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Abstract 

Accurate prediction of mosquito population age structures can improve the evaluation of 

mosquito-targeted interventions since old mosquitoes are more likely to transmit malaria than 

young ones. Mid-infrared spectroscopy (MIRS) reveals age-associated variation in the 

biochemical composition of the mosquito cuticle, which can then be used to train machine 

learning (ML) models to predict mosquito ages. However, these MIRS-ML models are not 

always generalisable across different mosquito populations. Here, we investigated whether 

dimensionality reduction applied to the MIRS input data and transfer learning could improve 

the generalisability of MIRS-ML predictions for mosquito ages. We reared adults of the malaria 

vector, Anopheles arabiensis, in two insectaries (Ifakara, Tanzania and Glasgow, UK). The 

heads and thoraces of female mosquitoes of two age classes (1-9 day-olds and 10-17 day-
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olds) were scanned using an attenuated total reflection-Fourier transform infrared (ATR-FTIR) 

spectrometer (4000 cm-1 to 400 cm-1). The dimensionality of the spectra data was reduced 

using unsupervised principal component analysis (PCA) or t-distributed stochastic neighbour 

embedding (t-SNE), and then the spectra were used to train  deep learning (DL) and standard 

machine learning (ML) classifiers. Transfer learning was also evaluated for improving the 

computational cost of the models when predicting mosquito age classes from new populations. 

Model accuracies for predicting the age of test mosquitoes from the same insectary as the 

training samples reached 99% for DL and 92% for ML, but did not generalise to a different 

insectary, achieving only 46% and 48% for ML for DL, respectively. Dimensionality reduction 

did not improve the model generalisability between locations but reduced computational time 

up to 5-fold. However, transfer learning by updating pre-trained models with 2% of mosquitoes 

from the alternate location brought both DL and standard ML model performance to ~98% 

accuracy for predicting mosquito age classes in the alternative insectary. Combining 

dimensionality reduction and transfer learning can reduce computational costs and improve 

the transferability of both deep learning and standard machine learning models for predicting 

the age of mosquitoes. Future studies could investigate the optimal quantities and diversity of 

training data necessary for transfer learning, and implications for broader generalisability to 

unseen datasets.  

Key terms: Anopheles arabiensis, convolutional neural network, standard machine learning, 

generalisability, dimensionality reduction, transfer learning.    

Background 

Malaria currently kills approximately one child every minute [1]. In 2020, there were 241 million 

cases and 627,000 deaths, nearly all in Sub-Saharan Africa [1]. Currently, the most 

widespread and cost-effective method of malaria prevention is based on controlling the 

mosquitoes that transmit the disease. Since 2000, insecticide-treated nets (ITNs) and indoor 

residual spraying (IRS) have so far contributed nearly 80% of all global malaria decline [2]. 
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However, the direct impact of individual control programs on the mosquito populations and on 

malaria transmission at the sites of intervention remains difficult to measure. To guide further 

efforts against the disease, evaluating the performance of these and other vector control 

interventions is crucial for measuring their impact in different settings. The World Health 

Organization (WHO) now recommends that surveillance be integrated as a core component 

of malaria control programs [3].  

This necessitates scalable, simple-to-implement and low-cost methods for quantifying key 

biological attributes of mosquitoes, such as age, infection status, and blood meal preferences, 

which are essential for understanding pathogen transmission dynamics. The age and 

survivorship of key Anopheles vectors are especially important in determining the likelihood 

that the mosquitoes will live long enough to allow complete parasite development (the extrinsic 

incubation period), and subsequent transmission to humans [4]. The assessments are 

essential for monitoring the impacts of interventions such as ITNs and IRS, which primarily kill 

adult mosquitoes in the field [5]. 

