1 Novel leaf-root coordination driven by leaf water storage tissues in mangroves

- 2
- ³ Jingjing Cao¹, Qingpei Yang¹, Jing Chen¹, Mingzhen Lu², Weizheng Ren¹, Yanmei
- 4 Xiong³, Yuxin Pei¹, Deliang Kong^{1*}
- 5
- ⁶ ¹College of forestry, Henan Agricultural University, Zhengzhou 450002, China
- ² Santa Fe Institute, Santa Fe, NM 87501, USA
- ³ Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou
- 9 510520, China

- 11 Key words: leaf hydraulic traits, leaf economics traits, root hydraulic traits, leaf
- 12 *water storage tissues*, allometry, mangrove and non-mangrove plants
- 13
- 14 Correspondence and requests for materials should be addressed to D.K. (email:
- deliangkong1999@126.com)

Abstract 16

17	Interactions among root and leaf traits (in particular, leaf hydraulic and leaf economics
18	traits) are fundamental in generating diverse strategies in land plants, yet it remains a
19	knowledge gap in mangrove plants that experiences saline stress distinct from most
20	other vascular plants. Here, we tested the trait relationships in mangrove plants and
21	compared them with typical land plants (non-mangrove). Consistent with non-mangrove
22	plants, leaf hydraulic and economics traits were decoupled in mangrove plants. However,
23	mangrove leaf economics traits correlated strongly with root hydraulic traits, which are
24	normally decoupled in non-mangrove plants. Moreover, we observed a unique scaling
25	relationship between <i>leaf dry mass per area</i> and root hydraulic traits in mangroves. The
26	novel coordination between leaves and roots arises from the wide-presence of leaf water
27	storage tissues in mangroves, and this potentially represents a new paradigm with which
28	we look into the ecology, physiology and evolution of this important vegetation.
29	
30	Introduction
31	Photosynthesis, the conversion of atmospheric CO ₂ into carbohydrates by the leaves using
32	light is the most important high signal and an Earth During this answer strugghteric CO
33	light, is the most important biological process on Earth. During this process, atmospheric CO_2
	enters the leaf mesophyll, mainly the palisade cells, and is fixed as carbohydrates through a
34	
34 35	enters the leaf mesophyll, mainly the palisade cells, and is fixed as carbohydrates through a
	enters the leaf mesophyll, mainly the palisade cells, and is fixed as carbohydrates through a series of biochemical reactions ¹ . Researchers coined a term, "leaf economics spectrum", to

38	portion of water is lost by transpiration through stomata. The well-correlated vein and
39	stomatal traits depicting water supply into and loss out of leaves constitute leaf hydraulic
40	traits, or the leaf hydraulics. While leaf hydraulics is vital to the process of leaf photosynthesis
41	(which lead us to hypothesize a coupling of leaf hydraulics and economics), recent findings
42	however suggest that leaf hydraulics is decoupled from leaf economics across a range of
43	non-mangrove plants ^{6,7} . This counterintuitive finding thus further suggests that leaves should
44	be understood by looking at multiple trait dimensions (often referred to as
45	"multidimensionality"). The multidimensionality in leaves uncovers a ubiquitous mechanism
46	by which species coexist and respond to global climate change ⁷ .
47	The decoupling between leaf hydraulics and economics can essentially arise from how the
48	water is partitioned between leaf photosynthesis and transpiration, although previously studies
49	ascribed such decoupling to functional modularity of leaf anatomic structures (i.e., mesophyll
50	and veins), non-simultaneous evolution of leaf mesophyll and leaf veins, and selection by
51	environmental heterogeneity ⁷ . Specifically, plants generally lose hundreds, even thousands, of
52	mol of water through transpiration in exchange for the fixation of 1 mol of atmospheric $\text{CO}_2^{\ 1}$.
53	Theoretically, 1 mol water is consumed in the biochemical fixation of 1 mol CO_2 , and we refer
54	to such water as "water used for photosynthetic metabolism (WUPM)." Undoubtedly, WUPM
55	is closely related to leaf economics, whereas "water used for transpiration (termed as WUT)"
56	is tightly associated with leaf hydraulic traits ^{7,8} . Given that WUPM is negligible compared to
57	WUT, it is likely that WUPM and hence leaf economics could have little impact on leaf
58	hydraulics. Therefore, the contrasting amount and functioning of WUPM and WUT constitute
59	a novel mechanism that essentially drives leaf economics-hydraulics decoupling ^{5,7,9} .

60	However, our current knowledge on the relationship between leaf hydraulics and
61	economics comes mainly from land plants. It remains unclear whether the decoupling
62	between leaf hydraulics and economics still holds and whether the above novel mechanism
63	accounting for such decoupling can be applied to plants under stressful environments such as
64	coastal mangrove species that typically grow under high salinity and are confronted with
65	severe physiological drought ^{5,10,11} . One conspicuous characteristic of mangrove plants is that
66	they usually have significant water storage tissues in their leaves as an adaption to the
67	imperative water demanding of transpiration under drought stress ^{12,13,14,15,16} . Meanwhile,
68	plants usually adjust above- and belowground organs (e.g., leaves vs. roots) in a coordinated
69	manner during plant evolution and response to changing environments ^{4,17,18,19,20,21} . However,
70	little is known about how leaves, especially leaf water storage tissues, and roots vary across
71	mangrove species and how above- and belowground coordination, if present, differs from that
72	of non-mangrove plants.
73	The absorption and transport of water under strong osmotic stress due to high soil salinity
74	are crucial for growth and survival of mangrove plants ^{22,23,24,25} . Root anatomical structures,
75	such as the stele and cortex, are directly related to root water absorption and
76	transportation ^{26,27,28} , and the anatomical traits, hereafter termed root hydraulic traits or root
77	hydraulics. For root hydraulics in non-mangrove plants, the thickness of root tissues outside
78	the stele (including epidermis, exodermis and cortex) has been widely observed to increase
79	considerably faster than the stele radius with increasing root diameter ^{26,29,30} . This allometry in
80	root structures is insightful for understanding plant evolution and responses to drought and
81	carbon (C) limitation under stress ^{31,32,33} that mangrove species are exposed to in their natural

82	habitats. However, it is still unclear whether allometry between root tissues outside the stele
83	and stele exists in mangrove species and how such allometry, if present, cooperates with
84	leaves in adaptation to salinity stress.
85	In the present study, we selected 17 representative mangrove species in a reserve in
86	southern China in which the most diverse mangrove species in China are found. We measured
87	10 leaf hydraulic and economics traits, including leaf water storage tissues, and 4 root
88	hydraulic traits. To compare trait relationships between mangrove and non-mangrove plants,
89	we constructed a dataset of land species with leaf and root traits measured concomitantly ^{7,26} .
90	We tested the following hypotheses: (1) compared with the independence between leaf
91	hydraulics and economics in non-mangrove plants, the two trait spectrum should be coupled
92	in mangrove plants under high-salinity selection pressure; (2) in mangrove plants, root
93	hydraulics should be positively correlated with both leaf hydraulics and economics, which
94	would be different from non-mangrove plants where root hydraulics is positively correlated
95	with leaf hydraulics ^{18,28} , yet decoupled from leaf economics.
96	
97	Results
98	Traits association between leaf economics and leaf hydraulics. The first principal
99	component analysis (PCA) axis explained 52.53% of total leaf trait variation in leaves of
100	mangrove species. Leaf economics traits, such as leaf dry mass per area, specific leaf area,
101	leaf mass-based nitrogen concentration, leaf thickness, leaf water storage tissues, and total
102	phenol content, had relatively high loading scores on this axis (Fig. 1a, Table S1). Leaf
103	mass-based nitrogen concentration was negatively correlated with leaf dry mass per area ($r =$

