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The organised generation of functionally distinct cell types in developing tissues depends on es-
tablishing spatial patterns of gene expression. In many cases, this is directed by spatially graded
chemical signals – known as morphogens. In the influential “French Flag Model”, morphogen con-
centration is proposed to instruct cells to acquire their specific fate. However, this mechanism has
been questioned. It is unclear how it produces timely and organised cell-fate decisions, despite
the presence of changing morphogen levels, molecular noise and individual variability. Moreover,
feedback is present at various levels in developing tissues introducing dynamics to the process that
break the link between morphogen concentration, signaling activity and position. Here we develop
an alternative approach using optimal control theory to tackle the problem of morphogen-driven
patterning. In this framework, intracellular signalling is derived as the control strategy that guides
cells to the correct fate while minimizing a combination of signalling levels and the time taken. Ap-
plying this approach demonstrates its utility and recovers key properties of the patterning strategies
that are found in experimental data. Together, the analysis offers insight into the design principles
that produce timely, precise and reproducible morphogen patterning and it provides an alterna-
tive framework to the French Flag paradigm for investigating and explaining the control of tissue
patterning.

INTRODUCTION5

Embryogenesis depends on positioning functionally6

distinct types of cells in the right place and propor-7

tions, at the right time in a developing tissue. In many8

cases, the arrangement of differentiating cells is guided9

by chemical signals (usually termed morphogens). Em-10

anating from a localised source, a morphogen spreads11

across a field of cells to form a gradient, hence cells at12

different positions are exposed to different levels of the13

morphogen [1]. In the influential “French Flag Model”14

cells are proposed to read the gradient, such that the lo-15

cal signal concentration instructs position-dependent cell16

fate [2]. It has become apparent, however, that mor-17

phogen concentration alone is insufficient to explain the18

interpretation of morphogen gradients. In many tissues,19

morphogen gradients are dynamic and there is no simple20

relationship between morphogen concentration and po-21

sition within the tissue [3, 4]. It is also unclear how a22

simple gradient mechanism would allow timely and accu-23

rate cell-fate decisions, despite the presence of molecular24

noise and individual variability.25

The interpretation of the morphogen signal involves26

gene regulatory networks (GRNs) in responding cells [4].27

These comprise the intracellular signalling pathways of28

the morphogens and the downstream transcriptional re-29

sponses and are central to transforming the continuous30

spatio-temporal input of morphogen signalling into dis-31

crete cell fates. Regulatory interactions between com-32

ponents of these networks appear to perform the equiv-33

alent of an analogue-to-digital conversion [4–7]. GRNs34

have also been proposed to contribute to the accuracy35

and reproduciblity of patterning in presence of intracel-36

lular noise [8–10]. Moreover, non-linearities and feed-37

back within the GRN can confer multi-stability, mem-38

ory and hysteresis to cellular decision-making. A conse-39

quence of this is that cell fate depends not only on the40

levels of signals and effectors, but also on their temporal41

features. Taken together, the complexity of interactions42

within the GRN can produce rich dynamics in the sig-43

nalling and gene expression in developing tissues. Un-44

derstanding the origin and function of these dynamics45

offers insight into patterning. Moreover, the interplay46

between morphogen gradient and GRN allow cells to ac-47

tively contribute to morphogen signalling, rather than48

being simply “instructed” by the gradient. This high-49

lights the need for alternative paradigms to the French50

Flag model, in which the GRN plays a complementary51

and equally important role to the morphogen, to frame52

questions about morphogen activity.53

The dorso-ventral patterning of the developing ver-54

tebrate neural tube is a well-established example of a55

morphogen-patterned tissue [4, 11]. In the ventral neu-56

ral tube, the secreted morphogen Sonic Hedgehog (Shh),57

produced from the notochord and floor plate, which are58

located at the ventral pole, forms a ventral to dorsal59

gradient [12]. Binding of Shh to its receptor Patched160

(Ptch1) releases the inhibition of downstream signalling61

and leads to the conversion of the transcriptional effectors62

– the Gli family of proteins – from their repressor to their63

activator forms. The Gli proteins regulate the expression64

of a set of transcription factors, which include members65

of the Nkx, Olig, Pax and Irx families. This comprises66

the neural tube GRN. Interactions between intracellular67

signalling and the transcriptional network, generates a68

dynamic response of Gli activity to varying amounts of69

Shh and produces a sequence of genetic toggle switches70

that generate distinct gene expression states over time71

[3, 13]. Feedback leads to the desensitisation of cells to72

the morphogen signal [12, 14–16], resulting in adaption73

in Gli activity [16]. Similar effects of negative feedback74

have been observed for many signalling pathways, but75
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its function and implications for morphogen-dependent76

pattern formation remains unclear.77

Dynamical systems theory provides a framework to78

describe the activity of morphogens and GRNs. The79

behaviour produced by such models can often be rep-80

resented geometrically as a dynamical landscape. This81

provides an intuitive description of cell-fate decisions that82

corresponds to the idea of an “epigenetic landscape” pro-83

posed by Waddington [17]. In this view, the developmen-84

tal trajectory of a cell is analogous to a particle rolling85

on an undulating landscape, where valleys and water-86

sheds represent fates and decision points, respectively.87

Morphogens can be thought of as tilting the landscape88

in such a way that the valleys can be made deeper, shal-89

lower or disappear altogether. In this way the morphogen90

controls the terrain and hence the valley a cell enters. Al-91

though originally introduced as a pictorial representation92

of development, this idea has been used to develop quan-93

titative methods that reproduce key features of gene reg-94

ulatory networks and make predictions about the effect95

of signals [18–20]. Nevertheless, it remains a challenge to96

construct landscape models that incorporate knowledge97

of signals and GRNs. How is the landscape modified by98

an external signal and how feedback mechanisms be in-99

corporated? How can experimentally inferred landscapes100

give insights into the signalling dynamics?101

Here, we set out to develop a framework to understand102

the intracellular signalling strategies used by cells to in-103

terpret a morphogen signal. Are there design principles104

to the signalling pathways that contribute to timely, pre-105

cise and accurate morphogen controlled tissue pattern-106

ing? What role does feedback play and does this result in107

a trade-off between speed, accuracy and robustness of the108

pattern formation? To this end, we cast the morphogen-109

driven patterning process as an optimal control problem,110

where a trade-off is sought to minimise the distance from111

target and the control employed. The optimization al-112

lows the activity of signalling effectors to be a function113

of both extracellular signal and target genes within the114

GRN. This function, can be considered a model of the115

signalling pathway which accounts for the feedback loops116

within it and from the GRN.117

We first applied this approach to a Waddington-118

landscape model representing a genetic toggle switch –119

where analytical treatment is possible. We then extended120

the analysis to a dynamical-system model describing gene121

regulation in ventral neural tube progenitors. We show122

that desensitisation of the signalling pathway to mor-123

phogen emerges as a means to minimize control inputs124

in the context of multi-stability. The approach discovers125

morphogen patterning strategies that are widely used in126

biological systems and suggests an explanation for these127

strategies. Using this optimal control framework places128

morphogens and GRNs on the same footing, each playing129

complementary roles as parts of a whole decision-making130

unit. In this sense, the approach provides an alternative131

framework to the French Flag paradigm.132

RESULTS133

Dynamical systems and optimal control approach to134

cell-fate decisions135

The dynamics of gene regulation and cell-fate decisions136

can be described using a Langevin equation137

dx

dt
= f(x, u) + σ(x, u) η . (1)