The current "gold standard" for estimating the age of malaria mosquitoes is to dissect their 

ovaries to estimate how many times they have laid eggs [5,6]. Despite their low technical 

demands, such procedures are time-consuming and labour-intensive. Age-grading 

dissections can also be imprecise because of gonotrophic discordance, which is common in 

Afrotropical malaria vectors [7], or of their reliance on the availability of host blood meals, 

which determines when and how frequently a mosquito blood-feeds.  

We and others have demonstrated that spectroscopic analysis of mosquitoes using near 

infrared (12500 – 4000 cm-1) or mid-infrared (MIR) (4000 – 400 cm-1) frequencies can identify 

key biochemical signals that vary with age [8,9]. These methods, when combined with specific 

machine learning (ML) techniques, allow for rapid estimation of mosquito ages [9,10].  

Despite early successes, these infrared-based applications have limitations such as their 

portability to mosquitoes from different locations or laboratories [10] and the substantial 
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computational requirements for retraining such models. Indeed, the inherent variability of 

mosquitoes from different environmental and genetic backgrounds may limit the 

generalisability of models trained on infrared spectra. The models could also be misled by 

signals in MIR that are associated with confounding factors introduced during sampling (e.g., 

atmospheric contamination with water vapour, temperature variations and high humidity in the 

laboratory), thus learning  features that are not strictly related to the biochemical trait being 

investigated. As a consequence, models currently must be regularly retrained using new data 

from target mosquito populations. 

To increase the generalisability of ML models for a given training dataset, a variety of spectral 

smoothing and regularisation techniques have been tested, such as penalised regression [11]. 

These methods are known to be computationally efficient and to improve generalisability [11]. 

Deep learning (DL) techniques such as convolutional neural networks (CNN) have recently 

been used on large spectra data [10], improving generalisability through transfer learning (i.e., 

updating a pre-trained model with a small amount of new data from a different target 

population). However, when trained on large datasets, such techniques remain 

computationally expensive and may necessitate repeated sampling of hundreds of 

mosquitoes from different populations and environments to allow successful generalisability. 

Alternatively, since standard ML models are less complex than DL, computational time can be 

kept to a minimum. DL methods are versatile extensions of machine learning that are ideal for 

complex or large datasets [12]. But are prone to overfitting (predicting the training dataset well 

but failing on previously unseen or new data).  

However, unsupervised learning algorithms, which find patterns independent of pre-defined 

target labels, can aggregate, cluster or eliminate features while retaining dominant statistical 

information before training. The resulting dimensionality reduction may improve 

generalisability as well as reducing computational costs of training models. Examples include 

principal component analysis (PCA) [15–17], which projects a large number of variables into 

distinct categories that summarise data into a small number of independent principal 
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components, and t-distributed Stochastic Embedding (t-SNE) [18], which clusters datapoints 

based distances between all their input dimensions. 

This study assessed whether the generalisability and computational costs of MIRS-based 

models for predicting the age classes of female An. arabiensis mosquitoes reared in two 

different insectaries in two locations could be improved by combining dimensionality reduction 

and transfer learning methods. 

Methods 

Collection of mosquito spectra data 

We analysed mid-infrared spectra from two strains of An. arabiensis mosquitoes obtained from 

two different insectaries, one from University of Glasgow, UK and another from Ifakara Health 

Institute, Tanzania. The same data had previously been used to demonstrate the capabilities 

of mid-infrared spectroscopy and CNN for distinguishing between species and determining 

mosquito age [10]. The insectary conditions under which the mosquitoes were reared 

(temperature 27 ± 1.0 °C, and relative humidity 80 ± 5%) have been described elsewhere [19].  