104	-0.86, $p < 0.001$) and leaf water storage tissues was positively correlated with leaf dry mass
105	per area and leaf thickness ($r = 0.71$, $p = 0.001$; $r = 0.62$, $p = 0.008$) (Table S2). The second
106	PCA axis accounted for 21.28% of the total leaf trait variation. Leaf minor vein density, leaf
107	minor vein diameter, leaf tissue density, and leaf C isotope composition (mainly hydraulic
108	traits) had high loading on this axis (Fig. 1a, Table S1). Leaf minor vein diameter was
109	negatively correlated with <i>leaf minor vein density</i> ($r = -0.90$, $p < 0.001$); neither vein trait was
110	correlated with <i>leaf tissue density</i> , or <i>leaf C isotope composition</i> (Table S2). In addition,
111	permutation analysis of mangrove plants showed a significant coupling of leaf water storage
112	<i>tissues</i> with leaf economics ($p = 0.003$) instead of leaf hydraulics ($p = 0.338$) (Fig. S1).
113	Regarding non-mangrove species, the first PCA axis of leaves explained 37.83% of total
114	leaf trait variation. Leaf thickness, leaf minor vein density, stomatal guard cell length,
115	stomatal density, and maximum stomatal conductance to water vapor had relatively high
116	loading scores on this axis (Fig. 1b, Table S3). Among leaf hydraulic traits, leaf minor vein
117	density was negatively correlated with stomatal guard cell length ($r = -0.48$, $p < 0.001$) and
118	positively correlated with <i>stomatal density</i> ($r = 0.36$, $p = 0.001$) (Table S4). The second PCA
119	axis accounted for 24.93% of the total leaf trait variation. Leaf dry mass per area, and leaf
120	mass-based nitrogen concentration, leaf C isotope composition, stomatal density, and
121	maximum stomatal conductance to water vapor had high loading scores on this axis (Fig. 1b,
122	Table S3). Among leaf economics traits, <i>leaf dry mass per area</i> was negatively correlated with
123	<i>leaf mass-based nitrogen concentration</i> ($r = -0.49$, $p < 0.001$) (Table S4).
124	

125 Leaf-root traits coordination. When leaf and root traits were pooled in mangrove plants, the

126	first two axes of the leaf-root combined PCA accounted for 50.73% and 15.87% of the total
127	trait variation, respectively (Fig. 2a). Root and leaf traits with high loading scores separately
128	in the first axis of the root and the leaf PCA also had high loading scores in the first axis of
129	the leaf-root combined PCA. Leaf minor vein density and minor vein diameter had high
130	loading scores in the second axis of the combined PCA (Fig. 2a, Table S5).
131	In non-mangrove species, the first two axes of the leaf-root combined PCA accounted for
132	36.25% and 18.72% of the total trait variation, respectively. Leaf minor vein density, root
133	diameter, thickness of root tissues outside the stele, and stele to root diameter ratio had high
134	loading scores in the first axis of the combined PCA. Stomatal density, maximum stomatal
135	conductance to water vapor, thickness of root tissues outside the stele, and root stele diameter
136	had high loading scores in the second axis of the combined PCA (Fig. 2b, Table S6).
137	Permutation analysis of the first PCA scores of the three trait groups (i.e., leaf hydraulic
137 138	Permutation analysis of the first PCA scores of the three trait groups (i.e., leaf hydraulic traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf
138	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf
138 139	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf hydraulics from both leaf economics and root hydraulics ($p = 0.117$, $p = 0.218$, respectively)
138 139 140	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf hydraulics from both leaf economics and root hydraulics ($p = 0.117$, $p = 0.218$, respectively) In contrast leaf economics was coupled with root hydraulics in mangrove species ($p < 0.001$)
138 139 140 141	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf hydraulics from both leaf economics and root hydraulics ($p = 0.117$, $p = 0.218$, respectively) In contrast leaf economics was coupled with root hydraulics in mangrove species ($p < 0.001$) (Fig. 2a, Fig. S2, Table S5). In the 78 non-mangrove plant species, leaf hydraulics, although
138 139 140 141 142	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf hydraulics from both leaf economics and root hydraulics ($p = 0.117$, $p = 0.218$, respectively) In contrast leaf economics was coupled with root hydraulics in mangrove species ($p < 0.001$) (Fig. 2a, Fig. S2, Table S5). In the 78 non-mangrove plant species, leaf hydraulics, although decoupled from leaf economics ($p = 0.062$), correlated with root hydraulics ($p = 0.012$), and
138 139 140 141 142 143	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf hydraulics from both leaf economics and root hydraulics ($p = 0.117$, $p = 0.218$, respectively) In contrast leaf economics was coupled with root hydraulics in mangrove species ($p < 0.001$) (Fig. 2a, Fig. S2, Table S5). In the 78 non-mangrove plant species, leaf hydraulics, although decoupled from leaf economics ($p = 0.062$), correlated with root hydraulics ($p = 0.012$), and the leaf economics of these species were orthogonal to root hydraulics ($p = 0.073$) (Fig. 2b,
 138 139 140 141 142 143 144 	traits, leaf economics traits, and root hydraulic traits, Fig. 2a) showed independence of leaf hydraulics from both leaf economics and root hydraulics ($p = 0.117$, $p = 0.218$, respectively) In contrast leaf economics was coupled with root hydraulics in mangrove species ($p < 0.001$) (Fig. 2a, Fig. S2, Table S5). In the 78 non-mangrove plant species, leaf hydraulics, although decoupled from leaf economics ($p = 0.062$), correlated with root hydraulics ($p = 0.012$), and the leaf economics of these species were orthogonal to root hydraulics ($p = 0.073$) (Fig. 2b, Fig. S3, Table S6). Overall, the effect of phylogeny on leaf and root traits was relatively less

hydraulics were generally similar to the results obtained from mangrove plants' original traitdata (Fig. S4, S5).