where x is the set of concentrations of the components138

of network, u is a set of inputs or control variables. The139

functions f and σ are the drift and the strength of the140

noise, respectively (η is a standard white noise). In gen-141

eral, the noise term has a multiplicative form, which ac-142

counts for stochasticity that arises not only from exter-143

nal disturbances but also from the finite number copy144

number of each species in the network [21]. The drift145

and noise functions f and σ can incorporate mechanistic146

knowledge of the regulatory logic of the network and the147

effect of morphogen signalling, for instance, transcrip-148

tional control via binding/unbinding of transcription fac-149

tors to their respective regulatory elements and cooper-150

ative and competitive effects [13, 22, 23].151

The dynamical systems that result from representing152

GRNs in this way are generally non-linear and may op-153

erate in multi-stable regimes. The input u can substan-154

tially change the dynamics of the network, altering the155

position of attractors (stable states) and saddle nodes156

(decision points). Moreover, the attractor reached by a157

system depends on the full past history of the inputs.158

This can be seen, for example, in the neural progenitor159

GRN [13], where the input u comprises the activating and160

repressing forms of the morphogen regulated Gli effectors161

(Fig. 1 (a) and (b)). The behaviour of such systems can162163

be visualised as a dynamical landscape with valleys repre-164

senting the stable states of the network and signals tilting165

the landscape to determine which valleys are accessible166

or inaccessible. The dynamical system function f is thus167

given by the gradient of the landscape, V , parametrically168

dependent on the effector u. This approach has been used169

to reproduce the qualitative features of GRNs as well as170

to predict patterning processes in embryos [18, 19] and171

proportions of cell types in differentiation protocols [20].172

Given this dynamical systems view of patterning, how173

does the signalling input to a GRN generate a sufficiently174

precise pattern in a developmentally relevant time pe-175

riod? To address this we recast patterning as an opti-176

misation problem and ask what sort of signal input is177

necessary to produce precise, reliable and timely cell-fate178

decisions. The framework that naturally deals with these179

types of problems is optimal control theory. We are faced180

with the task of choosing a dynamic signalling regime u181

(here referred to as control) that minimizes the average182

of a cost accumulated along the trajectory plus a cost183

determined by the distance from the target at the termi-184

nation of the decision task – in the cell-fate decision case,185

a differentiation event. This can be expressed in terms186
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FIG. 1. External input changes the stability properties of the
dynamical system. (a) We consider a model of gene regula-
tion which describes the patterning dynamics in the ventral
neural tube with the addition of intrinsic noise [8, 13]. (b)
Different levels of the inputs Gli-A and Gli-R (see legend) re-
sult in qualitatively different trajectories in gene expression
space. Starting from the same state (low Nkx2.2 and Olig2,
but high Pax6 and Irx3 – the latter suppressed in the 3D
plot), the trajectories end in different stable fixed points. (c)
In the Waddington-landscape picture, cell-fate decisions can
be thought of as a drive towards different possible minima of
a potential landscape, the “depth” of which are controlled by
external signals (u) that “tilt” the landscape. (d) In this anal-
ogy, cell-fates are the stable fixed points of the corresponding
dynamical system – the minima of the landscape (full circles).
Varying external inputs changes the dynamical properties of
the system, by creating and destroying attractors and fixed
points; for instance, a saddle-node bifurcation corresponds to
the coalescence of a stable fixed point with an unstable fixed
point (empty circle).

of a cost rate ˜̀ (or running cost) that gives a measure187

of the instantaneous performance, along with a terminal188

cost Q. We construct the function ˜̀ to measure how far189

gene expression deviates from its target (via a function q,190

which is minimum at the target) and how much control191

is exerted in the process, e.g. by adding a term quadratic192

in u weighted by a parameter ε; the terminal cost Q is193

also chosen to measure the distance from the target, and194

is here assumed to be identical to q up to a unit time195

constant. In summary, we express the cost196

C = Q(x(T )) +

∫ T

0

dt ˜̀(x(t), u(t)) , (2)

and seek a function u minimising its mean over realisa-197

tions of the dynamics in Eq. (1). Here, T is the random198

time of differentiation, which is assumed to be exponen-199

tially distributed, with mean τ – or, equivalently, to occur200

at any time with uniform probability rate τ−1.201

From the point of view of decision making, and there-202

fore planning, the constant rate of differentiation assigns203

more weight to more imminent events, while discounting204

those further away in the future (see SI, Sec. SI-1 b). As205

shown in SI, Sec. SI-1 c, the minimisation of the cost in206

Eq. (2) is equivalent to that of207

C =

∫ ∞
0

dt e−t/τ `(x(t), u(t)) , (3)

where ` = ˜̀+ τ−1Q. This form of the cost explicitly ex-208

presses the notion of future discounting. For these cost209

functions, the conditions for optimality acquire the form210

of differential equations, and yield the optimal u in the211

form of feedback control, u∗(t) = φ∗(x(t)) (see Sec. in212

Methods and SI). This framework is particularly relevant213

in the context of the control of gene expression in a cell,214

where aspects of the signal transduction pathway and the215

signal effector can be under the control of the transcrip-216

tion factors in the GRN (Fig. 2 (b)). When the optimal-217

ity equations cannot be solved analytically or numeri-218

cally, approximate solutions can be found via techniques219

such as reinforcement learning (RL) [24]. Solving for the220

optimal control u∗, yields optimal feedback designs and221

can shed light on the functional role of observed feedback222

mechanisms.223224

Controlling the epigenetic landscape of a genetic225

switch226

In order to illustrate this method, and to understand227

the parameters of the cost function, we first considered228

a simple model for a binary cell-fate decision. A one-229

dimensional double-well potential V (x) with minima at230

±1, which correspond to two possible cells fates (see SI,231

Sec. SI-1). In this example, the noise is modelled as ad-232

ditive and independent of control, i.e. σ =
√

2D, with233

constant D. We model morphogen signaling as a drift234

contribution u, which “tilts” the landscape, V (x, u) =235

V (x)−u ·x (Fig. 2 (c)). We then seek to find the control236

protocol u (the dynamics of signal) that drives a cell from237

state x = −1 to the state x = 1 in the optimal way, i.e.238

minimizing the combination of how far the cell is from its239

target and the amount of control exerted to accomplish240

this (see SI, Eq. (S2) and (S16)).241

In this model, an exact solution of the optimality equa-242

tions can be found with numerical methods. The result-243

ing optimal control protocol leads to adaptive dynamics:244

high levels of control are necessary to leave the initial at-245

tractor, then as the system approaches the target attrac-246

tor, the amount of control is minimal, and only required247

to prevent noise from reversing the transition (Fig. 2 (f),248

and Fig. S1). From this example we see that the opti-249

mal solution minimises control by taking advantage of250

the multi-stability built in the system.251

The linearity of the dynamical system with respect to252

u and the quadratic cost for control, means that the op-253

timally controlled drift can be expressed as the negative254

gradient of a landscape function Veff . This represents a255

combination of the original landscape V and the optimal256
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FIG. 2. Optimal control representation of a Waddington land-
scape. (a) A GRN for a simple toggle-switch network with two
genes can be dynamically controlled to reach a target state by
explicitly defining a signalling protocol u(t) (open-loop con-
trol). (b) In the Waddington-landscape picture, we can think
of the external control as “tilting” the landscape over time;
the coloured lines represent the instantaneous landscape felt
by the “particle” of the same colour. (c) Alternatively, the sig-
nal can be placed under control of the target genes through a
feedback function φ. This results in closed-loop, or feedback,
control. (d) The optimal closed-loop control is incorporated
into a “static” effective landscape, describing the dynamical
properties of the signalling and GRN system as a whole. (e)
The solution for the optimal control (dashed red line) exhibits
adaptation near the target, when this corresponds to a sta-
ble fixed point of the uncontrolled landscape (dashed-dotted
grey line, not in scale). (f) This can also be seen in a sample
trajectory of the dynamics of a cell (green line), where the
control (red line) is switched off after an initial transient, and
is activated only to prevent large fluctuations away from the
target. For (e) and (f), the parameters used are D = 0.10,
τ = 10 and ε = 10.

cost expected to be paid from a given state x (the cost-257

to-go function, see Methods). Thus, rather than thinking258

of the control as tilting the landscape over time, it can259

be incorporated into a new landscape that describes the260

system as a whole (Fig. 2 (d)). This observation suggests261

that the inverse problem might provide insight into the262

function of feedback mechanisms in cell-fate decisions:263

given experimental observations and a landscape asso-264

ciated with the underlying GRN, it might be possible265

to distinguish the contributions of the controlled system266

(the GRN) from the feedback mechanisms (Fig. 2 (e)).267

This example also provides intuition into the effect of268

the differentiation rate – equivalently, of discounting cost269

over time. What is the optimal behaviour of the system270

before a cell differentiates?271

At one limit, when the differentiation rate is high, τ '272

1 (in units of the overall time-scale of the system), and273

noise, D, is low, only imminent running costs and the274

terminal cost are taken into account in planning, and275

the optimally controlled dynamical system is bistable.276

This is because when the system is far from its target, a277

substantial reduction in the distance of the system from278

its target within a short time τ would have a very high279

cost for control. Therefore, the only part of the cost280

that the controller can minimize is the cost of control281

itself. This leads to low values of the control at every282

state, and the system remains within the bi-stable regime283

(Fig. 3 (a,c) and S1, bottom left). Such small values of284

τ , would mean that a cell only rarely reaches its target285

before differentiation.286

Strikingly, very similar dynamics are observed in the287

opposite limit, when τ =∞ (Fig. 3 (a,c) and S1, top left).288

Here, no terminal cost is paid, and the problem consists289

of optimising the average cost per unit time at steady290

state. For low D, when multiple stable fixed points are291

present (as in the case of small u – bistable regime), the292

system spends long periods of time near each of them,293

with rare stochastic transitions between. In SI, Sec. SI-294

1 d, we demonstrate how the steady-state average of the295

cost q is exponentially small in u/D, when D is small:296

this allows very low values of u to yield large discrepan-297

cies between the probabilities of being in either attractor298

at steady state. This explains why, in such limit, it is299

optimal to choose u well within the bistability regime.300

For intermediate values of τ , the optimally controlled301

dynamics are such that the time needed to perform the302

switch is comparable with τ itself. When this is the case,303

characteristic transient dynamics are observed: in a first304

phase, high levels of control are applied to the system in305

order to drive the transition; in a second phase, the con-306

trol can be reduced to very low levels, within the bistable307

regime. This suggests that, in these scenarios, the opti-308

mal strategy is for the controller to apply high levels of309

control for a short time resulting in a lower cost from310

being off target for a shorter period of time (Fig. 3 (a,d)).311

This effect is less and less pronounced with increasing312

noise levels, D: the distribution of transition rates are313

controlled more and more by noise, with a smaller and314

smaller average transition time (Fig. 3 (a)).315

By making use of a simple Waddington landscape316

model, this example shows how optimal control theory317

can make sense of adaptation as the most “parsimonious”318

strategy to drive a cell to a desired target, while exploit-319

ing the multi-stability of a downstream network and its320

stochastic dynamics. The analytical results suggest an321

explanation for optimal signalling in the face of varying322

degrees of noise and multi-stability, and for different val-323
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ues of differentiation rates, which set the exponentially324