Mosquitoes were collected from day 1 to day 17 after pupal emergence at both laboratories 

and divided in two age classes (1-9 day-olds and 10-17 day-olds). Silica gel was used to dry 

the mosquitoes. For each chronological age in each laboratory, ~120 samples were measured 

by MIRS on each day. The heads and thoraces of the mosquitoes were then scanned with an 

attenuated total reflectance Fourier-Transform Infrared (FTIR) ALPHA II and Bruker Vertex 70 

spectrometers both equipped with a diamond ATR accessory (BRUKER-OPTIC GmbH, 

Ettlingen, Germany). The scanning was performed in the mid-infrared spectral range (4000 – 

400 cm-1) at a resolution of 5 cm-1, with each sample being scanned 16 times to obtain 

averaged spectra as previously described [9,20]. 
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Data pre-processing 

The spectral data were cleaned to eliminate bands of low intensity or significant atmospheric 

intrusion using the custom algorithm [21]. The final datasets from Ifakara and Glasgow 

contained 1720 and 1635 mosquito spectra, respectively. In these two datasets, the 

chronological age of An. arabiensis was categorised as 1 - 9 days old (i.e. young mosquitoes 

representative of those typically unable to transmit malaria) and 10–17 days old (i.e. older 

mosquitoes representative of those potentially able to transmit malaria) [22]. 

To improve the accuracy and speed of convergence of subsequent algorithms, data were 

standardised by centring around the mean and scaling to unit variance [23].  

Dimensionality reduction 

Principal component analysis (PCA) and t-distributed stochastic neighbour embedding (t-

SNE) were used separately to reduce the dimensionality of the data [15–18]. Both PCA and t-

SNE were implemented using the scikit-learn library [23]. 

Separately, t-SNE was used to convert high-dimensional Euclidean distances between 

spectral points into joint probabilities representing similarities. To cluster the data into three 

features, the embedded space was set to 3, because the Barnes-hut algorithm in t-SNE is 

limited to only 4 components. Perplexity was set to 30 as the number of nearest neighbours, 

which means that for each point, the algorithm took the 30 closest points and preserved the 

distances between them. For smaller datasets perplexity values ranging from 5 and 50 are 

thought to be optimal for avoiding local variations and merged clusters caused by small or 

large perplexity values [18]. The learning rate for t-SNE is generally in the range of 10 - 1000 

[23], thus it was set to 200 scalar.  
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Machine learning training 

Deep learning: DL models were trained and used to classify the An. arabiensis mosquitoes 

into the two age classes (1-9 or 10-17 day-olds). The intensities of An. arabiensis mid-infrared 

spectra (matrix of features) were used as input data, while the model outputs were the 

mosquito age classes.  

Three different deep learning models were trained; 1) Convolutional neural network (CNN) 

model without dimensionality reduction, 2) Multi-Layer Perceptron (MLP) with PCA as 

dimensionality reduction, and 3) MLP with t-SNE as dimensionality reduction. For all models, 

a SoftMax layer was added to transform the non-normalized outputs of K-units in a fully 

connected layer into a probability distribution of belonging to either one of two age classes (1–

9 or 10–17 days). Moreover, to compute the gradient of the networks, stochastic gradient 

boosting was used as an optimisation algorithm [25], and categorical cross-entropy loss was 

used for the classifier’s metric.  

To begin, we trained a one-dimensional CNN model with four convolutional layers and one 

fully connected layer when the dimensionality of the data was not reduced (Figure 1A), and 

therefore consisting of 1666 training features from the data. The one-dimensional CNN was 

used because it is effective at deriving features from fixed-lengths (i.e. the wavelengths of the 

mid-infrared spectra), and it has been previously been used efficiently with spectral data [19]. 

To extract features from spectral signals, the deep learning architecture used convolutional, 

max-pooled and fully connected layers. The convolutional operation was carried out with 

kernel sizes (window) of 8, 4, and 6, and a kernel window shift size (stride) of either 1 or 2. 

For each kernel size, 16 filters were used to detect and derive features from the input data. 

Furthermore, given the size of the training data, the fully connected layer consisted of 50 

neurons to reduce the model's complexity. 

Moreover, batch normalisation layers were added to both models to improve model stability 

by keeping mean activation close to 0 and activation standard deviation close to 1. To reduce 
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the likelihood of overfitting, dropout was used during model training to randomly and 

temporarily remove units from the network at a rate of 0.5 per step. Furthermore, after 50 

rounds, early stopping was used to halt training when a validation loss stopped improving.  