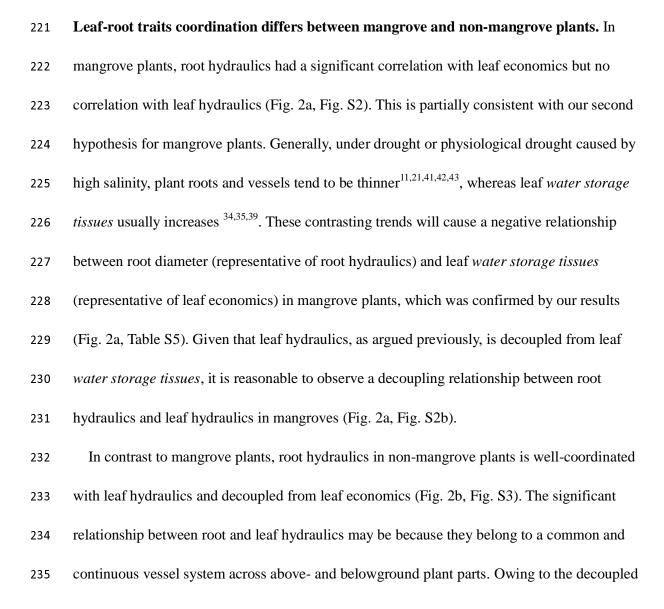
150

151	Leaf-root allometry. The root stele radius and thickness of root tissues outside the stele
152	followed an allometric relationship with increasing root diameter in both mangrove and
153	non-mangrove species (Fig. S6). As the keystone trait of leaves, leaf dry mass per area (LMA)
154	is perhaps the single most important organizing trait among all other leaf traits. Surprisingly,
155	we found a strong allometric relationship between LMA and root anatomical traits only in
156	mangrove plants ($p < 0.001$, each; Fig. 3a). Specifically, the regression slope (in absolute
157	values) of the relationship between thickness of root tissues outside the stele and LMA was
158	higher than the regression slope of the relationship between stele radius and LMA
159	(standardized major axis, $p < 0.001$). Leaf-root allometry was still detected when other leaf
160	economics traits, such as leaf thickness, specific leaf area, leaf water storage tissues, and leaf
161	mass-based nitrogen concentration were used (Fig. S7a-d). Unlike mangrove plants, neither
162	of the above two root anatomical traits were correlated with LMA in non-mangrove species
163	(Fig. 3b).
164	

165 Discussion

166 Decoupling of leaf economics from leaf hydraulics shared among mangrove and

167 non-mangrove plants. Contrary to our first hypothesis postulating coupled leaf economics


168 with leaf hydraulics in mangrove plants, the two trait spectra were decoupled in mangrove

leaves (Fig. 1a, Fig. S2a) as has been commonly observed in non-mangrove plants. Unlike

170	most non-mangrove plants, mangrove plants usually have remarkable water storage tissues in
171	their leaves to adapt to physiological drought caused by high-salinity environments ³⁴ . For
172	example, it has been reported that the mangrove plant Avicennia marina can maintain a
173	normal transpiration rate for up to 2 h under water supply from leaf water storage tissues
174	without water supply from roots ^{35,36} . Therefore, leaf <i>water storage tissues</i> is important for
175	water that is required for leaf transpiration in mangrove plants ^{35,37,38} , which may, as
176	articulated below, underlie the decoupling of leaf economics and hydraulics in mangrove
177	leaves.
178	Under high soil salinity, plant leaves usually suffer greatly from water deficiency in
179	transpiration due to insufficient water supply from the roots ^{5,11} . For example, in the mangrove
180	species Ceriops tagal, the vessel diameter of absorptive roots under high salinity is only
181	two-thirds of that under low salinity. Theoretically, this leads to root water-supply efficiency
182	under high salinity only 20% as that under low salinity ⁵ . In coping with such water deficiency,
183	mangrove plants can increase the amount of water stored in leaf water storage tissues for one
184	hand ^{35,36,39} , and for the other hand speed up the release of water from the <i>water storage</i>
185	tissues for transpiration ³⁷ . Assuming no such water supply from leaf water storage tissues,
186	photosynthetic cells in the palisade would be dehydrated, and photosynthesis would then be
187	greatly inhibited ³⁶ . Therefore, leaf water storage tissues could be closely related to leaf
188	photosynthesis and leaf economics, given their functioning as an agent to protect
189	photosynthetic cells from damage caused by dehydration. The physiologically based coupling
190	of leaf water storage tissues with leaf economics also well explains their statistical coupling
191	(Fig. S1).

192	Here, we used mangroves under high salinity as an example to understand the role of leaf
193	water storage tissues in shaping the decoupling relationship between leaf hydraulics and
194	economics. Under such salinity stress, mangrove leaf hydraulic traits, such as, leaf minor vein
195	diameter, are faced with two competing selection pressures: (1) reducing leaf minor vein
196	diameter due to inadequate water supply from thinner root vessels ^{$5,11,40$} ; and (2) increasing the
197	size of leaf water storage tissues ³⁵ entails a thick leaf minor vein diameter to meet the water
198	requirement of the increased leaf water storage tissues (Fig. 4). Therefore, the variation in
199	leaf minor vein diameter with increasing soil salinity may be markedly attenuated by the two
200	opposing section pressures, whereas the size of leaf water storage tissues tended to increase
201	in high salinity. The different trajectories of leaf hydraulics (exemplified by leaf minor vein
202	diameter) and leaf water storage tissues with soil salinity combined with the coupling
203	between water storage tissues and leaf economics may explain the independence between leaf
203 204	between <i>water storage tissues</i> and leaf economics may explain the independence between leaf hydraulics and economics.
204	hydraulics and economics.
204 205	hydraulics and economics. In mangrove plants, leaf <i>water storage tissues</i> usually stores a considerable amount of
204 205 206	hydraulics and economics. In mangrove plants, leaf <i>water storage tissues</i> usually stores a considerable amount of water ^{35,36} . After loss through transpiration, leaf <i>water storage tissues</i> can be rehydrated
204 205 206 207	hydraulics and economics. In mangrove plants, leaf <i>water storage tissues</i> usually stores a considerable amount of water ^{35,36} . After loss through transpiration, leaf <i>water storage tissues</i> can be rehydrated rapidly through various sources, such as rainfall, dew, fog, and root water supply ³⁸ . Frequent
204 205 206 207 208	hydraulics and economics. In mangrove plants, leaf <i>water storage tissues</i> usually stores a considerable amount of water ^{35,36} . After loss through transpiration, leaf <i>water storage tissues</i> can be rehydrated rapidly through various sources, such as rainfall, dew, fog, and root water supply ³⁸ . Frequent water loss–rehydration cycling suggests that leaf <i>water storage tissues</i> in mangroves
204 205 206 207 208 209	hydraulics and economics. In mangrove plants, leaf <i>water storage tissues</i> usually stores a considerable amount of water ^{35,36} . After loss through transpiration, leaf <i>water storage tissues</i> can be rehydrated rapidly through various sources, such as rainfall, dew, fog, and root water supply ³⁸ . Frequent water loss–rehydration cycling suggests that leaf <i>water storage tissues</i> in mangroves contribute considerably contribution to transpiration. Therefore, the quantity of water
204 205 206 207 208 209 210	hydraulics and economics. In mangrove plants, leaf <i>water storage tissues</i> usually stores a considerable amount of water ^{35,36} . After loss through transpiration, leaf <i>water storage tissues</i> can be rehydrated rapidly through various sources, such as rainfall, dew, fog, and root water supply ³⁸ . Frequent water loss–rehydration cycling suggests that leaf <i>water storage tissues</i> in mangroves contribute considerably contribution to transpiration. Therefore, the quantity of water associated with leaf economics (i.e., <i>WUPM</i> + water storage in leaf <i>water storage tissues</i>)

214	economics and hydraulics were decoupled in mangroves. The decoupling of leaf economics
215	and hydraulics in mangroves could arise primarily from the effect of the selection pressure of
216	leaf water storage tissues, as a key component of leaf economics, on the leaf hydraulic traits
217	(e.g., <i>leaf minor vein diameter</i>). This also suggests that our proposed novel mechanism that
218	drives decoupled leaf economics and hydraulics may hold only for land plants that do not
219	possess leaf water storage tissues, as such lacking selection pressure on leaf hydraulic traits.
220	

