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Summary 

Accurately modeling the structures of proteins and their complexes using artificial intelligence is 

currently revolutionizing molecular biology. Experimental data enable a candidate-based approach to 

systematically model novel protein assemblies. Here, we use a combination of in-cell crosslinking 

mass spectrometry, co-fractionation mass spectrometry and the SubtiWiki database to identify protein-

protein interactions in the model Gram-positive bacterium Bacillus subtilis. Pairing this with structure 

prediction by AIphaFold-Multimer, we identify novel interactors of central machineries that include the 

ribosome, RNA polymerase and pyruvate dehydrogenase, as well as interactions involving 

uncharacterized proteins, which we functionally validate. After controlling for the false-positive rate of 

the AlphaFold approach, we propose novel structural models of 153 dimeric and 14 trimeric protein 

assemblies. We show that crosslinking MS data can independently validate AlphaFold predictions in 

situ. Our approach uncovers protein-protein interactions inside cells, provides structural insight into 

their interaction interface, and is applicable to genetically intractable organisms, including pathogenic 

bacteria. 
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Introduction 

Life depends on functional interactions between biological macromolecules, with those between 

proteins being the most diverse and numerous. The structure of protein-protein interactions (PPIs) is 

inextricably linked to their function, and elucidating these structures is normally laborious. Both 

proteomic and genetic approaches have been used to compile vast lists of protein-protein interactions, 

but provide little insight into the topology of the proposed PPIs. Although proteome-wide PPI modeling 

has been attempted by relying on docking algorithms driven by evolutionary contacts (Cong et al., 

2019; Green et al., 2021), these are limited when detecting dramatic conformational changes upon 

binding. The recent development of AlphaFold-Multimer brought accurate predictions of the structure 

of protein-protein complexes into reach (Evans et al., 2022; Mirdita et al., 2022). This makes 

establishing structure-function relationships across whole interactomes a possibility (Akdel et al., 

2021; Burke et al., 2021; Hopf et al., 2014), and offers a plausible remedy to the understudied proteins 

challenge (Kustatscher et al., 2022), opening a new era in structural systems biology.  

There are large caveats for applying AlphaFold-Multimer to model protein interactions across 

proteomes, however. Predicting the interaction interfaces of all possible combinations of protein pairs 

is prohibitively expensive and computationally impractical. For example, the 4,257 protein coding 

genes in Bacillus subtilis (Borriss et al., 2018) result theoretically in 9 million pairs and 38 billion trimers. 

While this is already a computational challenge, proteins also form complexes involving much larger 

numbers of subunits. It has thus become of interest to find shortcuts towards identifying the topology 

of these interactions, ideally without laborious experimental approaches. 

Large numbers of PPIs have been experimentally identified by two-hybrid, affinity purification 

mass spectrometry (AP-MS) and co-fractionation MS studies (CoFrac-MS), among others, for many 

biological systems from bacteria and yeast to human cells (Fossati et al., 2021; Gavin et al., 2006; 

Iacobucci et al., 2021; Rajagopala et al., 2014; Wan et al., 2015). These techniques report thousands 

of interactions with varying accuracy. However, they provide little topological or structural information, 

often even leaving open if an interaction is direct or indirect. Additionally, they involve probing 

interactions outside their native environment, either by lysing the cell or by creating fusion constructs. 

Nevertheless, these experimental methods provide some information to PPI databases which was 

used as a basis for AlphaFold protein interaction screens in Escherichia coli (Gao et al., 2022), 

Saccharomyces cerevisiae (Humphreys et al., 2021) and human proteomes (Burke et al., 2021). 

Unfortunately, it is unknown how many false positive or false negative predictions this produces. A 

possible solution would be provided by in-cell structural data that can feed into and independently 

validate protein structure predictions at scale. 

In recent years, in vivo crosslinking of proteins and subsequent identification of the linked 

residue pairs by mass spectrometry (crosslinking MS) has emerged as a technique that can detect 

PPIs in cells and provide topological information on these interactions (Chavez et al., 2018; O’Reilly 

et al., 2020), with tightly controlled error rates (Lenz et al., 2020). By fixing interactions inside cells as 

the first step of the analytical workflow and providing information on the linked residue pairs, it provides 

insights into the structure of protein-protein interactions in their native context. 

Here we combine crosslinking MS and CoFrac-MS of crosslinked cells, two complementary 

experimental in-cell PPI mapping approaches, to discover PPIs in the Gram-positive model bacterium 

B. subtilis. B. subtilis is a major workhorse for commercial protein production and a close relative to 

the human pathogens Bacillus anthracis, Listeria monocytogenes and Staphylococcus aureus 

(Errington and Aart, 2020; Kovács, 2019). Despite its importance as a model organism for Gram-

positive bacteria, no systematic PPI screen has been performed in B. subtilis so far. Thus, annotation 
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of its PPIs relies on genetic data, targeted biochemical experiments and homology to those reported 

(from high-throughput screens) in other species. Crosslinking MS provides information on PPI 

topology, but currently lacks depth in the context of whole-proteome analyses. In contrast, CoFrac-

MS can infer the subunits of soluble complexes, but does not provide topological information 

(Skinnider and Foster, 2021). 