distributed time horizon within which cell-fate decision325

needs to take place.326

Control of cell-fate in ventral neural progenitors327

Next, we applied this optimal control approach to a328

GRN model that captures the patterning dynamics in329

the ventral region of the developing neural tube [13]. In330

this model noise from fluctuations in the copy number of331

components of the system have been introduced using the332

chemical Langevin equation approximation [8, 22] (Fig. 1,333

and reported in SI, Sec. SI-2 a). The control here is a two334

component vector representing the activator and repres-335

sor form of the morphogen controlled Gli effectors. These336

directly regulate the two most ventral markers, Nkx2.2337

and Olig2 (Fig. 2 (a,b)). In this case, we find an ap-338

proximate solution of the optimal control equations via339

reinforcement learning (RL) [24]. RL provides the means340

to identify optimal control strategies, without knowledge341

of the dynamical system function f , by sampling states,342

actions (controls) and running costs (or reward signals).343

Here, and in the following section, we use the TD3 algo-344

rithm [25] which is a state-of-the-art RL algorithms for345

continuous control problems (see SI, Alg.1 for details).346

Using this approach we identify optimal control strate-347

gies for the system to adopt an Olig2 state or a Nkx2.2348

state.349

In all cases, we optimize the discounted cost function,350

Eq. (S16), with τ ' 5 (A.U.): this can be compared to the351

half-life of Nkx2.2 and Olig2, t1/2 ' 0.35 (in simulation352

units – see Tab. I in SI). Thus, if t1/2 ' 4h then τ ' 2.5353

days, consistent with the developmental time scales in354

the embryonic mouse neural tube. For both targets, the355

control input shows a very clear transient. Convergence356

of the RL algorithm to an optimal strategy in the tran-357

sient is hard to achieve due to the poorer sampling of the358

transient configurations, resulting in run-to-run variance;359

however, the control strategy at steady state is consistent360

throughout experiments (see Fig. S3).361

Acquiring and maintaining the Olig2 state requires a362

very high sensitivity of control with respect to Olig2 lev-363

els, which is reflected in the high variability of the repres-364

sive form of Gli effector at a population level (Fig. 4 (a)).365

The learnt control is such that below a threshold value366

of Olig2, Gli repressor is high, and above the threshold367

Gli repressor is low (Fig. 4 (b)). One explanation for368

this could be that higher levels of repressor are neces-369

sary to restrain the system from bifurcating to Nkx2.2370

when levels of Olig2 are too low. This is consistent with371

the experimental evidence that Olig2 may provide neg-372

ative feedback onto the expression of Gli3, which is the373

dominant repressor for Shh signaling [16, 26, 27].374

This can be compared to the result for the Nkx2.2375

target. Similar values for the activator form of Gli are376

found at steady state, but much lower values for Gli re-377

pressor are observed. The overall low levels of the effec-378

tors is also consistent with the repressive role of Nkx2.2379

on Gli gene expression, as supported by experimental380

data [15, 16, 27]. It is notable that under the optimally381

controlled dynamics, a cell reaching the Nkx2.2 target382

must transition through the Olig2 state before acquiring383

Nkx2.2 expression.384

Morphogen-driven patterning385

In the previous section we identified optimal control386

strategies independently for two target states. Here we387

extend the approach to identify an integrated optimal388

control strategies that would generate a morphogen pat-389

terned tissue comprising multiple states in response to a390

spatially graded morphogen signal. We then define the391

state of the controlled system to comprise the GRN state392

and the signal as subsystems.393

Patterning, as an optimal control problem, can be con-394

ceived as a cooperative multi-agent task, whereby mul-395

tiple cells have to reach their respective targets simulta-396

neously, but where the shared morphogen input provides397

the positional information. Collectively, cells minimize398

a global shared cost, with the constraint that controller399

function – representing the signalling pathway with its400

feedback loops – has to be the same for all cells. The401

target pattern, implemented through the running cost402

q, has two boundaries that divide the tissue into three403

equal parts, with ventral, middle and dorsal fates corre-404

sponding to Nkx2.2, Olig2 and Pax6+/Irx3 expressing,405

respectively. We adapt the TD3 algorithm for the pat-406

terning task, and test it on the patterning of the ventral407

neural tube (see SI, Alg. 2).408

The morphogen dynamics are given by stochastic simu-409

lations of a diffusion process of independent Shh particles,410

while the GRN model is the same as in the previous sec-411

tion (details in SI, Sec. SI-2). We derive the optimality412

equation for this, in the ansatz of independent cells (in SI,413

Sec. SI-3. This ansatz can only be an approximation to414

the optimal solution, because the (stochastic) morphogen415

dynamics exhibit spatio-temporal correlations. Indeed, it416

works for a deterministic and static gradient – where the417

ansatz is exact (Fig. S4) – and can be a good approxima-418

tion when the steady-state of the morphogen is reached419

fast compared to the GRN. A naive implementation of420

the independence ansatz for a “slow” morphogen fails421

to reproduce the target pattern, due to the increasing422

effect of the correlations between morphogen signals at423

different locations in the tissue. Nevertheless, the (en-424

semble) average of the morphogen signal experienced by425

individual cells can be expressed with independent but426

non-autonomous dynamics (see SI, Sec. SI-2 b).427

This suggested that the introduction of memory vari-428

ables into the decision making may help to solve the429

problem, by “extracting” temporal features of the mor-430

phogen (Fig. 5 (a), and SI, Sec. SI-3 c). These variables431

can be thought to represent the intermediate components432

in the signalling cascade, such as the Shh receptor Ptch1433
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FIG. 3. Effect of the discounting (differentiation) time τ . (a) The mean first passage time (MFPT) at the target x = 1 from
x0 = −1 as a function of τ , from the numerical integral of the analytical formula, under the optimal control. This is shown
relative to the value of τ on a logarithmic scale. For high (low) values of τ , the MFPT for the optimally controlled dynamics
is far lower (higher) than τ itself, and decreases with the strength of the noise, D. (b) State and control costs from 5000
simulations for various values of τ (colour-coded). The optimal control for “small” or “large” values of τ , effectively minimises
cost for control, while for intermediate values of τ a non-trivial trade-off is observed (left panel). Only for low values of τ ' 1
does the terminal cost for the distance from the target have a large contribution to the overall cost (right panel). (c) Statistics
of 100 samples of the dynamics for the state (green) and the control (red). Solid lines are the median values, shaded areas
the 25-75 percentile. The grey shaded area highlights the values of the control variable u for which the controlled landscape is
still bistable, i.e. between the bifurcation values ±uc. In all panels, ε = 10; in b) and c) D = 0.05. For intermediate values,
when the MFPT is comparable to τ , the switch is driven by a non-trivial transient dynamics for the control, resulting from
competition between control and target running costs.