236	relationship between leaf hydraulics and economics ^{6,7} , it can be deduced that root hydraulics
237	is decoupled from leaf economics in non-mangrove plants. Such expected root-leaf
238	relationships have also been confirmed in recent studies, for example, significant relationships
239	between root hydraulics (represented by root diameter) and leaf minor vein density ¹⁸ and leaf
240	transpiration ²⁸ , but no relationship with leaf economics ¹⁹ . Obviously, non-mangrove and
241	mangrove plants diverge greatly with regard to in the root-leaf relationships. Such divergence
242	may be attributed to the widespread presence of leaf water storage tissues in mangrove plants,
243	which is absent in most non-mangrove plants.
244	
245	Above-belowground trait coordination explained by leaf-root allometric relationship.
246	Allometry between the root tissues outside the stele and the stele in mangrove plant roots,
247	similar to that in non-mangrove plant roots, was revealed for the first time in this study (Fig.
248	S6a, b). Allometry in mangrove roots, as is the case in non-mangrove plants, could be formed
249	to achieve a balance between nutrient absorption and transport as well as a balance between C
250	supply and consumption ^{32,44} . In addition to allometry within roots, we found a conspicuous
251	allometry between roots and leaves in mangrove plants. The thickness of root tissues outside
252	the stele increased faster than the stele radius with decreasing leaf dry mass per area (Fig. 3a).
253	In contrast, no such allometry was observed in non-mangrove plants (Fig. 3b).
254	The contrasting leaf-root allometry between mangrove and non-mangrove plants could be
255	
233	related to the difference in C cycling within plants. Specifically, the well-recognized
255	decoupling between leaf economics and hydraulics can also convey an independence between

258	besides water transportation via vessels, and the sieves and vessels are closely related in
259	structure and functioning in land plants ^{32,45} . Physiologically, such decoupling between C
260	production and transportation can be explained by different environmental factors driving
261	these processes. For example, leaf C production depends greatly on light, whereas C
262	transportation is governed by water and phosphorus availability ¹ ; these environmental factors
263	always vary independently ^{5,7,46} .
264	Similar to leaf veins, the root tissues outside the stele and the stele in absorptive roots,
265	although previously treated as hydraulic traits, also serve as key agents for C supply (through
266	sieves in the stele) and C consumption (through root tissues outside the stele cells),
267	respectively. The allometry between the root tissues outside the stele and the stele is thought
268	to arise from a balance between C supply and consumption within the roots ³² . Since C supply
269	in roots and C transportation in leaf veins share a common and continuous sieve system, the C
270	supply and consumption in roots should be related to C transportation in leaves but not to <i>leaf</i>
271	dry mass per area, a key leaf economics trait reflecting C production. This could explain our
272	finding of no allometry of C production (i.e., <i>leaf dry mass per area</i>) with C supply (i.e., stele)
273	and C consumption (i.e., thickness of root tissues outside the stele) in non-mangrove plants
274	(Fig.3b).
275	Surprisingly, we found no correlation between C supply in the root stele and C
276	transportation in leaf veins in mangrove plants, although roots and leaves share a continuous
277	sieve system, while we did find a correlation between C supply in roots and C production
278	leaves (Fig. 3a). These unexpected results can also be attributed to the presence of leaf water
279	storage tissues that affect vein vessels and sieves in mangrove leaves differently. As

280	mentioned previously, vein vessels in mangroves suffer from two opposing selection
281	pressures with increasing salinity: positive pressure due to increased leaf water storage tissues
282	and negative pressure due to increased physiological drought. In contrast to vessels, sieves in
283	mangrove leaf veins do not seem to be markedly affected by leaf water storage tissues
284	because of the storage of water rather than C (Fig. 4), and the sieves tended to be thin under
285	increasing salinity stress to match the reduction in photosynthesis and C production ^{32,47} .
286	Therefore, in contrast to non-mangrove plants (Fig. 3b), C production (represented by <i>leaf dry</i>
287	mass per area) in mangrove leaves should be coupled with vein sieve-based C transportation,
288	and consequently linked with root C supply (through sieves in the stele) and C consumption
289	(through cells of root tissues outside the stele thickness) in an allometric manner (Fig. 3a).
290	Root-leaf allometry paves a new way to understand the above- and belowground interactions
291	regarding key components of C cycling within mangrove plants; that is, C production and
292	transportation in leaves and C supply and consumption in roots.
293	In conclusion, our results revealed, for the first time, decoupled relationships between leaf
294	hydraulics and economics and between root and leaf hydraulics, as well as allometry between
295	root tissues outside the stele and the stele with a shift in leaf dry mass per area. In contrast,
296	non-mangrove plants had leaf hydraulics coupled with root hydraulics while decoupled from
297	leaf economics, and they also lacked leaf-root allometry. The contrasting leaf-leaf and
298	leaf-root relationships could be due to the presence of leaf water storage tissues in mangroves
299	that is absent from non-mangroves. Our study highlights the profound effects of leaf water
300	storage tissues in shaping whole-plant strategies of resource (water and C) absorption,
301	transportation, and consumption, potentially through its different impacts on vein vessels and

302	sieves (Fig. 4). Give the widespread of leaf water storage tissues in mangroves, the novel
303	leaf-root coordination in mangroves relative to non-mangroves potentially represents a new
304	paradigm with which we look into the ecology, physiology and evolution of the important
305	vegetation on Earth. In this sense, these findings are much insightful for understanding and
306	prediction the dynamics and responses of mangrove ecosystems to environmental change.
307	Last but not the least, our findings suggest that future studies on genetic improvement of
308	mangrove plants should be oriented to identify key genetic factors or pathways governing
309	interspecific variation of leaf water storage tissues.

311 Materials and methods

312 Sampling site and sample collection. This study was conducted in the Dongzhai Harbor

313 National Natural Reserve (19°51′–20°01′N, 110°30′–110°37′E) in northeast Haikou City,

Hainan province, China, where the mangrove ecosystem is located. It is the first and the

315 largest mangrove reserve in China, with the most representative and pristine natural mangrove

distribution. The area has a tropical monsoon climate. The mean annual temperature is

23.5 °C, with the highest mean monthly temperature, 28.4 °C, in July and the lowest, 17.1 °C,

in January. The annual precipitation is 1,676 mm, and more than 80% is concentrated between

319 May and October.

We collected the absorptive roots and leaves of 17 mangrove species typical at this reserve

- site in May 2015 (see Table S7 for details). Five mature trees were selected from each species.
- We selected 15–20 mature and intact canopy leaves and 3–5 intact root branches, including
- 323 the first 3 terminal root orders for each individual. All root branches and a portion of leaves

324	were immediately placed in FAA fixation solution (90 mL 70% alcohol, 5 mL 100% acetic
325	acid, and 5 mL 37% methanol) for root and leaf anatomy measurements. Separate subsamples
326	of the leaves were placed in NaOH solution to determine leaf vein diameter and density. The
327	remaining leaf samples were used to measure for measurements of leaf morphology and
328	chemicals.
329	
330	Trait measurements. We first determined <i>leaf thickness</i> for each species. The leaves were
331	then scanned before the individual leaf area was calculated using IMAGE J software (NIH
332	Image, Bethesda, MD, USA). The leaves were oven-dried at 60 $^{\circ}$ C for 48 h and were then
333	weighed to determine specific leaf area (leaf area per unit leaf dry mass, SLA), leaf dry mass
334	per area (LMA), and leaf tissue density (LTD). Leaf mass-based nitrogen concentration and
335	leaf C isotope composition were measured using an elemental analyzer interfaced with isotope
336	ratio mass spectrometry (EA1112 coupled with Delta-XP, Thermo Fisher Scientific, Bremen,
337	Germany). The above leaf morphological and chemical traits are usually considered leaf
338	economics traits (closely related to leaf photosynthesis). Leaf total phenol content, an
339	indicator of leaf defense function, usually shows a trade-off with leaf photosynthesis ⁴⁸ .
340	Therefore, we considered total phenol content as a leaf economics trait, and which was
341	measured by referring to the method in a classical study 49 .
342	Because mangrove leaves are usually thick and cuticle-rich for resistance to alkali decay,
343	we first removed the epidermis and upper layers of the mesophyll to expose the leaf minor
344	veins using a sharp knife or needle. The leaves were then dipped into a 5%-7% NaOH
345	solution for hours to expose the leaf minor veins. The leaf veins were stained red and

photographed using a camera (Eclipse Ni-U; Nikon). For each species, at least six fields of