To generate structural models of interactions across the B. subtilis proteome, we submitted 

our experimentally-derived PPIs and previously annotated interactions found in the SubtiWiki 

database (Pedreira et al., 2022) to protein structure modeling using AlphaFold-Multimer. Importantly, 

we used a target-decoy approach to benchmark the predicted interface TM-score (ipTM) (Evans et 

al., 2022; Zhang and Skolnick, 2007) in this study. Using the stringent cut-off ipTM > 0.85, we predicted 

first high-quality structural models for 130 binary protein assemblies, 17 of which are novel in both 

association and structure. The pairwise interactions can be used as building blocks for further structure 

predictions of novel higher-order complexes. With this approach we identify the previously 

uncharacterized protein YneR, here renamed PdhI, as an inhibitor of the pyruvate dehydrogenase, 

which links glycolysis and the Krebs cycle. In this case, experimental data from both global proteomic 

approaches, structure modeling and in vivo validation converge to identify a novel protein-protein 

interaction, to demonstrate its biological function. This workflow demonstrates the power of combining 

complementary techniques to discover high-confidence direct protein interactions without genetic 

modification, and to accurately predict and validate corresponding structural models. 
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Results 

 

Crosslinking MS to identify protein-protein interactions within intact B. subtilis cells 

We generated a whole cell interaction network using crosslinking mass spectrometry. We crosslinked 

proteins in B. subtilis cells with the membrane permeable crosslinker DSSO (Kao et al., 2011; 

Kolbowski et al., 2021). Cells were lysed, the proteins fractionated and trypsin digested, and the 

resulting peptides separated by cation exchange and size exclusion chromatography prior to mass 

spectrometry and database searching to result in three datasets (Fig. S1A and methods). A 2% 

protein-protein interaction false discovery rate (PPI-FDR) was imposed on each of the datasets and 

together 560 protein interactions are reported at a combined FDR of 2.5% (Lenz et al., 2020) 

(Supplementary Table 1). These 560 protein interactions are underpinned by 1268 unique residue 

pairs. The interaction network contains 337 proteins, with a further 629 proteins detected with only 

self-links. This is a substantial fraction of the 1982 proteins revealed as being present using standard 

proteomics (Supplementary Table 2). Protein abundance was a key factor for a protein to be detected 

with crosslinks, with the median abundance of crosslinked proteins being about a magnitude higher 

than that of all detected proteins (iBAQ 2.5 x 108 compared to 1.8 x 107 Fig. S1B). 

Of the 560 protein interactions detected by crosslinking, 176 are previously reported in 

SubtiWiki, with 384 remaining as not previously identified. As has been seen in other studies, some 

particularly abundant proteins contribute many interactions to whole-cell crosslinking MS approaches 

(Chavez et al., 2016; O’Reilly et al., 2020). The highly abundant ribosomal proteins L7/L12 (RplL), L1 

(RplA) and RS3 (RpsC), the elongation factors Ef-Tu (Tuf) and Ef-G (FusA), and the RNA chaperones 

CspC and CspB, are identified crosslinking to more than 20 proteins each. Each of these proteins, 

aside from CspB, are in the top 30 proteins by intensity, with Tuf, RplL and FusA being the three most 

intense (Supplementary Table S2). If the interactions with these proteins are removed, this leaves 

310 interactions, among them 186 novel interactions (Figure 1A and S1C). Checking the consistency 

of our data with known structures, we mapped the crosslinks in the dataset on the known structure of 

the B. subtilis RNA polymerase and homology models of the DNA gyrase and ATP synthase. 95 out 

of 98 crosslinks on these complexes were within the expected 30 Å distance between the Cα atoms 

(Fig. S2). Crosslinks mapped onto the ribosome showed 74 of 343 (21.5%) crosslinks were 

overlength, but these could come from multiple different states of ribosomes present in the cell, 

including multi-ribosome interactions and pre-ribosome assemblies (Fig. S2).  

From the many proteins that were found with crosslinks to ribosomal subunits, two previously 

unannotated interactors stood out with crosslinks to multiple 30S proteins in close proximity; YugI with 

a total of 34 links to eight 30S proteins and YabR with 10 links to four proteins (Fig. S3). YugI and 

YabR are conserved paralogs in Firmicutes, containing an S1 RNA binding domain and share 51% 

sequence identity, but crosslink to different surfaces of the 30S ribosomal subunit (Fig. 1B). We 

pursued these interactions by constructing a strain that expresses C-terminally His-tagged YabR and 

YugI at their native loci in B. subtilis. Both YugI and YabR co-migrate specifically with the 30S subunit 

of the ribosome in a sucrose gradient, whereas the control RocF was not associated with the ribosome 

(Fig. 1C, Fig. S3). Bacterial-two-hybrid assays were performed to test the interaction of YabR and 

YugI with the ribosomal proteins to which the most crosslinks were detected, namely S6 (bS6/RpsF) 

and S18 (bS18/RpsR) for YabR, and S2 (uS2/RpsB) and S10 (uS10/RpsJ) for YugI (Fig. S3) (Ban et 

al., 2014). The assay confirmed an interaction of YabR with S18 and YugI with S10. Furthermore, a 

yugI deletion strain showed increased resistance to the translation inhibitor tetracycline, supporting a 

functional link of the protein and the ribosome (Fig. S3). 
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Crosslinking stabilizes interactions for identification by Co-fractionation MS 

In a second approach to detect PPIs, the soluble proteomes of both crosslinked and non-crosslinked 

B. subtilis cells were fractionated by size exclusion chromatography (SEC). 50 fractions were collected 

and analyzed by quantitative LC-MS (Supplementary Table S3). The subunits of several known 

complexes coeluted nicely, for example the RNA polymerase, 50S ribosome and the stressosome 

(Kwon et al., 2019) (Fig. S4). Crosslinking stabilized some members of complexes and aided their co-

elution. For example, the known RNAP binders NusA and GreA were only found eluting with the RNAP 

when stabilized by crosslinking (Fig. 1C), whereas the subunits of the core RNAP co-elute in both 

conditions (Fig. S4).  