and the transmembrane protein Smo etc. The activity434

of these components in response to Shh introduce delays435

and persistence to the transmission of the instantaneous436

changes in the morphogen. The control model we intro-437

duce features more general feedback mechanisms within438

the signalling cascade and from the GRN species. With439

this extension, the algorithm is able find strategies that440

lead to the target pattern (Fig. 5 (b)), which we were not441

able to achieve without the memory variables.442

In Fig. 5 (b), we see the average of several simulations443

of the tissue patterning process: at the beginning of the444

morphogen spread, all cells are in the initial pre-pattern445

(dorsal) condition. As morphogen spreads into the tissue,446

Olig2 and Nkx2.2 are sequentially induced ventrally, re-447

sulting in a kinematic wave of gene expression spreading448

from ventral to dorsal until the target pattern is reached.449

The pattern is then maintained. The dynamics of the ef-450

fectors in individual cells (Fig. 5 (c)) share some features451

with those found for the single cell control (Fig. 4 (a,c)).452

Because the initial conditions are the same for all cells453

in the tissue (Pax6+/Irx3+, vanishing morphogen signal454

and memory variables – see SI, Sec. SI-3 c), the signal lev-455

els are also the same, corresponding to the values needed456

to maintain cells in the dorsal state, i.e. high levels of457

repressor together with low levels of activator (Fig. 5 (c),458

top). For cells that are assigned to an Olig2+ fate, after459

an initial delay set by the spread of the Shh morphogen,460

the dynamics are remarkably similar to those found for461

the Olig2 target in a single cell: levels of repressor neg-462

atively correlated with Olig2 concentration and low lev-463

els of activator at steady state (Fig. 5 (c), middle). In464

cells acquiring an Nkx2.2+ fate we also observe a nega-465

tive correlation of Gli repressor levels with Nkx2.2 (Fig. 5466

(c), bottom). Thus, the learnt control strategy recovers467

the repressive feedback from both Olig2 and Nkx2.2 on468

Gli, which results in adaptive dynamics of the signalling469

effectors. Both of these features are supported by exper-470

imental data [15, 16, 26, 27].471
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FIG. 4. Reinforcement learning solution for the optimal control of the ventral neural tube GRN. (a) Samples of the controlled
dynamics for the Olig2 target. The control u∗, comprising activator and repressor Gli (top panel) and the resulting gene
expression dynamics (bottom panel). (b) Snapshot at steady state of the optimal control u∗ for activator Gli (left panel) and
repressor Gli (right panel) as a function of Olig2 and Nkx2.2 levels. In (c) and (d), the analogous plots, for the Nkx2.2 target.
In both cases, Gli activity (relative value of activator vs repressor) is high in a first transient, and decreases over time. A
negative feedback from Olig2 onto the repressor appears to be required to maintain cells in the Olig2+ state – see (b), right
panel. One possibility is that this prevents the activator driving the state towards Nkx2.2+ state (the optimally controlled
trajectories of panel (c) are overlaid as grey lines – the dashed grey line is the average).

DISCUSSION472

Here we used optimal control theory to develop a473

framework to analyse morphogen signaling strategies and474

identify mechanisms that produce rapid, precise and re-475

producible cell-fate decisions during tissue patterning in476

embryo development. We demonstrate that this frame-477

work can be combined with dynamical – Waddington –478

landscape models of cell-fate decisions to provide an op-479

timal control representation in the form of a new land-480

scape. Reinforcement Learning can be used to solve opti-481

mal control problems associated with signalling and cell-482

fate decisions and we formulate the patterning problem as483

a multi-agent cooperative optimal control task, in which484

the objective function is a measure of performance of485

all the cells in the tissue. By using these approaches to486

analyse the morphogen patterning of neural progenitors487

we highlight how the optimal mechanisms obtained are488

consistent with experimental data.489

The analysis revealed that for both individual cell fate490

decisions and for morphogen-driven tissue patterning,491

adaptive signalling dynamics, which are observed exper-492

imentally in vivo [28], emerge as an optimal strategy in493

the presence of multi-stability. This suggests that sig-494

nalling pathways have evolved to take advantage of the495

dynamical landscape that arises from the gene regula-496

tory network. By contrast, in the celebrated French Flag497

model of morphogen patterning, cell fates are proposed to498

be instructed by morphogen concentration with the con-499

centration viewed as being read out directly by cells [2].500

While the French Flag model has been crucial for high-501

lighting the role of morphogens in pattern formation, it502

does not explain the complex cellular signalling dynam-503

ics that are often observed experimentally. Moreover, it504

subordinates the role of the GRN to that of the extracel-505

lular signals. The optimal control perspective provides506

an alternative paradigm that accommodates the dynam-507

ics in signal interpretation and establishes a relationship508

between the control signal and the system. This pro-509

vides a framework that complements dynamical systems510

approaches to gene regulation – where signals are exter-511

nally imposed – by making signalling an integrated part512

of a whole decision-making unit: the cell.513

The objective function includes a notion of “timing”514

through exponential discounting. This can be regarded515

as representing the tempo of development and the rate516

of differentiation in a tissue, which limits the amount of517

time that is available to the cell to integrate the signal518
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FIG. 5. Reinforcement learning solution for the morphogen-driven patterning task. The optimal control model (a) gives the
signalling effectors U (Gli-A/R) as a function φ of the target genes G, the morphogen signal S and memory variables M . The
goal is to minimise a trade-off between the distance from a target gene expression profile (b) and the magnitude of the control
over time. The dashed lines at 1/3 and 2/3 of the total D-V extension indicate the positions of the boundaries between target
differential expression regions. The patterning process is driven by a stochastic diffusion of the Shh morphogen S (c). In (d),
the cell-by-cell view of the dynamics averaged over 100 simulations (solid lines are the medians, and the shaded areas the 10-90
percentile, and individual panels are labelled by the D-V position of the selected cells) reveals the control strategy for each
position. Similar features shown in Fig. 4 are also found here, highlighting the potential functional role of Gli repression by
Olig2 and Nkx2.2 in the patterning process. In (e) a single realisation of the optimally controlled dynamics with the morphogen
field as in (c).

and make a decision. We set this time to be comparable519

with differentiation rates and the degradation rates of the520

key transcription factors in the GRN [29].521

Importantly, when a Waddington landscape offers a522

good phenomenological model of cell-fate decision, the523

optimal control framework provides analytical tools to524

“isolate” the contribution of morphogen signalling to the525

GRN dynamics. Practically, this could be achieved via526

the comparison of experimentally measured landscapes527

under different genetic or pharmacologic manipulations528

of signalling pathways [20].529

There are limitations to our approach that will need to530

be addressed in future work. In the current formulation,531

the control input to the system is selected in a “reactive”532

way, as a function of the target genes. This rules out pos-533

sible hysteresis effects in feedback mechanisms. This is534

partially addressed via the addition of memory variables535

in the morphogen-driven tissue patterning example. Yet,536

the signalling effectors – as a function of components of537

the GRN – still retain a memory-less component. This538

could be tackled by introducing production-degradation539

dynamics, where the control defines the production rates,540

rather than the levels. This would have the benefit of al-541

lowing the inclusion of known kinetic properties of the542

effectors, such as degradation rates [29]. Also, the degra-543

dation rate has been assumed independent of the cell544

state. The control problem solved here can be extended545

to cases where the terminal-time statistics depends on the546

state and control variables, and include optimal stopping547

time problems (see e.g. [30]).548

From the RL perspective, the introduction of mem-549

ory variables is analogous to the use of recurrent net-550

works for modelling systems with memory [31], e.g. in551

partially observable environments [32, 33]. Examining552

this problem in the broader context of decision making553

in non-Markovian or non-stationary environments [34]554

could highlight general design principles that optimally555

deal with memory. It is interesting to note that the556
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morphogen-driven patterning task can be formally re-557

garded as a classification of signal time series: hidden558

in the optimally-controlled dynamics are the features of559

the temporal profile of the signal which can be utilised560

by the cell in order to make decisions. Hence the optimal561

control perspective provides a link between the complex562

computational problem of morphogen interpretation and563

the biological hardware available for its solution.564

We did not address all possible feedback mechanisms565

that could be exploited by the system. For example, Shh566

signaling controls the expression of Shh binding proteins,567

such as Ptch1, Scube2 and Hhip1, that alter transport568

of the morphogen through the tissue [12, 14, 35]. Feed-569

back on morphogen spread could be incorporated into the570

model. Indeed, the framework could be used to investi-571

gate virtually any aspect of the system. This could in-572

clude, for example, control of diffusivity of signals, degra-573

dation rates of system components, or the accessibility574

of cis-regulatory elements and the effect of chromatin575

remodelling. All of which have been implicated in the576

interpretation of morphogen signalling [1, 8, 14].577

The patterning example dealt with in this study is one578

in which positional information is provided by a signal ex-579

ternal to the tissue. In other cases, symmetry is broken580

and patterning controlled by internally generated signals,581

such as in the case of organoids patterned by Turing-like582

mechanisms [36] Patterning, in these contexts, poses a583

problem of coordination by means of signalling that can584

be cast into a multi-agent decision making task. This,585

in turn, can be tackled numerically with multi-agent586

RL (MARL) algorithms [37, 38] or analytically via, e.g.587

mean-field approximation in the limit of large numbers588

of cells [39, 40]. Therefore, optimal control provides a589

framework in which to analyse these systems to investi-590

gate functional explanations for the observed signalling591

strategies, proportions of cell types and self-organisation592

of patterning.593

The optimal control approach, with its focus on linking594

mechanisms with control, is ideally suited for the analy-595

sis of in vitro and synthetic systems. This could be used596

to design and refine signalling regimes for the directed597

differentiation of stem cells in vitro and the production598

of specific sets of cell types in defined proportions. An599

understanding of the control principles operating in bi-600

ological systems will provide insight and inspiration for601

the construction of artificial systems and will support the602

use of stem cells in disease modelling and regenerative603

medicine.604
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METHODS617

Optimal stochastic control and its solution618

Given a system with state variables x satisfying the619

controlled stochastic dynamics620

dx

dt
= f(x, u) + σ(x, u) η(t) , (4)

where f is a deterministic drift, σ – multiplying the stan-621

dard Gaussian white noise η – is the magnitude of the622

noise and u represent a set of control variables, we ask623

what is the optimal choice of the control variables u over624

time in that minimizes the mean of a cost function625

C =

∫ ∞
0

dt e−t/τ `
(
x(t), u(t)