346

540	photographed using a camera (Lenpse NI-O, Nikon). For each species, at least six news of
347	view per leaf were selected to calculate <i>leaf minor vein diameter</i> (LV _{dia} , μ m) and <i>density</i>
348	(LV _{den} , mm mm ⁻²) using IMAGE J (NIH Image, Bethesda, MD, USA) ⁷ .
349	Leaf and root anatomical structures were determined using a common method for paraffin
350	sectioning. Briefly, several leaves and the first-order roots were taken from the FAA solutions
351	and were then processed in a suite of procedures, including dehydration, embeding in paraffin,
352	cutting into sections (8 μ m thickness), staineding and then photographing ^{5,26} . First-order root
353	and leaf anatomical structures were determined using IMAGE J software (NIH Image,
354	Bethesda, MD, USA). Specifically, we measured root diameter, root stele diameter, and
355	thickness of root tissues outside the stele (including epidermis, exodermis and cortex), as
356	these traits are closely related to water and nutrient absorption and transportation ^{18,27} . The
357	stele to root diameter ratio, a key trait for root hydraulics, was also calculated ²⁶ . Leaf water
358	storage tissues have been widely observed in the hypodermis, sponge tissue and trichome
359	layer in mangroves ^{14,15} . Here, we defined the size of leaf <i>water storage tissues</i> as the
360	proportion of leaf cross-sectional area by the sum of the cross-sectional areas of the
361	hypodermis, sponge tissue and trichome layer. In this study, leaf water storage tissues was an
362	important trait, seemingly linked with both leaf economics and leaf hydraulics. To determine
363	which trait spectra leaf water storage tissues belongs to, we first examined the correlations of
364	leaf water storage tissues with leaf economics and leaf hydraulic traits separately. Then, the
365	results of leaf water storage tissues-based pairwise correlations were further validated using a
366	trait permutation analysis developed in a previous study ⁷ (see Data analyses section for
367	details).

368	To compare mangrove and non-mangrove species, we compiled a dataset from previous
369	studies accessible for leaf hydraulic, economics, and root hydraulic traits. As most of the
370	mangrove species in our study were woody, we selected only published studies on woody
371	species ^{7,26} , and 78 species were included. We acknowledge that the leaf traits used in the
372	comparing mangrove and non-mangrove plants were not the same. For example, we only had
373	leaf vein traits and lacked leaf stomatal traits in mangrove plants. Nevertheless, incomplete
374	mangrove leaf hydraulic traits could hardly markedly affect the relationships between leaf
375	hydraulics and leaf economics and root hydraulics because of the universal coupling between
376	leaf vein and stomatal traits ^{50,51,52,53,54} .
377	Additionally, only four leaf economics traits were only included in the mangrove plants:
378	specific leaf area, leaf water storage tissues, leaf tissue density and total phenol content.
379	Inclusion of specific leaf area should have little effect on the trait relationships for mangrove
380	plants because specific leaf area is only a mathematical reciprocal of leaf dry mass per area.
381	Even after removing the three traits included only in the current mangrove study, that is, leaf
382	water storage tissues, leaf tissue density, and total phenol content, the trait relationships
383	within leaves and between leaves and roots were almost the same (see Fig. S8 and S9 in the
384	Supporting Information). Therefore, it is feasible to compare mangrove and non-mangrove
385	plants.
386	
387	Phylogenetic tree construction. Phylogenetic trees for the mangrove plants of this study and

riviogenetic tree construction. Phylogenetic trees for the mangrove plants of this study and
 non-mangrove plants from previous studies^{7,26} (Fig. S10, S11) were constructed separately
 using the R package V. PhyloMaker^{55,56}. Plant names in the phylogenetic tree were referenced

against The Plant List (<u>http://www.theplantlist.org</u>/).

392	Data analyses. We calculated the mean, minimum, maximum, standard error and coefficient
393	of variation (CV) of each root and leaf trait. We calculated the phylogenetic signal by
394	employing Blomberg's K test, assuming a Brownian evolution model. A higher K value for a
395	trait indicates more phylogenetic conservatism (i.e., more influence of the trait by a common
396	ancestor than by environments) ⁵⁷ . All the original data of non-mangrove plants and partial
397	data of mangrove plants that did not confirm to a normal distribution, such as root diameter,
398	root stele diameter, thickness of root tissues outside the stele, leaf minor vein diameter and
399	density, specific leaf area, and leaf mass-based nitrogen concentration, were log-transformed.
400	Pairwise trait relationships were assessed using Pearson's correlation. We also explored trait
401	relationships using phylogenetically independent contrasts (PICs), which exclude the
402	influence of a common ancestor on trait relationships.
402 403	influence of a common ancestor on trait relationships. To explore the relationships between leaf hydraulics and economics in leaves, and the
	-
403	To explore the relationships between leaf hydraulics and economics in leaves, and the
403 404	To explore the relationships between leaf hydraulics and economics in leaves, and the relationships between root hydraulics and leaf hydraulics and economics, we used a
403 404 405	To explore the relationships between leaf hydraulics and economics in leaves, and the relationships between root hydraulics and leaf hydraulics and economics, we used a multivariate ordination method developed in a previous study ⁷ . All the data were standardized,
403 404 405 406	To explore the relationships between leaf hydraulics and economics in leaves, and the relationships between root hydraulics and leaf hydraulics and economics, we used a multivariate ordination method developed in a previous study ⁷ . All the data were standardized, and three separate PCAs were conducted using three different trait groups (i.e., leaf
403 404 405 406 407	To explore the relationships between leaf hydraulics and economics in leaves, and the relationships between root hydraulics and leaf hydraulics and economics, we used a multivariate ordination method developed in a previous study ⁷ . All the data were standardized, and three separate PCAs were conducted using three different trait groups (i.e., leaf economics, leaf hydraulics, and root hydraulics) (Fig. 2a, b). Subsequently, we created a
403 404 405 406 407 408	To explore the relationships between leaf hydraulics and economics in leaves, and the relationships between root hydraulics and leaf hydraulics and economics, we used a multivariate ordination method developed in a previous study ⁷ . All the data were standardized, and three separate PCAs were conducted using three different trait groups (i.e., leaf economics, leaf hydraulics, and root hydraulics) (Fig. 2a, b). Subsequently, we created a sampling distribution using the scores of 10,000 permutations of the first principal component

412	and the stele in mangrove species, we compared the slopes of the regressions of <i>thickness of</i>
413	root tissues outside the stele and stele radius with increasing root diameter using the
414	standardized major axis method. Furthermore, if allometry between root tissues outside the
415	stele and stele existed, we also explored whether within-root allometry could be applied to
416	root-leaf allometry. Specifically, we first explored whether there were correlations between
417	leaf dry mass per area, a key leaf economics trait, with thickness of root tissues outside the
418	stele and stele radius. Where present, the slopes of the regressions of thickness of root tissues
419	outside the stele and stele radius with leaf dry mass per area, were compared using the R
420	package 'smatr'. All data analyses were performed using R software (v. 3.30, R Core Team,
421	2016).