To obtain individual scores for co-eluting groups of proteins, the CoFrac-MS analysis software 

PCprophet was used. For both the crosslinked and the non-crosslinked dataset, we filtered the dataset 

to proteins with high abundance in each of the three replicas (see methods). Ribosomal proteins were 

removed, as lysis conditions were not selected for ribosome stability. Only the highest confidence co-

eluting protein pairs were retained (PCprophet positive complexScore cutoff 0.8). Due to the limited 

resolution of the column, many proteins were calculated as co-eluting in the final fractions (molecular 

weight <200 kDa) and near the void volume. These were removed from our data by excluding groups 

with more than ten members. The members of the remaining groups of co-eluting proteins were 

permuted all-against-all within each group into binary interactions for further analysis. This basic co-

elution analysis resulted in 667 candidate PPIs total, with 449 from crosslinked cells and 318 from the 

untreated cells (Fig. 1D, Fig. S5, Supplementary Table S4). Some proteins were only detectable 

from the untreated cells. This may be due to the crosslinking making them insoluble or linked them 

together into particles that were too large to be separated on this SEC column. The candidate PPIs 

from CoFrac-MS were very complimentary to the crosslink data, increasing the total number of our 

PPIs to 878, with only 4% overlap between the two techniques. The newly discovered PPIs have been 

added to the SubtiWiki database (Pedreira et al., 2022) (see methods). 

 

A system-wide PPI candidate list 

To generate a comprehensive PPI candidate list for system-wide structure modeling with AlphaFold-

Multimer, we added known PPIs that lack structural information to our experimentally identified PPIs. 

We downloaded the high-confidence protein interactions from the SubtiWiki database (2615 total), 

which are derived from various techniques, including two-hybrid screens and co-purification 

(Commichau et al., 2009; Marchadier et al., 2011; Meyer et al., 2011). The SubtiWiki database is 

manually curated, and should be enriched for direct interactions. From this list, we removed the intra-

ribosome interactions due to the large amount of rRNA that complicates PPI structure prediction. We 

further removed homodimers and those having homologs in the Protein Data Bank (PDB) (sequence 

identity > 30% and BLAST EValue < 10-3), yielding a final list of 1218 previously known PPIs with no 

high-quality structural information. Similarly, we also filtered candidate PPIs from our experimental 

approaches to remove intra-ribosome interactions. This resulted in a final combined list of 2032 

candidate PPIs for submitting to AlphaFold-Multimer (Fig. 1E). Surprisingly, the overlap between the 

three datasets is limited (Fig. 1F), testifying to the complementarity of approaches. 
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Identification of protein-protein interaction interfaces by AlphaFold-Multimer 

We derived structural models of these PPIs by submitting each protein pair to AlphaFold-Multimer 

(version 2.1), which uses a model trained on the protein structure database and multiple sequence 

alignments to infer the structure of proteins and multiprotein complexes (Supplementary Table S5). 

The resulting 1977 models were assessed for overall predicted TM-score (pTM), and interface 

predicted TM-score (ipTM) (Fig. 2A). These two error metrics rely on estimating the overall similarity 

of the model to the unknown true solution by predicting the TM-score (Zhang and Skolnick, 2007) of 

the two structures on all residues (pTM) or on inter-subunit distances only (ipTM). Thus, pTM reports 

on the accuracy of prediction within each protein chain, and ipTM on the accuracy of the complex. A 

TM-score of 0.5 is broadly indicative of a correct fold/domain prediction (Andreeva et al., 2020; Sillitoe 

et al., 2021; Xu and Zhang, 2010; Zhang and Skolnick, 2007), while scores above 0.8 correspond to 

models with matching topology and backbone path (Kufareva and Abagyan, 2012; Olechnovič et al., 

2019; Xu and Zhang, 2010). ipTM > 0.85 has proven in other analyses reliable when compared to 

known interface TM-score and the DockQ docking quality score (Bryant et al., 2022a; Burke et al., 

2021; Evans et al., 2022). In total, the predictions resulted in 153 high-confidence PPI models (ipTM 

> 0.85) (Fig. 2B). This includes 17 novel interactions for which no annotation had been previously 

available (Fig. 2A, S6), and 130 interactions with no good template homologous structures in the PDB 

i.e. for which we predict a first high-quality model even though many have previously been annotated 

in SubtiWiki and thus worked on. A further 396 models have a lower confidence (ipTM 0.55-0.85), 26 

of which represent novel interactions. The candidates from the three approaches yielded different 

subsets of high-scoring models, with crosslinking MS providing the highest ‘hit rate’ for structural 

modeling of novel PPIs (12% of crosslinking MS PPIs lead to models with ipTM >0.85; 4% of CoFrac-

MS and 11% of the SubtiWiki dataset). (Fig. 2A, B). This agrees with co-elution not selecting for direct 

binary interactions and thus giving the lowest hit rate. In contrast, manual curation of the available 

literature and crosslinking MS yield comparable outcomes. 