Dimensionality reduction: We trained two additional deep learning models, in this case 

Multi-Layer Perceptron (MLP), with PCA or t-SNE transformed input data (Figure 1B). The 

models were trained with only fully connected layers (n = 6) containing 500 neurons each, 

given the limited number of training features to ensure performance and stability. To control 

for overfitting, the procedure was similar to that of the CNN above, except that early stopping 

was used to halt training when a validation loss stopped improving after 500 rounds.  

Figure 1: A schematic representation of a deep learning models that uses mosquito spectra 
as input to predict mosquito age classes. A) CNN - no dimensionality reduction is applied: 
standardised spectral features are fed as input through four different convolutional layers, 
followed by one fully connected layer, with the predicted age classes shown as the output 
layer. B) MLP - dimensionality reduction is used: spectral features that have been reduced in 
dimension using PCA or t-SNE are fed as input through 6 fully connected layers, with the 
predicted age classes shown as the output layer.   

Transfer learning: The Ifakara dataset was used to pre-train the ML model. The Ifakara 

dataset was divided into training and test sets, and estimator performance was assessed using 

K-fold cross-validation (k = 5) [26], (Figure 3). We therefore determined what percentage of 

the new spectra data from the alternate location was required for ML models to sufficiently 

learn the variability in the other insectary. To put transfer learning options to the test, either 82 

or 33 spectra were randomly selected from the 1635 of the Glasgow data, accounting for 5% 

and 2% of the dataset, respectively. The learning process in this case relied on a pre-trained 

model (trained with Ifakara data), avoiding the need to start training from scratch (Figure 2). 

The ML models pre-trained with Ifakara dataset were fine-tuned using 2% or 5% subsets of 

the Glasgow dataset. The output was compared to that of a model trained solely with Ifakara 

data (i.e., no transfer learning).  
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Precision, recall, and F1-scores were calculated from predicted values for each age class to 

demonstrate the validity of the final models in predicting the unseen Glasgow data. Keras and 

TensorFlow version 2.0 were used for deep learning process [27,28]. 

Figure 2: Schematic illustrating the process of data splitting, model training, cross-validation, 
and transfer learning. 

Standard machine learning: We also compared the prediction accuracy of CNN to that of a 

standard machine learning model trained on spectra data transformed by PCA or t-SNE. 

Different algorithms were compared, including K-Nearest Neighbour, logistic regression, 

support vector machine classifier, random forest classifier, and a gradient boosting (XGBoost) 

classifier. The model with the highest accuracy score for predicting mosquito age classes was 

optimised further by tuning its hyper-parameters with randomised search cross-validation [23]. 

The cross-validation evaluation used to assess estimator performance in this case was the 

same as that used in deep learning. The fine-tuned model was used to predict mosquito age 

classes in previously unseen Glasgow dataset. 

Python version 3.8 was used for both the deep learning and standard machine learning 

training. All computations were done on a computer equipped with 32 Gigabits (gb) of random-

access memory (RAM) and an octa-core central processing unit.    

Results 

DL mosquito age classification with and without dimensionality reduction, did not 

generalise between the two locations.  

In the initial analysis, only spectra from the Ifakara insectary were used to train the CNN. 

During model training, the CNN classifier achieved 99% training accuracy without any 

dimensionality reduction (Figure3A). When given new held-out data from the same Ifakara 

insectary (test set), the model predicted mosquitoes aged 1 – 9 days with 100% accuracy and 

those aged 11 – 17 days with 99% accuracy (Figure 3B). However, when the same model 
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was used to predict age classes for Glasgow insectary samples, the overall accuracy was 

46%, and therefore indistinguishable from any random classifications (Figure 3C).  

In addition, a CNN classifier required 200 epochs for training, with a running time of 7.2 – 7.8 

seconds per epoch when no dimensionality reduction on the input data was used (Table 1). 