423 Data availability

- 424 Data of mangrove species are available in Dryad Digital Repository, a publicly available
- 425 database, or acquirable on request of the corresponding author. Data of root and leaf traits for
- 426 non-mangrove species can be assessed in the supporting information of two previous
- 427 studies^{7,26}.

References 428

429	1.	Taiz, L. & Zeiger, E. Plant Physiology (Fifth Edition): Unit 2 Biochemistry and
430		Metabolism (Sinauer Associates, Sunderland, 2015).
431	2.	Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D. B., Z., Bongers, F. CB., J.
432		Chapin, T. The worldwide leaf economics spectrum. Nature 428, 821-827 (2004).
433	3.	Reich, P. B. The world-wide 'fast-slow' plant economics spectrum: a traits manifesto.
434		J. Ecol. 102, 275-301 (2014).
435	4.	Diaz, S., et al. The global spectrum of plant form and function. Nature 529, 167-171
436		(2016).
437	5.	Cao, J., et al. Leaf hydraulics coordinated with leaf economics and leaf size in
438		mangrove species along a salinity gradient. Plant Divers, (2022).
439	6.	Sack, L., et al. How do leaf veins influence the worldwide leaf economic spectrum?
440		Review and synthesis. J Exp Bot 64, 4053-4080 (2013).
441	7.	Li, L., et al. Leaf economics and hydraulic traits are decoupled in five species-rich
442		tropical-subtropical forests. Ecol Lett 18, 899-906 (2015).
443	8.	Zhang, S. B., et al. Evolutionary association of stomatal traits with leaf vein density in
444		Paphiopedilum, Orchidaceae. PLoS One 7, e40080 (2012).
445	9.	Zhang, J. & Cao, K. Stem hydraulics mediates leaf water status, carbon gain, nutrient
446		use efficiencies and plant growth rates across dipterocarp species. Funct Ecol 23,
447		658-667 (2009).
448	10.	Hogan, J. A., Valverde-Barrantes, O. J., Ding, Q., Xu, H., Baraloto, C. Morphological
449		variation of fine root systems and leaves in primary and secondary tropical forests of

450		Hainan Island, China. Ann. For. Sci. 77, 79 (2020).
451	11.	Jiang, G. F., Li, S. Y., Li, Y. C., Roddy, A. B. Coordination of hydraulic thresholds
452		across roots, stems, and leaves of two co-occurring mangrove species. Plant Physiol,
453		00 , 1–16 (2022).
454	12.	Naskar, S. & Palit, P. K. Anatomical and physiological adaptations of mangroves. Wetl
455		<i>Ecol Manag</i> 23 , 357-370 (2015).
456	13.	Rashid, P., Shethi, K. J., Ahmed, A. Leaf anatomical adaptation of eighteen mangrove
457		plant species from the Sundarbans in Banglandesh. BANGL J BOT 49, 903-911
458		(2020).
459	14.	Huang, G. & Huang, Q. The leaf vegetative structures and its ecological adaptation in
460		Chinese mangrove plants (I). Ecolo Scien 8, 102-107 (1989).
461	15.	Chapman, V. J. Mangrove vegetation, 301-338 (1976).
462	16.	Tian, S., Zhu, S., Zhu, J., Shen, Z., Cao, K. Impact of leaf morphological and
463		anatomical traits on mesophyll conductance and leaf hydraulic conductance in
464		mangrove plants. <i>Plant Scie J</i> 34, 909-919 (2016).
465	17.	Valverde-Barrantes, O. J., Freschet, G. T., Roumet, C., Blackwood, C. B. A worldview
466		of root traits: the influence of ancestry, growth form, climate and mycorrhizal
467		association on the functional trait variation of fine-root tissues in seed plants. New
468		Phytol 215, 1562-1573 (2017).
469	18.	Valverde-Barrantes, O. J., Maherali, H., Baraloto, C., Blackwood, C. B. Independent
470		evolutionary changes in fine-root traits among main clades during the diversification
471		of seed plants. New Phytol 228, 541-553 (2020).

472	19.	Weigelt, A., et al. An integrated framework of plant form and function: the
473		belowground perspective. New Phytol 232, 42-59 (2021).
474	20.	Carmona, C. P., et al. Fine-root traits in the global spectrum of plant form and function.
475		<i>Nature</i> 597 , 683-687 (2021).
476	21.	Weemstra, M., Kuyper, T. W., Sterck, F. J., Umaña, M. N. Incorporating belowground
477		traits: avenues towards a whole I tree perspective on performance. <i>Oikos</i> , (2022).
478	22.	Woodroffe, C. Tropical Mangrove Ecosystems: Mangrove Sediments and
479		Geomorphology Ch. 2 (American Geophysical Union, Columbia, 1992).
480	23.	Long, Y., Kong, D., Chen, Z., Zeng, H. Variation of the linkage of root function with
481		root branch order. <i>PLoS One</i> 8 , e57153 (2013).
482	24.	Liang, X., et al. Metabolomics-driven gene mining and genetic improvement of
483		tolerance to salt-induced osmotic stress in maize. New Phytol 230, 2355-2370 (2021).
484	25.	Fernie, A. R. Associating primary and specialized metabolism with salt induced
485		osmotic stress tolerance in maize. New Phytol 230, 2355-2370 (2021).
486	26.	Kong, D., et al. Leading dimensions in absorptive root trait variation across 96
487		subtropical forest species. New Phytol 203, 863-872 (2014).
488	27.	Freschet, G. T., et al. Root traits as drivers of plant and ecosystem functioning: current
489		understanding, pitfalls and future research needs. New Phytol 232, (2021).
490	28.	Zhou, M., Bai, W., Li, Q., Guo, Y., Zhang, W. H. Root anatomical traits determined
491		leaf-level physiology and responses to precipitation change of herbaceous species in a
492		temperate steppe. New Phytol 229, 1481-1491 (2021).
493	29.	Zhou, M., et al. Using anatomical traits to understand root functions across root orders

494		of herbaceous species in a temperate steppe. New Phytol 234, 422-434 (2022).
495	30.	Kong, D., et al. Nonlinearity of root trait relationships and the root economics
496		spectrum. Nat Commun 10, 2203 (2019).
497	31.	Kong, D., Fridley, J. D., Cooke, J. Does plant biomass partitioning reflect energetic
498		investments in carbon and nutrient foraging? Funct Ecol 33, 1627-1637 (2019).
499	32.	Kong, D., Wang, J., Valverde-Barrantes, O. J., Kardol, P. A framework to assess the
500		carbon supply-consumption balance in plant roots. New Phytol 229, (2021).
501	33.	Colombi, T., Chakrawal, A., Herrmann, A. M. Carbon supply-consumption balance in
502		plant roots: effects of carbon use efficiency and root anatomical plasticity. New Phytol
503		233 , 1542-1547 (2021).
504	34.	Rashid, P., Shethi, K. J., Ahmed, A. Leaf anatomical adaptation of eighteen mangrove
505		plan species from the sundarbans in bangladesh. Bangladesh J Bot 49, 903-911
506		(2020).
507	35.	Nguyen, H. T., et al. Leaf water storage increases with salinity and aridity in the
508		mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and
509		access to multiple water sources. Plant Cell Environ 40, 1576-1591 (2017).
510	36.	Nguyen, H. T., Meir, P., Wolfe, J., Mencuccini, M., Ball, M. C. Plumbing the depths:
511		extracellular water storage in specialized leaf structures and its functional expression
512		in a three-domain pressure -volume relationship. <i>Plant Cell Environ</i> 40 , 1021-1038
513		(2016).
514	37.	Zweifel, R., Item, H., Hasler, R. Link between diurnal stem radius changes and tree
515		water relations. Tree Physiol 21, 869-877 (2001).