)
, (5)

where ` is a cost per unit time (also termed running cost)626

associated withto the instantaneous state and control at627

a given time, and τ sets the time-scale for the expo-628

nential discount factor – defining the “far-sightedness”629

of the decision-maker in the estimation of the cost that630

is expected to be paid in the future. As we show in631

SI, Sec. SI-1 c, optimal-control problems with terminal-632

state cost and uncertain terminal time can be cast in633

the minimisation of a cost function of the form Eq. (5).634

Throughout this study, the running cost has the form635

`(x, u) = q(x) + ε‖u‖2/2, that is a trade-off between the636

squared magnitude of the control and a state-dependent637

cost measuring the squared distance from a target ξ,638

q(x) = ‖x− ξ‖2/2.639

For the class of cost functions in the form of Eq. (5),640

it is possible to solve the optimal control problem via641

dynamic programming. This is achieved by maximising,642

at every state x, the value function Ju, defined as the643

negative of the cost-to-go function644

Ju(x) = −Eu(·)
[
C
∣∣x(0) = x

]
(6)

i.e. the cost to be paid conditioned on the initial state,645

averaged over all the realisations dynamics in Eq. (4),646

with control function u.647

f · ∇Ju +D∇2Ju − ` = 0 (7)

where D = σ2/2 and ∇ is the gradient with respect to648

the state variables x.649

The value function corresponding to the optimal con-650

trol u∗, denoted J∗ ≡ Ju∗ , therefore satisfies651

max
u

{
f · ∇J∗ +D∇2J∗ − `

}
= 0 . (8)
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This equation, known as the dynamic programming (or652

Bellman) equation [41, 42], yields the optimal cost as653

well as the optimal control as a function u∗ of the state654

x. The non-linearity introduced by the max operator,655

along with the infinite number of states (for continuous656

states and actions), makes the exact solution of Eq. (8)657

generally impossible.658

Numerical techniques can be employed to find approx-659

imate solutions: reinforcement learning (RL) [24] with660

function approximation through deep neural networks661

[25, 43] is the numerical scheme used in this work for the662

solution of Eq. (8) for the optimal control of the ventral663

neural tube GRN. However, the case where σ is constant664

while f and ` have, respectively, linear and quadratic de-665

pendence on u (as in the case of the control in a landscape666

dealt with in the main text), falls into a general class of667

linearly solvable control problems [44, 45], in that Eq. (8)668

can be cast into a linear form through a change of vari-669

ables (as detailed in SI, Sec. SI-1).670

SUPPLEMENTARY INFORMATION671

SI-1. Optimal control in a potential672

Let us consider the Langevin dynamics673

dx

dt
= −∇V + u+

√
2Dη (S1)

where V is a confining potential, η is a Gaussian noise with 〈η(t) η(t′)〉 = δ(t − t′) and u is an additional control674

drift. The control u is chosen to minimize a given cost functional, as detailed in the following. We choose the675

potential V in such a way that the uncontrolled dynamics has two stable fixed points (i.e. minima of V ) at x = ±1:676

V (x) = x4/4− x2/2.677

a. Stationary-state optimization678

We introduce the cost function679

Cu = lim
T→∞

1

T

∫ T

0

dt
( ε

2
|u(t)|2 + q(x(t))

)
(S2)

with680

q(x, u) =
1

2
|x− ξ|2 (S3)

We seek to find the control strategy u that minimizes the expectation value of Cu over all realisations of the stochastic681

dynamics Eq. (S1). If the system is ergodic, E[Cu|X0 = x] is a constant, i.e. it does not depend on the initial condition.682

In particular, this average is equivalent to that of the running cost at the stationary state:683

E[Cu|X0 = x] = µ =

∫
dx ρeq(x)

( ε
2
|u(t)|2 + q(x(t))

)
(S4)

We can introduce the value function684

J(x) = − lim
T→∞

E
[ ∫ T

0

dt′
( ε

2
|u(t)|2 + q(x(t))− µ

) ∣∣∣∣x0 = x

]
(S5)

that is (minus) the excess cumulated cost from a given state relative to the steady state average. We can use the685

Feynman-Kac formula [46], to show that this satisfies686

−D∇2J − (u−∇V ) · ∇J + q +
ε

2
u2 = µ . (S6)

It can be verified by multiplying by the steady state (equilibrium) distribution ρeq, satisfying (u−∇V )ρeq = D∇ρeq,687

and integrating over all states. The principle of dynamic programming holds that in order to minimize µ, it is sufficient688

to minimize J(x) for every x. We therefore see that the minimum condition for J yields689

u∗ =
1

ε
∇J∗ (S7)
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and that the optimal value function J∗ satisfies the Bellman equation690

−D∇2J∗ − 1

2ε
|∇J∗|2 +∇V · ∇J∗ + q = µ∗ . (S8)

The constant µ∗ is the minimum average cost at the stationary state.691

By replacing J∗ = ε(V + 2D logψ) this rewrites692

−D∇2ψ +

(
q

2Dε
+
|∇V |2

4D
− ∇

2V

2

)
ψ =

µ∗

2Dε
ψ (S9)

This is formally equivalent to the ground-state problem of a quantum particle of mass m = 2D/~2 in the potential693

VS =
q

2Dε
+
|∇V |2

4D
− ∇

2V

2
. (S10)

The change of variables implies that the optimally controlled dynamics is given by694

dx

dt
= 2D∇ logψ +

√
2Dη . (S11)

From the Fokker-Planck equation associated to Eq. (S11),695

∂tρ+∇ · (2Dρ∇ logψ −D∇ρ) = 0 (S12)

we see that the function ψ is related to the equilibrium steady-state distribution, ρeq ∝ ψ2.696

This ground-state problem can be solved by introducing a fictitious dynamics in imaginary time,697

∂sψ̃ = −Ĥ ψ̃ (S13)

with the Hermitian operator Ĥ = −D∇2 +VS . The ground state ψ0 of the Hamiltonian Ĥ is the slowest mode in the698

imaginary time evolution, and in the long-time limit, Eq.(S13) is solved by699

ψ̃ → e−E0s ψ0 (S14)

The solution of the HJB equation, ψ, then identifies with ψ̃, up to a scaling factor which depends solely on time.700

From the rate of change of the norm of ψ̃ we can infer the minimum average cost:701

µ∗ = 2DεE0 = −2Dε lim
s→∞

∂s log ‖ψ̃‖2 . (S15)

b. Exponential discounting702

The control can also be chosen to minimize a cost over a shorter window of time, rather than at the steady-state.703

This can be done by introducing an exponential discount factor over time, as in704

Cu =

∫ ∞
0

dt e−t/τ
( ε

2
|u(t)|2 + q(x(t))

)
(S16)

where τ sets a typical time scale over which rewards are accumulated in the future. As in the above case, we seek u705

that minimizes the expectation value E[Cu] over the stochastic dynamics.706

We can introduce the value function as (minus) the expected discounted cost-to-go from a given state at a given707

time708

J(x, t) = − lim
T→∞

E
[ ∫ T

t

dt′ e−(t′−t)/τ
( ε

2
|u(t)|2 + q(x(t))

) ∣∣∣∣xt = x

]
(S17)

We see that this satisfies709

−D∇2J − (u−∇V ) · ∇J + τ−1J + q +
ε

2
u2 = 0 . (S18)
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The optimality condition requires the control to be given by u∗ = ε−1∇J , and optimality Bellman equation writes710

−D∇2J∗ − 1

2ε
|∇J∗|2 + τ−1J∗ +∇V · ∇J∗ + q = 0 . (S19)

Analogously to the above case, with the transformation J∗ = ε(V +2D logψ), the Bellman equation takes the form711

Ĥψ ≡ −D∇2ψ +

(
q

2Dε
+
|∇V |2

4D
− ∇

2V

2
+ τ−1

( V
2D

+ logψ
))

ψ = 0 (S20)

This non-linear Schrödinger equation can be solved numerically in a similar way as above, by introducing a fictitious712

dynamics in imaginary time, Eq. (S13), and solving it until convergence to the stationary state Ĥψ = 0.713

c. Terminal cost and discounting714

For a process that terminates with a probability per unit time τ−1 (or, in other terms, the probability density715

function for the terminal time is exponential, with mean τ), the exponential discount factor corresponds to the716

probability that a process that started at time t has not yet terminated at time t′:717

Prob{not yet terminated after ∆t} =

∫ ∞
∆t

dt

τ
e−t/τ = e−∆t/τ (S21)