Figure 3: CNN generalisation and prediction of mosquito age using data from a single 
insectary (Ifakara) with no dimensionality reduction. A) Training and validation classification 
accuracy for mosquito age classes improved from ~60% to 95% as training iterations 
increased (200 epochs). B) A normalised confusion matrix displaying the proportions of correct 
mosquito age class predictions achieved on the held-out Ifakara data (test set) during model 
training. C) Proportions of correct mosquito age class predictions based on unseen data from 
the alternate insectary (Glasgow). 

When PCA was used to reduce the dimensionality of the data, the MLP model trained with 

only Ifakara spectra predicted the held-out data from the same insectary (Ifakara) with an 

overall accuracy of 91%, but could attain only 58% accuracy for predicting age classes of 

Glasgow mosquitoes (Table 1). Similarly, when t-SNE was used as the dimensionality 

reduction technique, the model predicted the held-out Ifakara data (test set) with an accuracy 

of 85%, but failed to accurately predict age classes of Glasgow data (Table 1).  

Furthermore, when PCA or t-SNE were used to transform the input data, a MLP classifier 

needed 5000 epochs to train, with a running time of 0.7 - 0.8 seconds per epoch (Table 1) 

Transfer learning improves DL accuracy and generalisability.  

To improve generalisability (i.e., the ability of the models to predict the age classes of samples 

from other sources), we tuned the pre-trained CNN models with 2% or 5% of the spectra from 

Glasgow (i.e., 2% or 5% target population samples for transfer learning), and used the updated 

model to predict the unseen Glasgow dataset. When no dimensionality reduction was used, 

the pre-trained model predicted the held-out test (Ifakara dataset) with 99% accuracy and 

transferred well to the Glasgow dataset when 2% and 5%  target population samples were 

used for transfer learning, achieving 100% and 96% accuracies, respectively (Table 1).  
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However, when PCA or t-SNE were used to reduce the dimensionality of the data, the MLP 

classifier was trained with only fully connected layers in this case to allow the model to learn 

the combination of features with the network's learnable weights. Using PCA, the pre-trained 

model predicted the held-out test (Ifakara dataset) with 91% accuracy, but when 2% transfer 

learning was applied, the model transferred well to the Glasgow dataset, achieving 97% 

accuracy when predicting the mosquito age classes, and 96% accuracy with 5% target 

population samples (Table 1, Figure 5A-C).   

PCA was used to project the data into lower dimensional space using singular value 

decomposition [15,24], with the goal of achieving the best summary using optimal number of 

principal components (PCs) with up to 98% of variance explained (Figure 4A). Further, when 

the impact of PCs on accuracy was assessed, a greater prediction accuracy was found, 

leading to the selection of 8 PCs. (Figure 4B).  

Figure 4: A) cumulative explained variance and eigenvalues as the function of principal 
components. B) Number of principal components included in the XGB classifier (i.e. from 1:8 
PCs).  

Figure 5: MLP trained on PCA-transformed Ifakara dataset plus 2% new target 
population samples: A) As training time increased (5000 epochs), training and validation 
classification accuracy for mosquito age classes increased from 50% to 91%, B) A normalised 
confusion matrix displaying the proportions of correct mosquito age class predictions achieved 
on the held-out Ifakara test set during model training, C) Proportions of correct mosquito age 
class predictions achieved on unseen Glasgow dataset. MLP trained on t-SNE-transformed 
Ifakara dataset plus 2% new target population samples: D) As training time increased 
(5000 epochs), training and validation classification accuracy for mosquito age classes 
increased from 60% to 83%, E) A normalised confusion matrix displaying the proportions of 
correct mosquito age class predictions achieved on the held-out Ifakara test set during model 
training, F) Proportions of correct mosquito age class predictions achieved on unseen 
Glasgow dataset. 