 We set a stringent cutoff of ipTM=0.85 for calling high-confidence PPI models. In order to prove 

the robustness of our score cutoff, we employed a noise model in which 300 B. subtilis proteins from 

our datasets were predicted as pairs with random E. coli proteins. The ipTM distribution of the resulting 

decoy PPIs was compared with 10 subsamples of our AlphaFold-Multimer predictions (Fig. 2C), 

showing that ipTM < 0.55 for AlphaFold-Multimer indicates a random prediction, while 0.55-0.85 

performs better than random, with increasing accuracy. No decoy PPIs reported an ipTM > 0.85. We 

take this result to indicate that, especially in the ipTM range 0.55-0.85, AlphaFold-Multimer models 

require additional validation by other experimental approaches.  

Each predicted protein-protein interaction was also assessed in terms of its predicted aligned 

error (PAE) matrix, which reports on the predicted error in the position of a residue if the protein were 

aligned to the true solution elsewhere along the sequence. PAE can be used to estimate confidence 

in positions of parts of the protein or complex relative to the rest. In the example shown in Fig. 2D, the 

novel interaction identified by CoFrac-MS between the alanine-tRNA synthetase AlaS and the 

uncharacterised protein YozC is shown. The model has the highest ipTM score (0.97) in the dataset, 

but a low pTM score (0.70), indicating high confidence in the interface but a lower confidence in the 

prediction of the overall structure. The PAE plot shows that the relative position of YozC and the AlaS 

N-terminal region has a very low predicted aligned error, but the position of these two regions relative 

to the rest of AlaS, which contains two more domains, is uncertain. To confirm this interaction, we 

performed a bacterial two-hybrid experiment that demonstrated that these proteins directly interact 

(Fig. 2E). 
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 It is important to note that predictions with low ipTM values indicate poor models, but do not 

necessarily mean the two proteins do not interact. AlphaFold-Multimer can provide inaccurate results 

in cases where the protein pair resides in a larger complex, where the interaction is mediated by 

nucleic acids or other molecules, as well as in cases where the interaction is dependent on a post-

translational modification.  

 

Validation of AlphaFold-Multimer models by crosslinking MS 

Our high-quality crosslink data provides insights into the structure of protein complexes inside cells 

and allows validating the corresponding AlphaFold model (Fig. 3A). We found a strong correlation 

between ipTM and restraint satisfaction of heteromeric crosslinks, despite the fact that crosslinking 

information was not used in AlphaFold model prediction. Crosslink violation is especially low with ipTM 

> 0.85, indicating that high-confidence models agree with the residue-residue distances observed in 

situ. 

In the ipTM range of 0.55-0.85 models show a wide distribution of heteromeric restraint 

violation percentages (Fig. 3A), indicating that models in this ipTM range may be independently 

validated or at least partially rejected based on experimental information. A low degree of restraint 

violation suggests that the conformations predicted are at least in some features representative of the 

structures inside cells. High restraint violation may indicate the model does not reflect the in-cell 

conformation in the regions covered by crosslinking MS data, or that the prediction is far from the true 

solution (Fig. 2C). Nevertheless, crosslinking MS data show that models in the ipTM 0.75-0.85 range 

are more likely to be consistent with in situ structural restraints than models in the 0.55-75 range, 

indicating increasing model quality (Fig. 3A). It is also noteworthy that the models with low (<0.55) 

ipTM display a median 100% violation rate of heteromeric crosslinks (Fig. 2A), corroborating the poor 

nature of interfaces in models with low ipTM scores.  

Match to crosslinking MS data can therefore independently confirm predicted interfaces, 

especially for those PPIs with a high number of heteromeric crosslinks (Fig. 3B), where a large swath 

of the interface is covered by crosslinking MS data. For example, the crosslinking MS data confirms 

the predicted model for the novel interaction between the B subunit of the glutamyl-tRNA 

amidotransferase (GatB) and the uncharacterised protein YtpR, which has putative RNA-binding 

activity (Fig. 3C). Several crosslinks within GatB additionally validate the topology of this protein’s fold.  

Self crosslinks may also provide important insights into protein conformation, as they may also 

be used to indicate which models below our ipTM threshold are reliable, as in the case for the 

membrane transporter subunits OpuAA-OpuAB (ipTM=0.80). Here, heteromeric crosslinks validate 

the predicted interface and self crosslinks highlight the flexibility of the OpuAA N-terminal region with 

respect to the rest of the complex, which can be also seen in the predicted aligned error plot (Fig. 3D). 

Due to its sequence resolution, crosslinking MS can also provide information on the interaction 

of paralogs for which so far only homomeric complexes have been reported. In our high-scoring 

models we had four dimers of paralogs; RocA-PutC, Ytop-YsdC, YmfF-YmfH, and MurAA-MurAB. In 

the case of RocA-PutC (Fig. 3C), both proteins are paralogs of Bacillus halodurans 1-pyrroline-5-

carboxylate dehydrogenase, which has been solved as a homodimer (PDB: 3qan), with sequence 

identities of 69% and 74% respectively. Due to the high sequence identity, AlphaFold templates RocA-

PutC on the homomeric B. halodurans RocA1-RocA1 complex (PDB: 3qan), leaving unclear if the 

heteromeric model is physiologically relevant. Multiple residue-residue pairs are detected for RocA-

PutC, clearly indicating the heteromeric complex is formed in situ. The crosslinks are satisfied in the 
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AlphaFold model, confirming the interface. Moreover, no crosslinks indicating a homodimer (involving 

the same peptide pair) were observed. 

