscience, 2012. 6: p. 152. 

78. Olvera, R.L., et al., Common genetic influences on depression, alcohol, and substance 
use disorders in Mexican-American families. Am J Med Genet B Neuropsychiatr 
Genet, 2011. 156B(5): p. 561-8. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://github.com/bastibe/Violinplot-Matlab
https://doi.org/10.1101/2022.07.26.499576


 29 

79. Jahanshad, N., et al., Multi-site genetic analysis of diffusion images and voxelwise 
heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage, 
2013. 81: p. 455-469. 

80. Van Essen, D.C., et al., The Human Connectome Project: a data acquisition 
perspective. Neuroimage, 2012. 62(4): p. 2222-31. 

81. LaMontagne, P.J., Benzinger, T. L., Morris, J. C., Keefe, S., Hornbeck, R., Xiong, C., ... & 
Marcus, D., OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for 
normal aging and Alzheimer disease. MedRxiv, 2019. 

82. Marcus, D.S., et al., Open Access Series of Imaging Studies (OASIS): cross-sectional 
MRI data in young, middle aged, nondemented, and demented older adults. J Cogn 
Neurosci, 2007. 19(9): p. 1498-507. 

83. Tavares, V., D. Prata, and H.A. Ferreira, Comparing SPM12 and CAT12 segmentation 
pipelines: a brain tissue volume-based age and Alzheimer's disease study. J Neurosci 
Methods, 2019. 334: p. 108565. 

84. Kwak, S., et al., Multivariate neuroanatomical correlates of behavioral and 
psychological symptoms in dementia and the moderating role of education. 
Neuroimage Clin, 2020. 28: p. 102452. 

85. Satterthwaite, T.D., et al., The Philadelphia Neurodevelopmental Cohort: A publicly 
available resource for the study of normal and abnormal brain development in youth. 
Neuroimage, 2016. 124(Pt B): p. 1115-1119. 

86. Satterthwaite, T.D., et al., Neuroimaging of the Philadelphia neurodevelopmental 
cohort. Neuroimage, 2014. 86: p. 544-53. 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.499576doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.499576