When using t-SNE, the pre-trained predicted the age classes in the held-out data (test set) 

with 83% accuracy but failed to achieve generalisability for the Glasgow data when either 2% 

or 5% transfer learning was applied, achieving only 50% and 55% accuracy, respectively 

(Table 1, Figure 5D-F).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.07.26.501594doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501594
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

Transfer learning also reduced training time while improving the performance of both DL and 

standard machine learning models in predicting samples from the target population. Transfer 

learning took less than two minutes for both models to produce the desired results (Table 1). 

Comparison between deep learning and standard machine learning models in 

achieving generalisability.   

The XGBoost classifier, when trained with Ifakara data only, failed to predict age classes of 

mosquitoes from the Glasgow insectary, with or without dimensionality reduction (Table 1). 

However, when the classifier was updated with 2% target population samples, the model 

correctly classified individual mosquito age classes with 98% for both 1–9 days old and 10–

17 days old mosquitoes (Figure 6).  Similar results were observed even when PCA was used 

as a dimensionality reduction (Figure 6). Increasing the samples for transfer learning to 5% of 

the training set had no effect on the accuracies (Table 1). However, when t-SNE was used for 

dimensionality reduction, transfer learning with either 2% or 5% Glasgow samples did not 

improve the generalisability of the XGBoost classifier (Table 1).  

Table 2 shows how the performance of deep learning and standard machine learning was 

evaluated using other metrics such as precision, recall, and f1-scores. When it comes to 

mosquito age classification, the XGBoost classifier matches the deep learning model in both 

specificity (precision) and sensitivity (recall).  

Further to that, standard machine learning models were trained with 10 iterations, and still the 

computing runtimes were generally shorter than those for CNN models when PCA and t-SNE 

were used to transform the input data, in some cases by up to 5 times (Table 1).  

Figure 6: Standard machine learning models' predictive accuracies and generalisability when 
trained with PCA-transformed Ifakara data plus 2% new target population. A) Comparison of 
standard machine learning models for mosquito age classification; KNN: K-nearest 
neighbours, LR: Logistic regression, SVM: Support vector machine classifier, RF: Random 
forest classifier, and XGB: XGBoost. B) A normalised confusion matrix displaying the 
proportions of correct mosquito age class predictions achieved on the held-out data (test set) 
during model training. C) proportions of correct mosquito age class predictions achieved on 
unseen Glasgow dataset.   
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Discussion 

This study demonstrates that transfer learning approaches can substantially improve the 

generalisability of both deep learning and standard machine learning in predicting the age 

class of mosquitoes reared in two different insectaries. We evaluated 1635 mosquito spectra 

from Glasgow-reared mosquitoes and show that using transfer learning and dimensionality 

reduction techniques could improve machine learning models to predict mosquito age classes 

from alternate insectaries. Furthermore, reducing the dimensionality of the spectral data 

reduced computational costs (i.e. computing time) when training the machine learning models. 

The current study adds to the growing evidence of the utility of infrared spectroscopy and 

machine learning in estimating mosquito age and survival [8,29–31]. In the past, most 

applications of infrared spectroscopy in estimating mosquito vector survival relied on near-

infrared frequencies (12,500 cm-1 to 4000 cm-1). A recent study used mid-infrared spectra 

(from 4000 cm-1 to 400 cm-1 frequencies) and standard machine learning to distinguish 

mosquito species with up to 82% accuracy, but found lower age prediction accuracy in several 

alternate settings [9]. González et al., suggested that machine learning underprediction may 

be explained by the small training dataset and ecological variability between the training and 

validation sets [9].  

In our study, despite categorising mosquito chorological age into two classes (young: 1-9-day 

olds and old: 10–17-day olds), deep learning and standard machine learning approaches both 

remained unable to generalise, even after reducing the dimensionality of the spectra data. 