Therefore, the average of the cost Cu in Eq.(S16) is equivalent to that of718

C̃u =

∫ T

0

dt
( ε

2
|u(t)|2 + q(x(t))

)
(S22)

where T is the exponentially-distributed terminal time with mean τ .719

For the dynamics with a terminal state (time), we can include a terminal cost at the time T , Q(x(T )). This is720

particularly relevant in the case of the cell-fate decision or the patterning example considered in the main text.721

We can change the definition of the value function in Eq. (S17) by subtracting the contribution from the terminal722

cost. This can be written as723

E
[
Q(x(T ))

∣∣xt = x
]

=

∫ ∞
t

dTτ−1 e−(T−t)/τExT=x′

[
Q(x′)

∣∣∣xt = x
]

(S23)

Together with the expression in Eq. (S17), the value for the task including the terminal cost can be expressed as724

J(x, t) = − lim
T→∞

E
[ ∫ T

t

dt′ e−(t′−t)/τ
( ε

2
|u(t′)|2 + q(x(t′)) + τ−1Q(x(t′))

) ∣∣∣∣xt = x

]
. (S24)

Therefore, we recognise that the addition of the terminal cost is equivalent to the replacement of the state-dependent725

running cost q by q̃ = q + τ−1Q in Eq. (S16).726

If we choose the terminal cost to be given by the same function q (the dimensions do not match, so we understand727

that Q is equal to q multiplied by a unit time constant), then q̃ = (1 + τ−1) q. Since the optimal solution is invariant728

upon multiplications of the cost function by a global constant (see Eq. (S7)), the problem is equivalent to the one729

where q is kept the same, but τ enters as a rescaling of the trade-off parameter ε, replaced by ε̃ = ε/(1 + τ−1).730

d. First passage time near target731

The mean first passage time (MFPT) at a given point x̄, Tx̄ for a process starting at a point x < x̄, is expressed as732

〈Tx̄(x)〉 = E
[ ∫ ∞

0

dt′ 1
∣∣∣xt = x

]
, (S25)

where the region x ≥ x̄ is replaced by absorbing states (viceversa if x > x̄). For the optimally control dynamics given733

in Eq. (S11), this satisfies [46]734

2D
d

dx
logψ · d

dx
〈Tx̄(x)〉+D

d2

dx2
〈Tx̄(x)〉 = −1 . (S26)
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Its solution can be found by explicit quadratures, with the boundary conditions 〈Tx̄(x̄)〉 = 0 and 〈Tx̄(x→ −∞)〉 =∞,735

〈Tx̄(x)〉 =
1

D

∫ x̄

x

dx′
∫ x′

−∞
dx′′

ψ(x′′)2

ψ(x′)2
(S27)

By interpreting ψ2 = exp(−Veff/D), we have736

〈Tx̄(x)〉 =
1

D

∫ x̄

x

dx′
∫ x′

−∞
dx′′ exp−

(
Veff(x′′)− Veff(x′)

)
/D (S28)

When Veff has two minima, in the small-D limit, Eq. (S28) recovers the Freidlin-Wentzel theory of stochastic transitions737

via the saddle-point approximation [46, 47].738

Low control and diffusion limit739

For small values of u, the controlled potential V (x, u) still has two minima, corresponding to the stable fixed points740

of the controlled dynamics. If D is also small, the transitions between the two fixed points are rare, while typical741

realisations of the noise will produce small fluctuations around these: in this limit, Eq. (S28) gives the Freidlin-Wentzel742

theory of stochastic transitions [47], where the MFPT from the left minimum x− to the right minimum x+ is therefore743

approximated as744

〈Tx+
(x−)〉 ' 1

D
e∆Veff/D (S29)

where ∆Veff = Veff(x0)− Veff(x−), with x0 denoting the local maximum of the potential (or saddle) between the two745

minima. The rate for the opposite transition is analogously given by swapping x− ↔ x+.746

The steady-state probability to be near one or the other fixed point is given by the average exit time from the fixed747

point attractor. In the present example, this can be calculated as the MFPT from x− ' −1 to x+ ' 1, and vice748

versa.749

First of all, we need to solve for the stationary points at a given value of u. In the linear approximation in u, these750

are751

x± ' ±1 + u/2 (stable) and x0 ' −u (unstable) (S30)

The value of the potential at these points is752

V (x±, u) ' −1/4∓ u , V (x0, u) ' 0 (S31)

The MFPT for the “reverse” transition, 〈Tx−(x+)〉, and the MFPT for the “forward” one, 〈Tx+
(x−)〉, are given by753

Eq. (S29), and their ratio gives the relative probability to be in the right or the left attractor at steady state:754

ρ+

ρ−
'
〈Tx−(x+)〉
〈Tx+(x−)〉

' e2u/D . (S32)

Therefore, we see that when D � 1, for a range of control in the regime D � |u| � 1, the probability distribution is755

highly skewed towards one of the two attractors.756

SI-2. Environment dynamics757

a. Ventral neural-progenitor GRN model (PONI network)758

We outline here the details of the GRN model first presented in [13], with the addition of noise through the chemical759

Langevin equation approximation [8, 22].760

We denote by H+ the Hill function761

H+(x) =
x

1 + x
, (S33)
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and by the latin letters the concentrations of the transcription factors, i.e. P ≡ [Pax6], O ≡ [Olig2], N ≡ [Nkx2.2],762

I ≡ [Irx3], A ≡ [GliA], R ≡ [GliR]. The dynamics of the four genes in the ventral neural tube GRN is described by763

the following system of first order ODEs:764

dP

dt
= αPaxH

+

(
KPax,Pol cPol

(1 +KPax,OliO)2 (1 +KPax,NkxN)2

)
− βPax P

dO

dt
= αOliH

+

(
KOli,Pol cPol

(1 +KOli,NkxN)2 (1 +KOli,Irx I)2

1 + fAKOli,GliA

1 +KOli,Gli(A+R)

)
− βOliO

dN

dt
= αNkxH

+

(
KNkx,Pol cPol

(1 +KNkx,Pax P )2 (1 +KNkx,OliO)2 (1 +KNkx,Irx I)2
×

× 1 + fAKNkx,GliA

1 +KNkx,Gli(A+R)

)
− βNkxN

dI

dt
= αIrxH

+

(
KIrx,Pol cPol

(1 +KOli,IrxO)2 (1 +KNkx,IrxN)2

)
− βIrx I

(S34)

where KX,Y is the binding affinity of the TF/species Y onto its site on gene X, fA is the binding cooperativity factor765

for Gli activator, cPol is the (constant) concentration of RNAp, αX are the maximum production rates, and βX the766

degradation rates.767

As in [8], we add (multiplicative) noise via the chemical Langevin equation (CLE) approximation [22] to the right-768

hand side of Eqs. (S34). The overall size of the fluctuations is controlled by the inverse system size parameter, Ω−1.769

For instance, for Pax6, the multiplicative noise is modelled by770

Ω−1/2

[
αPaxH

+

(
KPax,Pol cPol

(1 +KPax,OliO)2 (1 +KPax,NkxN)2

)
+ βPax P

]1/2

(S35)

(i.e. the sum of production and degradation rates for the gene of interest, scaled by the inverse system size, under771

square root) multiplied by a standard Gaussian white noise, independent for each gene.772

See Table I for the parameter values used.773774

b. Dynamics of a stochastic gradient775

In the patterning task, we also include a dynamics for the morphogen gradient. We simulate a non-stationary776

stochastic field Ŝx,t, as the empirical number density field Ŝx,t =
∑
i δ(X̂

i
t − x) associated to a stochastic reaction-777

diffusion with778

dX̂i
t =
√

2D dW i
t (S36)

and where particles are removed with independent rates κ and added at x0 with rate J0. The SDE in Eq. (S36)779

provides an explicit method to simulate the spatio-temporal dynamics of the stochastic field Ŝx,t. To do so, we780

simulate trajectories of Eq. (S36) via, e.g. Euler-Maruyama method, with time discretisation dt, that is781

Xi
t+dt = Xi

t +
√

2D dt git (S37)

with git a normal-distributed random number with mean 0 and covariance 〈git g
j
t′〉 = δi,j δ(t − t′); in the time step782

between t and t + dt, each particle is eliminated with probability κdt, and a burst of nb new particles is added at783

x0 < 0 with probability J0 dt/nb (so that J0 is the overall average production rate, but with burst size nb). The784

number density field can be then defined with a spatial resolution dx, as the count of the number of particles within785

[x− dx/2, x+ dx/2], divided by dx. The resolution dx is chosen to be the single-cell size.786

We set the parameters of the dynamics as follows. 81 cells are aligned along one axis within [0, 1], so dx = 1/80. The787

time discretization dt is chosen as 5 times smaller than that for the PONI network, but configurations are taken every788

5 steps. The free parameters of the dynamics must set a time scale, a length scale and a typical number of particles.789