516	38.	Lechthaler, S., et al. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf
517		Water Storage Capacity to Cope with Soil Water Salinity Changes. Front Plant Sci 7,
518		895 (2016).
519	39.	Borkar, M. U., Athalye, R. P., Goldin, Q. Salinty induced changes in the leaf anatomy
520		of the mangrove Avicennia marina along the anthropogenically stressed tropical creek.
521		J Coast Res 14, 191-201 (2011).
522	40.	Robert, E. M. R., Koedam, N., Beeckman, H., Schmitz, N. A safe hydraulic
523		architecture as wood anatomical explanation for the difference in distribution of the
524		mangroves Avicennia and Rhizophora. Funct Ecol 23, 649-657 (2009).
525	41.	Tatongjai, S., Kraichak, E., Kermanee, P. Comparative anatomy and salt management
526		of Sonneratia caseolaris (L.) Engl. (Lythraceae) grown in saltwater and freshwater.
527		<i>PeerJ</i> 9 , e10962 (2021).
528	42.	Basyuni, M., et al. Growth and root development of four mangrove seedlings under
529		varying salinity. IOP Conf Series: EES, 130, (2018).
530	43.	Chen, W., Zeng, H., Eissenstat, D. M., Guo, D. Variation of first-order root traits
531		across climatic gradients and evolutionary trends in geological time. Glob. Ecol.
532		<i>Biogeogr</i> 22 , 846-856 (2013).
533	44.	Kong, D., et al. The nutrient absorption-transportation hypothesis- optimizing
534		structural traits in absorptive roots. New Phytol 213, (2016).
535	45.	Jacobsen, A. L., et al. Intra-organismal variation in the structure of plant vascular
536		transport tissues in poplar trees. Trees 32, 1335-1346 (2018).
537	46.	Chapin III, F. S. M., P. A., Vitousek, P. M. Principles of Terrestrial Ecosystem Ecology 2

538		Water and Energy Balance (Springer Science+Business Media, Iowa, 2011).
539	47.	Nandy, P., Ghose, M. Photosynthesis and water-use efficiency of some mangroves
540		from Sundarbans, India. J. Plant Biol. 44, 213-219 (2001).
541	48.	Eallonardo Jr, A. S., Leopold, D. J., Fridley, J. D., Stella, J. C. Salinity tolerance and
542		the decoupling of resource axis plant traits. J. Veg. Sci 24, 365-374 (2013).
543	49.	Hättenschwiler, S., Jørgensen, H. B. Carbon quality rather than stoichiometry controls
544		litter decomposition in a tropical rain forest. J. Ecol. 98, 754-763 (2010).
545	50.	Wang, S., Wang, W., Wang, S., Yang, L., Gu, J. Intraspecific variations of anatomical,
546		morphological and chemical traits in leaves and absorptive roots along climate and
547		soil gradients: a case study with Ginkgo biloba and Eucommia ulmoides. Plant Soil
548		469 , 73-88 (2021).
549	51.	Pan, L., et al. Coordination of stomata and vein patterns with leaf width underpins
550		water-use efficiency in a C4 crop. Plant Cell Environ 45, 1612-1630 (2022).
551	52.	Carins Murphy, M. R., Jordan, G. J., Brodribb, T. J. Acclimation to humidity modifies
552		the link between leaf size and the density of veins and stomata. <i>Plant Cell Environ</i> 37 ,
553		124-131 (2014).
554	53.	Cardoso, A. A., Randall, J. M., Jordan, G. J., McAdam, S. A. M. Extended
555		differentiation of veins and stomata is essential for the expansion of large leaves in
556		Rheum rhabarbarum. Am J Bot 105, 1967-1974 (2018).
557	54.	Li, F., McCulloh, K. A., Sun, S., Bao, W. Linking leaf hydraulic properties,
558		photosynthetic rates, and leaf lifespan in xerophytic species: a test of global
559		hypotheses. Am J Bot 105, 1858-1868 (2018).

560	55.	Jin, Y., Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies
561		for vascular plants. <i>Ecography</i> 42 , 1353-1359 (2019).
562	56.	Jin, Y., Qian, H. V.PhyloMaker2: An updated and enlarged R package that can
563		generate very large phylogenies for vascular plants. Plant Divers, (2022).
564	57.	Blomberg, S. P., Garland, T., Ives, R. Testing for Phylogenetic Signal in Comparative
565		Data: Behavioral Traits Are More Labile. Evolution 57, (2003).
566		
567		

569 Acknowledgements

570	We thank Mr.	Lingqun	Kong and	l Jianhai	Chen for	assistance	in plan	t materials	collection;
-----	--------------	---------	----------	-----------	----------	------------	---------	-------------	-------------

- 571 Haiyan Zhang, Chao Guan, Xinyu Lu, Jinqi Tang, Qubing Ran, Song Huang and Mengke
- 572 Wang for their help of trait measurements in the lab and phylogenetic analysis; and Editage
- 573 (<u>www.editage.cn</u>) for proofreading manuscript. We are grateful to Dongzhai Harbor mangrove
- 574 Wetland National Nature Reserve for their support. This study was funded by the National
- 575 Natural Science Foundation of China (32171746, 31870522 and 31670550), and the Scientific
- 576 Research Foundation of Henan Agricultural University (30500854), Research Funds for
- 577 overseas returnee in Henan Province, China.
- 578

579 Author contribution

- 580 D.K. and J.C. conceived the idea and collected the data. J.C., D.K. and W.R. conducted the
- statistical analyses. J.C., M.L. and D.K. wrote the draft of the manuscript. All authors
- contributed to the discussion of the results, manuscript revision and completion.

583

584 **Competing interests**

- 585 The authors declare no competing interests that could influence the work reported in this
- 586 paper.

	Functional traits	Unit	Mean	SE*	CV†	Max	Min	Blomberg's K
Leaf	Leaf thickness	mm	0.42	0.036	34.93	0.65	0.13	0.17
	Leaf dry mass per area	g cm-2	0.01	0.001	39.31	0.02	0.00	0.12
	Leaf mass-based nitrogen concentration	mg g-1	2.01	0.181	37.13	3.95	1.09	0.10
	Leaf carbon isotope composition	‰	-30.58	0.397	-5.35	-27.01	-32.93	0.08
	Specific leaf area	cm2 g-1	92.94	13.424	59.55	245.60	40.41	0.17
	Leaf tissue density	g cm-3	0.32	0.013	17.07	0.39	0.20	0.08
	Total phenol content	%	2.34	0.258	45.42	4.37	0.60	0.08
	Water storage tissues	%	0.13	0.014	43.39	0.24	0.06	0.08
	Leaf minor vein diameter	μm	49.13	8.922	74.88	156.64	15.50	0.08
	Leaf minor vein density	$mm mm^{-2}$	10.66	2.383	92.13	42.85	2.30	0.10
Root	Root diameter	μm	191.01	18.300	39.50	388.03	112.24	0.26
	Thickness of root tissues outside the stele	μm	78.19	7.826	41.26	163.32	44.11	0.26
	Root stele diameter	μm	34.28	3.232	38.88	61.42	20.19	0.17
	Stele to root diameter ratio	%	0.19	0.009	20.20	0.24	0.12	0.08

Table 1 Variation in 14 root and leaf functional traits measured from 17 mangrove species.