This result is consistent with Siria et al. [10], where CNN underperformed as a result of the 

difference in data distribution between the training and evaluation data driven by non-genetic 

factors such as ecological variation. When near-infrared spectroscopy was used to predict the 

age of Anopheles mosquitoes reared from wild populations, a similar limitation was reported 

[8,29]. 
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Nonetheless, Siria et al. [10] also observed that using transfer learning to correct the difference 

data distribution between training and evaluation data improved deep learning generalisation, 

achieving 94% accuracy in predicting both species and mosquito age classes. Furthermore, 

in the latter study, the performance of the classifier was improved by incorporating a subset 

(n = 1200 ~ 1300 spectra) of the evaluation data into the training data.  

The present study shows performing transfer learning using 2% of the spectra from the target 

domain (33 of 1635) as well as dimensionality reduction resulted in the improved 

generalisability  of both deep learning and standard machine learning models achieving overall 

accuracy of ~98%. In this case, we expected that all models to which transfer learning was 

applied would outperform the baseline models. However, as the proportion of data from the 

target domain in the training increased, the performance slightly dropped for the deep learning. 

The reason for the deterioration in performance after turning the pre-trained/base model with 

5% transfer learning could be that the model overfitted random noise during training, which 

negatively impacted the performance of these models on unseen data. Other studies have 

proposed alternative transfer learning approaches, such as adaptative regularisation to 

address cross-domains (i.e. source domain and target domain) learning problems [32], 

transferring knowledge gained in the source domain during training to the target domain [33], 

and integrating dimensionality reduction to transform features of the source to ensure data 

distribution in different domains is minimised [34].  

Furthermore, dimensionality reduction was used in conjunction with transfer learning to reduce 

noise, redundant features, and computational time. Based on our findings, dimensionality 

reduction alone cannot achieve generalisability of machine learning models. The PCA 

improved model stability because the eigenvectors of the correlation matrix in PCA provide 

new axes of variation to project new data. The model with t-SNE as a dimensionality reduction 

technique failed to achieve generalisability on the new data, the reason for poor performance 

could be t-SNE is a probabilistic technique with a non-convex cost function [18], causing the 

output to differ from multiple runs. 
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Furthermore, incorporating dimensionality reduction substantially reduces model training time 

and thus, computational requirements. When compared to models trained without 

dimensionality reduction, the computing runtimes for models trained with dimensionality 

reduction were less than five-fold. Moreover, transfer learning in general was fast, tuning the 

pre-trained models in under two minutes on our machine (standard laptop). This makes the 

technique applicable and reproducible even to users with low computing power and capacity 

providing they have access to pre-trained models. 

This study only included An. arabiensis reared in the laboratory from two insectaries. Future 

research should put the techniques to the test with samples from more laboratories, field 

settings, and mosquito species, as these factors can affect the model's predictive capacity. 

The optimal ratio of transfer learning data required to achieve best generalisability in predicting 

mosquito age class has yet to be determined, so future studies could investigate this gap. 

Furthermore, because dimensionality reduction reduced the computational requirements in 

this study, we suggest that clustering spectra with algorithms such as PCA can be a beneficial 

strategy for models trained on MIRS. 

Conclusion 

Dimensionality reduction does not improve model generalisability in predicting mosquito age 

classes using data from alternate insectary. However, using transfer learning and 

dimensionality reduction with PCA, the generalisability of the deep learning models in 

predicting mosquito age classes improved from 56% to >95%. Therefore, this study indicates 

that these techniques could be scaled up and evaluated further to determine the age of 

mosquitoes from different populations, transfer learning is currently necessary. Moreover, 

when dimensionality reduction and transfer learning are used, standard machine learning 

(e.g., the XGBoost classifier) can reduce computational time while also matching the 

performance of deep learning. The development of these models could reduce the amount of 

work and time required for entomologists to dissect large numbers of mosquitoes. These 

approaches could be used to improve model-based surveillance programmes, such as 
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assessing the impact of malaria vector control tools, by monitoring the age structures of local 

vector populations.  