We set the overall time scale of the process through the degradation rate κ. The length scale is the decay length λ790

of the average gradient profile at steady state, 〈Ŝx,t→∞〉 ∝ exp−|x− x0|/λ. This is fixed to 0.15 in all simulations,791

consistently with experimental measures [16]. This decay length can be derived analytically to be λ =
√
D/κ, from792

which we fix the diffusion constant accordingly to be D = κλ2. The typical density is chosen to be the average793
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Concentrations ∼ [conc]
cPol RNAp concentration 0.8

Binding affinities ∼ [conc]−1

KPax,Pol Binding affinity of RNAp to Pax6 4.8
KOli,Pol Binding affinity of RNAp to Olig2 47.8
KNkx,Pol Binding affinity of RNAp to Nkx2.2 27.4
KIrx,Pol Binding affinity of RNAp to Irx3 23.4
KOli,Gli Binding affinity of Gli to Olig2 18.0
KNkx,Gli Binding affinity of Gli to Nkx2.2 373.0
KPax,Oli Binding affinity of Olig2 to Pax6 1.9
KNkx,Oli Binding affinity of Olig2 to Nkx2.2 27.1
KOli,Nkx Binding affinity of Nkx2.2 to Olig2 60.6
KNkx,Pax Binding affinity of Pax6 to Nkx2.2 4.8
KPax,Nkx Binding affinity of Nkx2.2 to Pax6 26.7
KOli,Irx Binding affinity of Irx3 to Olig2 28.4
KIrx,Oli Binding affinity of Olig2 to Irx3 58.8
KNkx,Irx Binding affinity of Irx3 to Nkx2.2 47.1
KIrx,Nkx Binding affinity of Nkx2.2 to Irx3 76.2

Cooperativity coefficients and noise intensity ∼ 1
fA Activation constant 10.0

Ω−1 Noise intensity 0.005

Degradation rates ∼ [time]−1

βPax Degradation rate of Pax6 2.0
βOli Degradation rate of Olig2 2.0
βNkx Degradation rate of Nkx2.2 2.0
βIrx Degradation rate of Irx3 2.0

Production rates ∼ [conc][time]−1

αPax Maximum production rate of Pax6 2.0
αOli Maximum production rate of Olig2 2.0
αNkx Maximum production rate of Nkx2.2 2.0
αIrx Maximum production rate of Irx3 2.0

TABLE I. Parameters of the GRN model. Dimensionality of the constants are indicated in the header to every section.

number density at x = 0 at steady state, which is N0 = J0 e−|x0|/2κλ. With a fixed burst rate r = J0/nb = 50, we794

modulate the burst size nb by inverting the expression for N0.795

The ensemble average of the field 〈S〉, satisfies the PDE796

∂t〈S〉 −D∇2〈S〉+ κ〈S〉 = J0 δ(x− x0) (S38)

By integrating the spatial part, we can write797

∂t〈S〉 = J0

exp−
{
κt+ (x−x0)2

4Dt

}
√

4πDt
. (S39)

In Eq. (S39), the spatial variable enters only parametrically and the dynamics can be described as an ODE with time-798

dependent production rates. Therefore, (ensemble) averages of the signal experienced at different spatial locations799

can be regarded as “independent”, but at the expense of allowing non-autonomous dynamics for the local signal.800

Parameters used for the simulations in this work are λ = 0.15 (in units of D-V axis length), κ = 0.5 (equal to β/4801

– See Tab. I), and N0 = 5000.802

SI-3. Multi-Agent control803

Here we derive the Bellman equation for the multi-agent (MA) case. The equations are written for the discrete-804

time and discrete-state case – as it is more transparent for a reinforcement learning implementation – but are easily805

generalized to continuous space and/or time. The notation is as follows:806

• cell index, i (the ·̄ notation indicates arrays indexed by cells)807
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• cell state, including gene expression and extracellular signal levels, xi ∈ RD (x̄)808

• target expression, ξi ∈ RD (ξ̄)809

• intracellular signal, ui ∈ RK (ū)810

• M-A policy, ū ∼ Π(·|x̄), where Π(ū | x̄) ≡
∏
i π(ui |xi)811

• model of the environment, x̄′ ∼ P (·|x̄, ū)812

a. Full multi-agent case813

The multi-agent probability distribution at time t, ρt(x̄), satisfies the forward Kolmogorov equation814

ρt+1(x̄) =
∑
x̄′,ū′

P (x̄ | x̄′, ū′) Π(ū′|x̄′) ρt(x̄′) (S40)

The goal of the agents is to maximize the expectation value of the discounted return (in the decision-making and815

reinforcement learning literature, it is more customary to express the goal in terms of maximisation of rewards, rather816

than minimisation costs):817

Rt =
∞∑
t′=0

γt
′
rt+t′ (S41)

with818

rt = r(x̄t, ūt) (S42)

In the end, we will be interested in a reward of the form819

r(x̄, ū) = −qξ̄(x̄)− ε

2
‖ū‖2 (S43)

where, e.g. qξ̄(x̄) = ‖x̄− ξ̄‖2/2. This negative reward is a cost that penalises certain configurations of the MA system820

–implementing the requirement to reach the target– and high values of control.821

The objective function JΠ = EΠ[R0], that is the ensemble average of R0 over the trajectories generated by the822

policy Π, writes823

JΠ =
∑
t

γt
∑
x̄,ū,x̄′

P (x̄′ | x̄, ū) Π(ū | x̄) ρt(x̄) r(x̄, ū)

=
∑
x̄,ū,x̄′

P (x̄′ | x̄, ū) Π(ū | x̄) η(x̄) r(x̄, ū)
(S44)

where η is the discounted occupancy824

η(x̄) =
∞∑
t=0

γtρt(x̄) (S45)

We can introduce the quality (or state-action value) function, which is the expectation value of the return conditioned825

on the initial state and action, QtΠ(x̄, ū) = E
[
Rt
∣∣x̄t = x̄, ūt = ū

]
. We can write a recursive equation of the value826

function QtΠ, expressing the conditional expectation value E[Rt|x̄, ū] by making use of Eq. (S40):827

QtΠ(x̄, ū) =
∑
x̄′

P (x̄′ | x̄, ū)
{
r(x̄, ū) + γ

∑
ū′

Π(ū′ | x̄′)Qt+1
Π (x̄′, ū′)

}
. (S46)

Since there is no finite horizon and neither rewards nor transition probabilities depend explicitly on time, we can seek828

for a stationary solution QtΠ = QΠ.829

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2022. ; https://doi.org/10.1101/2022.07.26.501519doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501519
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

The principle of dynamic programming [41, 48] consists in maximizing the expected return –i.e. the objective830

function JΠ– by maximizing its conditional expectation at intermediate times, that is the value function. The optimal831

policy Π∗, then, is given in terms of the quality function as832

Π∗(ū | x̄) = δū, ū∗(x̄) , with ū∗(x̄) = argmax
ū

Q∗(x̄, ū) (S47)

where the optimal quality function satisfies the Bellman equation833

Q∗(x̄, ū) =
∑
x̄′

P (x̄′ | x̄, ū)
{
r(x̄, ū) + γmax

ū′
Q∗(x̄′, ū′)

}
. (S48)

b. Independent agents834

To reflect the requirement of each agent individually to reach their own target, we write qξ̄(x̄) =
∑
i qξi(xi), where835

qξ is some convex function that has a minimum at ξ. This is true for the cost rate qξ̄(x̄) = ‖ξ̄ − x̄‖22 =
∑
i ‖ξi − xi‖22.836

So, the instantaneous reward for the MA system is the sum of rewards for the individual agents, ci, that are functions837

of the single agent’s observations and actions:838

ri(x, u) = −qξi(x)− ε

2
‖u‖2 (S49)

As discussed above, the MA policy Π with respect to which we want to optimize the performance is of the form839

Π(ū | x̄) =
N∏
i=1

π(ui |xi) (S50)

that is, actions by individual agents are chosen independently according to the same single-agent policy π. We seek840

for solutions of the Bellman equation of the form841

QtΠ(x̄, ū) =

N∑
i=1

Qtπ(xi, ui) . (S51)

By replacing Eqs. (S50) and (S51), into the Bellman equation (S46), we have842 ∑
x̄′

P (x̄′ | x̄, ū)
∑
i

{
r(xi, ui) + γ

∑
u′i

π(u′i |x′i)Qt+1
π (x′i, u

′
i)−Qtπ(xi, ui)

}
= 0 . (S52)

Optimality, in this approximation, is843

π∗(· |x) = δu,u∗(x) , with u∗(x) = argmax
u

Q∗(x, u) (S53)

where Q∗ denotes the optimal quality function solving844 ∑
x̄′

P (x̄′ | x̄, ū)
∑
i

{
r(xi, ui) + γmax

u′
Q∗(x′i, u

′)−Q∗(xi, ui)
}

= 0 . (S54)