Inferring novel protein complexes from binary prediction 

Due to the intrinsic limitations of any network analysis, all three approaches used to generate binary 

PPIs here (crosslinking MS, CoFrac-MS and the SubtiWiki database) can provide only indirect 

information on higher-order interactions. The binary interactions predicted above can be independent 

binary events or be part of larger multiprotein complexes. Such assemblies may contain many copies 

of the two proteins or involve additional subunits. Nevertheless, the binary interactions can be used to 

infer associations in larger assemblies. 

To look for potential higher order complexes in our binary PPI structure predictions, we plotted 

all PPI predictions with ipTM > 0.65 as a network(based on Fig. 2C). Groups of predicted PPIs might 

indicate higher order complexes. In total 64 groups were identified. These ranged from those 

containing only three proteins, to the largest containing 16 members (Fig. S7). It is of interest to note 

that the two largest potential complexes each contain functionally related proteins that are involved in 

DNA replication and recombination (centered around DnaN) (Lenhart et al., 2012) and in sugar 

transport by the phosphotransferase system (PTS, centered around PtsH) (Stülke and Hillen, 1998). 

In the case of the PTS interactions, most of them are known binary interactions involved in 

phosphotransfer of one protein to the other or in binary regulatory interactions. Thus, a large complex 

is not likely for the PTS proteins, whereas the formation of one or two large complexes is feasible for 

the replication and recombination proteins. For large clusters of interacting proteins there are many 

potential combinations of stoichiometries that could be predicted, and so prior knowledge is required 

to model complexes correctly (Bryant et al., 2022a; Gao et al., 2022). In order to simplify the problem 

for the purpose of this study, we predicted only potential heteromeric trimers with a 1:1:1 stoichiometry. 

Our network identified 33 groups of only three proteins, including 5 potential complexes involving novel 

interactions (Fig. 4A).  

The 33 candidate trimers were predicted with AlphaFold-Multimer (version 2.2.1) 

(Supplementary Table S6), resulting in 14 trimer predictions with ipTM > 0.8. The top-ranking hit is a 

previously unknown complex between the proteins of the lactate utilization operon LutA-LutB-LutC 

(Yunrong et al., 2009). The interactions are identified by a combination of crosslinking MS (LutA-LutB) 

and CoFrac-MS (LutB-LutC). In the predicted structure, the PAE plot shows a highly confident 

placement of the whole sequence of the subunits. LutB contains an Fe-S cluster that is located away 

from subunit interfaces, though the LutC N-terminal region forms extensive interactions with the LutB 

α2 helix covering the Fe-S site.  

One of the predicted complexes is the complex between CapA, CapB, and CapC. These 

proteins catalyze the synthesis and the export of γ-polyglutamate (PGA), an extracellular polymer. In 

B. subtilis, all of the enzymes needed for γ-PGA synthesis are encoded in the capBCAE operon 

(Urushibata et al., 2002). CapB and CapC form the γ-PGA synthase complex, whereas CapA and 

CapE co-operate in export (Candela et al., 2005). The formation of a CapBCA complex has been 

suggested previously, with a tight interaction between the ligase subunits CapB and CapC and a loose 

interaction of the ligase to CapA (Ashiuchi et al., 2001). Our work provides evidence for the existence 

of the CapBCA complex with this confident structural prediction (Fig. 4C). Interestingly, in B. anthracis, 

the causative agent of anthrax, the cap operon is present on the virulence plasmid pXO2. This 

bacterium uses the γ-PGA capsule to protect itself from the host’s immune surveillance, which 

therefore is an important virulence factor (Jang et al., 2011; Mock and Fouet, 2001). 
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Among the top-ranking hits, we also find the competence proteins (ComEC-ComFC-ComFA) 

arranged in a membrane-spanning complex  (Fig. 4C). The ComEC membrane nuclease binds 

ComFA, an ATPase involved in DNA import, and the late competence factor ComFC. These three 

proteins all localize to the cell poles and share a similar expression pattern across growth conditions 

(Kaufenstein et al., 2011; Pedreira et al., 2022). The interactions of ComFA with ComFC and ComEC 

have already been reported (Diallo et al., 2017; Kramer et al., 2007). A ternary complex between these 

proteins suggests that the energy provided by ComFA-mediated ATP hydrolysis fuels ComEC 

mediated uptake of single-stranded DNA molecules (Silale et al., 2021). 

Finally, there are 10 transmembrane transporters and permeases predicted. All proteins are 

already known to belong to various classes of ATP-binding cassette (ABC) transporters or are 

annotated as putative ABC transporters. One example is the permease YtcP-YtcQ-YteP (Fig. 4C), a 

permease for complex carbohydrates (Ferreira et al., 2017; Ochiai et al., 2007). Other ABC 

transporters, like YclN-O-P-Q, fall into higher order assemblies (Fig. S8). For the latter complex, the 

known stoichiometry can even be gleaned from the binary predictions and the full complex can be 

modeled (Fig. S8). While these predictions are confident, stoichiometry information remains crucial in 

protein complex prediction. 