Abbreviations 

CNN: Convolutional neural network, ITNs: Insecticide treated nets, PCA: Principal component 

analysis, t-SNE: t-distributed stochastic neighbour embedding.   
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Table 1:  The performance of deep learning and standard machine learning models for predicting mosquito age classes from the same or alternate 

insectaries, with and without dimensionality reduction (DR) and transfer learning. 

Models Dimensionality reduction 

(DR) technique 

Training data 

sources 

Transfer 

learning 

Base Model runtime Transfer learning 

runtime 

Predictions for age of 

mosquitoes from same 

insectary (Ifakara) -Test 

accuracy (%) 

Predictions for age of 

mosquitoes from alternate 

insectary  (Glasgow) - 

unseen data accuracy (%) 

CNN-1 No DR Ifakara No TL 7.2 seconds/epoch N/A 99 46 

CNN-2 No DR Ifakara 2% (33 of 1635) 7.2 seconds/epoch 1 minute 99 100 

CNN-3 No DR Ifakara 5% (82 of 1635) 7.8 seconds/epoch 2 minutes 99 96 

MLP-1 PCA Ifakara No TL 6.5 seconds/epoch N/A 91 58 

MLP-2 t-SNE Ifakara No TL 1 seconds/epoch N/A 84 58 

MLP-3 PCA Ifakara 2% (33 of 1635) 0.8 seconds/epoch 35 seconds 91 97 

MLP-4 PCA Ifakara 5% (82 of 1635) 0.7 seconds/epoch 51 seconds 91 96 

MLP-5 t-SNE Ifakara 2% (33 of 1635) 0.7 seconds/epoch 47 seconds 83 50 

MLP-6 t-SNE Ifakara 5% (82 of 1635) 0.7 seconds/epoch 49 seconds 83 55 

  

XGB-1 No DR Ifakara No TL 645 seconds/iteration N/A 92 48 

XGB-2 No DR Ifakara 2% (33 of 1635) 975 seconds/iteration 1 seconds 92 98 

XGB-3 No DR Ifakara 5% (82 of 1635) 861 seconds/iteration 1 seconds 92 98 

XGB-4 PCA Ifakara No TL 60 seconds/iteration N/A 90 48 

XGB-5 t-SNE Ifakara No TL 66 seconds/iteration N/A 68 55 

XGB-6 PCA Ifakara 2% (33 of 1635) 54 seconds/iteration 1 seconds 90 98 

XGB-7 PCA Ifakara 5% (82 of 1635) 54 seconds/iteration 2 seconds 90 97 

XGB-8 t-SNE Ifakara 2% (33 of 1635) 60 seconds/iteration 1 seconds 81 43 

XGB-9 t-SNE Ifakara 5% (33 of 1635) 60 seconds/iteration 1 seconds 82 49 
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*CNN – 1 to 3: Different versions of convolutional neural network, MLP– 1 to 6: Different versions of Multi-Layer Perceptron,  XGB-1 to 9: Different versions of XGBoost classifier 

(standard machine learning), No DR: No dimensionality reduction, PCA: Principal component analysis, t-SNE: t-distributed stochastic neighbour embedding, No TL: No Transfer 

learning, N/A: Not applicable. The highest prediction accuracy as a result of transfer learning with less computational time is shown in the highlighted rows. 

Table 2: Precision, recall, and f1-score of the best deep learning model for classifying mosquito age classes from alternate sources compared to 

the best standard machine learning algorithm (i.e. XGBoost classifier). 

Model name Age class (Days) Precision Recall f-1 score No. of samples per age class 

MLP-3 1-9 0.98 0.97 0.98 895 

10-17 0.97 0.97 0.97 707 

      

XGB-6 1-9 0.98 0.99 0.98 895 

10-17 0.98 0.98 0.98 707 

* MLP–3: Multi-Layer Perceptron trained with PCA as a dimensionality reduction technique and 2% transfer learning, XGB-6: XGBoost classifier trained with PCA as a 

dimensionality reduction technique and 2% target population samples used for transfer learning.  
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