589 Root traits were measured for the first-order roots.

590 SE*, standard error.

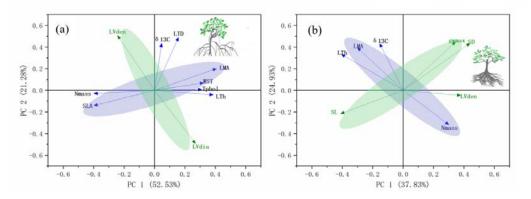
591 CV[†], coefficient of variance.

Blomberg's K values in bold indicate they are significant at p < 0.05.

	Functional traits	Unit	Mean	SE*	CV†	Max	Min	Blomberg's K
Leaf	Leaf thickness	mm	0.24	0.01	32.65	0.56	0.09	0.01
	Leaf dry mass per area	g m ⁻²	79.53	2.89	32.72	159.17	32.53	0.01
	Leaf mass-based nitrogen concentration	mg g ⁻¹	17.70	0.69	35.30	36.28	5.40	0.01
	Leaf carbon isotope composition	‰	-31.93	0.21	-5.93	-27.38	-36.72	0.22
	Leaf minor vein density	mm mm ⁻²	6.12	0.22	32.22	13.01	2.28	0.01
	Stomatal guard cell length	μm	20.97	0.57	24.61	35.40	9.56	0.35
	Stomatal density	mm ⁻²	398.79	29.85	67.37	1716.07	91.47	0.04
	Maximum stomatal conductance to water vapor	mol mm ⁻² s ⁻¹	1.45	0.08	47.40	4.83	0.37	0.02
Root	Root diameter	μm	362.98	22.82	56.58	1010.00	73.00	0.42
	Thickness of root tissues outside the stele	μm	232.36	17.27	66.89	675.00	26.00	0.22
	Root stele diameter	μm	83.28	4.74	51.25	258.00	24.00	0.07
	Stele to root diameter ratio	%	0.25	0.01	20.96	0.39	0.16	0.02

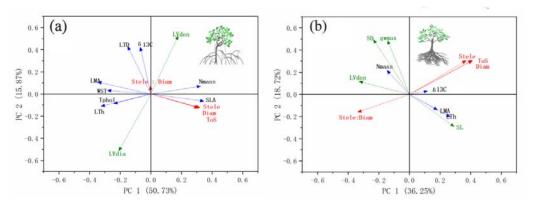
Table 2 Variation in 12 root and leaf functional traits measured from 78 non-mangrove plant species.

594 Root traits were measured for the first-order roots.


595 SE*, standard error.

596 CV[†], coefficient of variance.

Blomberg's K values in bold indicate they are significant at p < 0.05.


Figure 1 Traits decoupling of leaf economics and hydraulics shared among mangrove and non-mangrove plants.

(a) In mangrove trees, leaf economics traits (denoted in blue; e.g., LMA, SLA) do not align with leaf hydraulics traits (denoted in green; e.g., LV_{dia}) according to a principal component analysis of 17 species, suggesting the decoupling of the leaf economics and hydraulics. (b) In non-mangrove plants, we observe a similar pattern of traits decoupling between leaf economics and leaf hydraulics, suggested by the largely orthogonal alignment between the two groups of traits (blue vs. green). Traits abbreviation: LTh, *leaf thickness*; LMA, *leaf dry mass per area*; N_{mass}, *leaf mass-based nitrogen concentration*; δ^{13} C, *leaf carbon isotope composition*; SLA, *specific leaf area*; LTD, *leaf tissue density*; Tphol, *total phenol content*; WST, *water storage tissues*; LV_{dia}, *leaf minor vein diameter*; LV_{den}, *leaf minor vein density*; SL, *stomatal guard cell length*; SD, *stomatal density*; g_{wmax}, *maximum stomatal conductance to water vapor*.

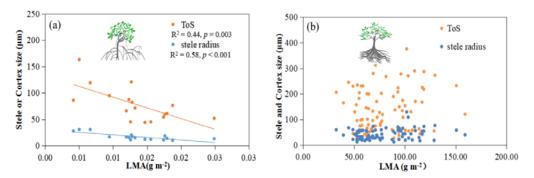


Figure 2 Leaf-root traits coordination differs between mangrove and

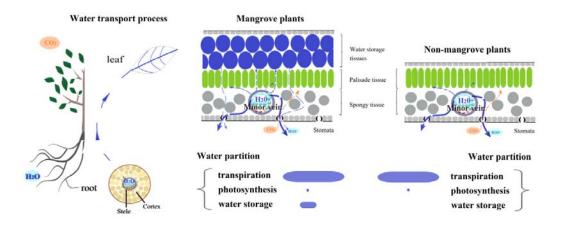

non-mangrove plants. (**a**) In mangrove trees, the newly added root traits (in red), align with majority of leaf economics traits (denoted in blue consistent with Fig.1; e.g., LMA) and largely orthogonal to leaf hydraulic traits (denoted in green consistent with Fig.1). (**b**) In contrast with mangrove trees, root traits of non-mangrove plants appear to be orthogonal to leaf economics traits. Abbreviations of the traits are: LTh, *leaf thickness*; LMA, *leaf dry mass per area*; N_{mass}, *leaf mass-based nitrogen concentration*; δ¹³C, *leaf carbonisotope composition*; SLA, *specific leaf area*; LTD, *leaf tissue density*; Tphol, *total phenol content*; WST, *water storage tissues*; LV_{dia}, *leaf minor vein diameter*; LV_{den}, *leaf minor vein density*; Diam, *root diameter*; ToS, *thickness of root tissues outside the stele*; Stele, *root stele diameter*; Stele : Diam, *stele to root diameter ratio*; SL, *stomatal guard cell length*; SD, *stomatal density*; g_{wmax}, *maximum stomatal conductance to water vapor*.

Figure 3 Allometric relationships between roots and leaves in mangrove (a) and non-mangrove plants (b). Root anatomic structures refer to root stele radius and *thickness of root tissues outside the stele.* Abbreviations: ToS, *thickness of root tissues outside the stele*; Diam, *root diameter*; LMA, *leaf dry mass per area*.

Figure 4 A conceptual framework of water transport and partition from roots to leaves for mangrove and non-mangrove plants. The blue dashed lines in leaves represent three ways of water partition from minor veins to (1) water storage tissue in leaves and loss from stomata, (2) palisade tissue for photosynthesis, and (3) transpiration via stomata in mangrove plants; water partition ways in non-mangrove plants usually include the above (2) and (3). The CO₂ fixation and hence the photosynthate are indicated with solid circles and dashed lines in orange. The relative amount of water used in the above partition ways, by referring to studies on mangroveplants^{35,36}, was roughly represented by different-sized dashed lines and stripes in blue.