 PdhI/YneR is an inhibitor of the E1 module of pyruvate dehydrogenase 

The interaction of the uncharacterised protein YneR, here renamed PdhI, with the E1 module of 

pyruvate dehydrogenase (PdhA-PdhB) was identified by crosslinking MS. The predicted ternary 

complex shows a confident arrangement of the 3 subunits (ipTM=0.89), despite a low-confident 

prediction in the binary PdhI-PdhB interaction. The 10 predictions could be grouped into two distinct 

possible configurations of the PdhA-PdhB subcomplex, which are consistent with the known ‘dimer of 

dimers’ stoichiometry of the E1 module (Fig. 5A-C). The crosslinks to PdhI were only satisfied on the 

worse scoring trimer conformation (Fig. 5D). Indeed, both high- and low- scoring predictions map to 

arrangements occurring in the homologous structures. Once taking both dimers into account, it is 

possible to use the AlphaFold models to reconstruct the full E1 PDH bound to PdhI (Fig. 5E). CoFrac-

MS data shows PdhI co-eluting with large assemblies comprising both PdhA and PdhB, further 

confirming the interaction of this protein with the assembled E1 PDH module (Fig. 5G). 

In the complex, PdhI partially occludes the active site of the PdhA-PdhB dimer (Fig. 5F, Fig. 

S9A). AlphaFold predicts that Y31 of PdhI (pLDDT 79.5) inserts in the active site along the 

hydrophobic cavity surrounding the active site, covering the entrance to the active site. However, the 

prediction of this region of the complex indicates some degree of uncertainty or flexibility, as reported 

by pLDDT scores range from 65 to 80 in the loops forming contacts between PdhA and PdhI (Fig. 

S9B). PdhA residues 273-287, which form an extended loop in proximity of PdhI, are not resolved in 

the Geobacillus stearothermophilus E1p structure (PDB: 3dv0) (Pei et al., 2008), corroborating the 

flexibility of this region. Due to symmetry, it is possible that PdhI may also bind the E1 subunit in a 

2:2:2 complex, though PdhI is far less abundant than E1 and is therefore likely to bind 

substoichiometrically (Table S2, Fig. 5G). 

This configuration suggests that PdhI would modulate the activity of the E1 subunit. To test 

this, we generated two strains, one that overexpressed PdhI and one with PdhI knocked out (Fig. 5H). 

These strains did not have growth defects compared to the WT when grown with glucose as the main 

carbon source. However, cells with overexpressed PdhI had a dramatic growth defect when grown 

with pyruvate as the sole carbon source, indicating that PdhI acts as an inhibitor of pyruvate 

dehydrogenase.  
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Discussion 

B. subtilis is a model Gram-positive bacterium, with extensive genetic data (Michalik et al., 2021) and 

its protein structures modeled to a high degree of accuracy (Varadi et al., 2022). Nevertheless, 25% 

of proteins in B. subtilis remain poorly or completely uncharacterised (Michna et al., 2015). In this 

paper, we describe genetic-free approaches for protein-protein interaction screening capable of 

producing large numbers of novel protein-protein interactions along with their topologies by fixing 

interactions in cells. The experimental approaches yielded 44 high-quality PPI models (ipTM > 0.85). 

Adding interactions curated in SubtiWiki led to high-quality models for 114 binary interactions with no 

previous good structural homology. Considering only 601 non-ribosomal B. subtilis PPIs had previous 

structural information, mostly from homology, this is a substantial increase of the structural coverage 

of the known interaction space. Our approach is particularly successful for membrane proteins, which 

represent a challenge for structural and systems biology methods. 80 of our 153 high-quality dimers 

include proteins with transmembrane domains, and membrane proteins are present in half of our 

predicted trimer structures.  

In addition to highly confident models (ipTM > 0.85), the AlphaFold PPI models in this study 

can be classified into those that cannot be confidently predicted as a protein pair (ipTM < 0.55), and 

the “grey zone” of models with an intermediate ipTM range, based on the noise model for error rate 

determination employed in Fig. 2C. These boundaries are due to change as deep learning prediction 

develops, and we believe modeling the chance of random predictions will be beneficial also in future 

PPI screens. High-scoring models display very high crosslink distance restraint satisfaction, showing 

the accuracy of high-ipTM predictions (Fig. 3). For models of intermediate confidence, ipTM alone 

cannot distinguish reliably between trustworthy and random. However, experimental structural data 

such as those offered by crosslinking MS may provide crucial evidence and offer a systematic path to 

expanding the reliability of AlphaFold into lower ipTM scores.  

It is important to note that models with low ipTM do not necessarily mean that these are not 

true interactors. This is exemplified in our data, where the novel ribosome binding proteins YabR and 

YugI had their best predictions to RS11 and RS2, with ipTM of only 0.53 and 0.33, respectively 

(Supplementary Table S5). These proteins had novel interactions to multiple 30S ribosome proteins 

detected by crosslinking MS. This interaction may be mediated by the rRNA elements located in the 

proximity of the interacting partners, especially given the presence of RNA binding domains in both 

YugI and YabR. 