This is approximately solved by minimizing the expectation of the square MA error845

∆Q(x̄′, x̄, ū)2 =
∑
i

{
r(xi, ui) + γmax

u′
Q(x′i, u

′)−Q(xi, ui)
}2

(S55)

with respect to the Q,846

Q∗ ' argmin
Q

∑
x̄′

P (x̄′ | x̄, ū) ∆Q(x̄′, x̄, ū)2 . (S56)
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c. Memory in signal interpretation847

The independent-agent ansatz is exact when the transition probabilities P (x̄′|x̄, ū) can be factorized into single-agent848

transition probabilities849

P (x̄′|x̄, ū) =
N∏
i=1

pi(x
′
i|xi, ui) , (S57)

that is, when the dynamics of each agent is independent. This can be seen intuitively for a static and deterministic850

gradient. In such case, the (constant) value of the morphogen signal at the location of a given cell enters as a851

parameter in the quality function Q: it’s role is to “select” the specific single-agent problem for that particular cell.852

This effectively makes the MA task trivially decomposed into single-agent ones. If the gradient is stochastic and with853

a small noise, we could argue that the same holds in a probabilistic sense when the morphogen is at steady state or854

reaches it very fast (high κ). In general, when the morphogen gradient is modelled as a diffusion-degradation process855

–as in this case– this approximation is not valid. One can show that the average of the concentration field over the856

noise, 〈S〉, can be calculated as the solution of independent differential equations with local time-dependent rates (see857

Eq. (S39)). So, even though we may be able to express the average dynamics of the morphogen at individual cells858

locations as independent, 1) fluctuations will anyway be correlated and 2) we do so at the cost of introducing time859

dependence.860

Here, we assume that it is possible to approximate the transition probability P by a factorized form as in Eq. (S57),861

at the expense of introducing auxiliary variables {M}Nmem

h=1 , included in the “state” of the single cell along with its862

gene expression G and the local morphogen signal S. These memory variables integrate over time the extracellular863

signal S and that model the effective memory. We model these as the species in a signalling cascade, whereby S864

directly influences the production of M1, which in turn affects production of M2 etc.,865

τM
dM1

dt
= r1 S −M1

τM
dMh

dt
= rhMh−1 −Mh , for h > 1

(S58)

where S is the local morphogen concentration, and rh are components of the control vector u, therefore functions of866

the single cell state variables – bound between ±1. We choose the overall time constant τM = 1. Notice that the867

dependence of the production rate for the memory variable Mh depends at least linearly on Mh−1: therefore, the868

control can modulate the production rates of the memory variables, but cannot be arbitrarily large for small signals.869

SI-4. RL solution870

The approximate solution of Eq. (S52) via reinforcement learning (RL) requires the sampling of the tuples871

(x̄t, ūt, rt, x̄t+1). State-of-the-art deep-RL algorithms — such as DQN [43], DDPG [49], TD3 [25], SAC [50] etc—872

solve the problem of the stability of learning by storing a replay buffer B with the last Nreplay tuples visited, and873

estimating gradients of the loss functions by averaging over a small number Nbatch (batch size) of them.874

Here we use TD3 [25], which is an actor-critic deep-RL algorithm, designed for continuous control problems.875

Similar to other actor-critic algorithm, it stores function approximators for both the policy (actor), and the value876

(critic) function. These are represented by deep neural networks with parameters φ and θ, respectively (π ' πφ and877

Q ' Qθ). In order to reduce the bias in the estimate of the value function Q, TD3 uses two critics (T for “twin”). 1
878

As in other deep-RL AC algorithms, in order to make learning more stable, TD3 stores two copies of each function879

approximator: the first is updated on-line; the second is used as target and integrates the first at a slow rate, and880

with delay. TD3 uses a SARSA-like target for the value function, by sampling the next action using the target policy.881

We here use the TD3 algorithm for episodic tasks (see [25] for details). We use α = 10−3, β = 10−3. All other882

details are the same as in the original paper. The discount factor (which is a property of the task!) γ = 0.99, which883

for time step dt = 0.005 corresponds to the exponential discount time in continuous time τ ' 5.884

In the case of the MA problem described above, we need to modify this algorithm by storing transitions of the885

MA system, defining a target for each individual agent (based on their single-agent rewards, states and actions), and886

1In standard Q-learning, the value of the state after the transition is taken to be the maximum over all actions of the Q function
evaluated at that state, by boostrapping. This is a problem that is present also in actor-critic algorithms like DDPG, where the “maxi-
mization over actions” is implicit in the policy-gradient formula. This typically leads to an overestimation of the value (as demonstrated

in the paper), and therefore to sub-optimal policies.
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Algorithm 1 Twin Delayed Deep Deterministic (TD3) policy gradient for episodic tasks.

Initialize actor and critic networks with parameters φ, θ1 and θ2
Initialize target networks: φ′ ← φ, θ′1 ← θ1 and θ′2 ← θ2
Initialize replay buffer B

Define exploration parameters σ, regularization parameter σ̃, target learning rate τ , and optimizers learning rates α and β
for Nep episodes do:

Initialize agent in state x0 ∼ ρ0
for t = 0 . . . T − 1 (T cutoff time) or until terminal state do

Select control, ut = πφ(xt) + ε, with exploration noise ε ∼ N(0, σ)
Observe reward rt and new state xt+1

Store the tuple (xt, ut, rt, xt+1) in the buffer B

Sample Nbatch random tuples (x, u, r, x′) . Averages over elements in the batch is denoted as 〈 · 〉batch
For each of these, compute target y ← r + γ mini∈{1,2}Qθ′i(x

′, u′), where u′ = πφ′(x
′) + ε, with ε ∼ N(0, σ̃)

Update the critic networks (“←α” indicates gradient-based optimizer with learning rate α):
θi ←α ∇θi〈(y −Qθi(x, u))2〉batch . “←α” indicates gradient-based optimizer with learning rate α

if episode multiple of d (delay) then
Update on-line policy network with deterministic policy gradient:
φ←β ∇φ〈∇u′Qθ1(x, u′)

∣∣
u′=πφ(x)

∇φπφ(x)〉batch

Update the target networks:
φ′ ← (1− τ)φ′ + τ φ
θ′i ← (1− τ) θ′i + τ θi

averaging gradients over the agents as well. This is detailed in Alg. 2. The learning rates here are α = 3× 10−5 and887

β = 10−5.888

Algorithm 2 Multi-Agent Twin Delayed Deep Deterministic (TD3) policy gradient for episodic tasks

Initialize actor and critic networks with parameters φ, θ1 and θ2
Initialize target networks: φ′ ← φ, θ′1 ← θ1 and θ′2 ← θ2
Initialize replay buffer B

Define exploration parameters σ, regularization parameter σ̃, target learning rate τ , and optimizers learning rates α and β
for Nep episodes do:

Initialize the N agents in state x̄0 ∼ ρ0
for t = 0 . . . T − 1 (T cutoff time) or until terminal state do

Select control, ūt = πφ(x̄t) + ε, with exploration noise ε ∼ N(0, σ)
Observe reward rt and new state x̄t+1

Store the tuple (x̄t, ūt, r̄t, x̄t+1) in the buffer B

Sample Nbatch random tuples (x̄, ū, r̄, x̄′) . Averages over elements in the batch is denoted as 〈 · 〉batch
For each of these, and for each agent j,
compute targets yj ← rj + γ mini∈{1,2}Qθ′i(x

′
j , u
′
j), where u′j = πφ′(x

′
j) + εj , with εj ∼ N(0, σ̃)

Update the critic networks
θi ←α ∇θi〈N

−1∑N
j=1(yj −Qθi(xj , uj))

2〉batch . “←α” indicates gradient-based optimizer with learning rate α

if episode multiple of d (delay) then
Update on-line policy network with deterministic policy gradient:
φ←β ∇φ〈N−1∑N

j=1∇u′Qθ1(xj , u
′)
∣∣
u′=πφ(xj)

∇φπφ(xj)〉batch

Update the target networks:
φ′ ← (1− τ)φ′ + τ φ
θ′i ← (1− τ) θ′i + τ θi
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FIG. S1. Optimally controlled flow (solid blue), optimal control (dashed-dotted blue) and landscape (solid orange), for an array
of values of D and τ . The cost for control is set to ε = 10 in all panels.
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FIG. S2. Scheme of the model of the environment. The model where the local morphogen signal is added to the GRN
concentration to give the full state of the environment (a) is augmented by adding variables –in this case 2– that integrate the
signal and contain memory information (b).
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FIG. S3. Comparison between different reinforcement learning solutions for the optimal control of the ventral neural tube GRN
[13]. The solution presented in the main text (left) compared with the best solution of a different experiment with the same
algorithm (right), for (a) the Olig2+ target and (b) the Nkx2.2+ target.
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FIG. S4. Patterning dynamics for static gradient, when the independent agent ansatz is exact
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