In this work, we have identified several novel interactions that are likely of biological relevance. 

For example, the previously uncharacterised protein YtpR was found in complex with the B subunit of 

the glutamyl-tRNA amidotransferase (GatB). The YtpR protein contains a tRNA-binding domain at its 

C-terminus. It is tempting to speculate that it presents the tRNAGln preloaded with glutamate to the 

GatCAB complex to convert the glutamate cargo to glutamine. Interestingly, the YtpR protein is highly 

expressed in B. subtilis and is ubiquitous in archaea and bacteria which use the Gat-dependent 

pathway for the synthesis of tRNAGln (Nakamura et al., 2006). Taken together, this suggests that the 

interaction between YtpR and GatB is highly conserved among prokaryotic organisms and functionally 

relevant. 

We also predicted the previously uncharacterized protein PdhI/YneR in complex with PdhA 

and PdhB, which make up the E1 module of the pyruvate dehydrogenase complex. The predicted 

binding interface near the active site, confirmed by crosslinking MS, led us to hypothesize that PdhI is 

a negative regulator of the E1 module. Indeed, PdhI overexpression dramatically slowed growth on 

pyruvate as the sole carbon source. The predicted insertion of PdhI into the hydrophobic cavity that 
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surrounds the active site of the enzyme, immediately suggests the molecular mechanism for the 

control of pyruvate dehydrogenase activity by PdhI. This example demonstrates the power of 

combining global proteomic approaches to identify PPIs with artificial intelligence-assisted structure 

prediction and experimental validation to uncover the function of so far unknown proteins.  

Crosslinking MS holds the potential to capture all PPIs in situ, but current technology limits the 

depth of analysis that can be reached. Thus, we complemented it here with the noisier CoFrac-MS. 

These approaches are scalable, are in active development (Bludau et al., 2021; Chavez et al., 2018; 

McWhite et al., 2020; Rosenberger et al., 2020) and can be applied to any species or cell type. Our 

large-scale hybrid PPI screen followed by AlphaFold-Multimer structure prediction led to high-quality 

models for PPIs comprising several uncharacterized proteins, for which we provide association 

partners. It is possible to predict multisubunit complexes de novo from the binary interactions by 

combining pairwise predictions (Fig. S8) (Bryant et al., 2022a, 2022b). Principally, the binary models 

of AlphaFold may provide a starting point for reconstructing models of larger protein complexes. 

Predicting complexes using the correct stoichiometry of a complex, like in the case of the E1 PDH, 

can improve ipTM (Gao et al., 2022). Yet, when stoichiometries are unknown, the results are difficult 

to interpret (Burke et al., 2021; Evans et al., 2022). Systematic searching of stoichiometries in protein 

structure prediction is an active area of research (Bryant et al., 2022b), and experimental efforts to 

determine stoichiometries are collected systematically (Dey and Levy, 2021; Hu et al., 2019).  

The combination of crosslinking MS and CoFrac-MS used in this study can accelerate the 

discovery of protein-protein interactions from in-cell and in-lysate data. These experimental techniques 

facilitate the untargeted investigation of PPIs and therefore make up one of the key approaches to 

identify the function of understudied proteins (Kustatscher et al., 2022). These PPIs, combined with 

previously annotated indirect interactions from databases such as SubtiWiki, can be employed by 

AlphaFold-Multimer to generate highly accurate structural models of known and novel interactions and 

complexes at scale. For E. coli, a bacterium of ~4500 genes, it is estimated that there are 10,000 

specific protein-protein interactions (Rajagopala et al., 2014). While exact numbers are difficult to 

estimate, the number of interactions considered here likely cover a substantial fraction of the 

interactome. This study shows the power of untargeted PPI mapping approaches in establishing 

structure-function relationships for currently uncharacterised proteins, and the potential of hybrid 

experimental PPI screens and structure prediction for the future of structural systems biology. 
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Methods 

Materials  

Unless otherwise stated, reagents were purchased in the highest quality available from Sigma (now 

Merck), Darmstadt, Germany. Empore 3M C18-Material for LC-MS sample cleanup was from Sigma 

(St. Louis, MO, USA), glycerol from Carl Roth (Karlsruhe, Germany). DSSO (disuccinimidyl sulfoxide) 

crosslinker from Cayman Chemical (Ann Arbor, MI, USA). Dimethylformamide (DMF) from Thermo 

Fisher Scientific. EDTA-free protease inhibitors (Roche) lysozyme (Sigma Aldrich), acrylamide (VWR), 

C18 HyperSEP cartridges (Thermo Scientific) 

Biomass production 

B. subtilis strain 168 was grown on Luria-Bertani (LB) agar at room temperature in all steps. A single 

colony was transferred into LB broth and a pre-culture grown overnight. The pre-culture was diluted 

to a starting OD600 of 0.005 and grown to an OD600 of ~0.6 before being harvested by centrifugation at 

4500 g for 5 min. The pellets were resuspended and washed with PBS and pelleted again, twice.  

 

‘Crosslinked cells’: cells were resuspended and crosslinked in fresh PBS at a final concentration of 5 

mg wet cell mass/ml,  1.4 mM DSSO (CoFrac-MS) or 2.6 mM DSSO (crosslinking MS) and 5% DMF. 

Reactions were allowed to proceed for 60 min at room temperature and quenched with 100 mM 

ammonium bicarbonate (ABC) for 20 min. Cells were pelleted at 4°C, washed with ice-cold PBS and 

snap-frozen in liquid nitrogen. 

‘Non-crosslinked cells’: Cells were resuspended for a third time in fresh PBS to a final concentration 

of 5 mg wet cell mass/ml and 5% DMF and processed identically to the crosslinked cells. 

Proteomics for protein abundance estimation 

A frozen non-crosslinked cell pellet (150 mg wet cell mass) was resuspended in fresh PBS to 150 

mg/ml with 0.3 mg/ml lysozyme (Sigma Aldrich) and incubated for 30 min at 37 °C in a water bath. 

EDTA-free protease inhibitors were added just prior to lysis by sonication on ice using a Qsonica 

microtip probe (3.2 mm) for 30 seconds 1 second on/1 second off with amplitude 12-24%. After the 

first cycle 250 U/ml benzonase and 20 mM MgCl2 was added. After lysis the lysate was left to incubate 

for 30 min on ice and dithiothreithol (DTT) was added to a final concentration of 1mM. 

Lysates were subsequently clarified by centrifugation for 30 min at 20,000 x g and 4°C. Protein in the 

supernatant was precipitated by chloroform/methanol precipitation (Wessel and Flügge, 1984). The 

pellet was resuspended in 6 M guanidine hydrochloride with 50 mM Tris-HCl (pH 8) before sonicating 

5x for 30 s on ice with settings as before. Proteins were precipitated with the Wessel-Flügge 

precipitation and added to the rest of the proteome. 

The precipitated proteome was resuspended in 8 M urea/100 mM ABC containing 1 mM DTT and 

incubated on a shaker for 15 min. The sample was spun down at 16,873 x g for 10 min and supernatant 

was diluted to 2 mg/ml after quantification by Bradford assay (Sigma Aldrich). The sample was reduced 

for 30 min by adding DTT to a concentration of 5 mM followed by an alkylation step with acrylamide 

at 15 mM for 30 min in the dark. The alkylation was quenched with 5 mM DTT. LysC was added in an 

enzyme/protein ratio of 1:200 (w/w) and incubated at room temperature for 4 hours before decreasing 

the urea concentration to 1.5 M using 100 mM ABC. Trypsin was added (enzyme/protein ratio of 1:50 

w/w) and samples incubated for 8.5 h at 24°C before adding more trypsin (final enzyme/protein ratio 

of 1:25) for another 9.5 h. Digestion was quenched by acidification with trifluoroacetic acid (TFA) to 

pH 3.0 and peptides were cleaned up using a C18 StageTip (Rappsilber et al., 2007). 
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Eluted peptides were dried in a vacuum concentrator, resuspended in 1.6 % ACN (v/v) in 0.1% formic 

acid. Approximately 1 µg was injected into a Q Exactive HF Mass Spectrometer (Thermo Fisher 

Scientific, San Jose, USA) connected to an Ultimate 3000 UHPLC system (Dionex, Thermo Fisher 

Scientific, Germany). Chromatographic setup used the following LC gradient: Gradient started at 2% 

B to 5% B in 1 min, to 7.5% B in 2 min, then to 32.5% in 48 min, 40% B in 8 min, 50% B in 2.5 min 

followed by ramping to 90% B in 1.5 min and washing for 5 min. Each fraction was analyzed as a 

single injection over a total run time of 90 min each. The settings of the mass spectrometer were as 

follows: Data-dependent mode; MS1 scan at 120,000 resolution over 350 to 1,600 m/z; normalized 

AGC target of 250% with max. IT of 60 ms; MS2 triggered only on precursors with z = 2-7; 1.6 m/z 

isolation width; normalized AGC target of 90% with 40 ms max. IT; fragmentation by HCD using 

stepped normalized collision energies of 28, 29 and 31; MS2 scan resolution 15,000; peptide match 

was set as preferred and dynamic exclusion was enabled upon single observation for 30 seconds. 

Mass spectrometry raw data was processed using MaxQuant 1.6.12.0 (Tyanova et al., 2016) under 

default settings with minor changes: two allowed missed cleavages; oxidation on methionine as a 

variable modifications; carbamidoethylation on Cys was set as fixed modification. The database used 

covered all 4,191 proteins listed for B. subtilis 168 in UniProt (Reviewed Swiss-Prot). The ‘matching 

between runs’ feature was disabled. Protein quantification was done using the iBAQ approach 

(Schwanhäusser et al., 2011). Raw data and search output are summarized in Table S2. 

Crosslinking MS Datasets 1 and 2 

Frozen crosslinked cell pellets (600 mg wet cell mass) were resuspended in lysis buffer A (50 mM KCl, 

25 mM HEPES, pH 7.3, 2.5 mM NaCl, 1 mM DTT, 0.625 mM MgCl2, 2.5% glycerol and 1% protease 

inhibitor) to 150 mg/ml and incubated with 0.3 mg/ml lysozyme for 30 min at 37°C. Immediately before 

sonication, 1 ml of lysis buffer B was added to a final concentration of 83.5 mM KCl, 42 mM HEPES, 

4.2 mM NaCl, 1 mM DTT, 1.2 mM MgCl2, 4.2% glycerol and 1.5% protease inhibitor, and 2 µl 

benzonase was added to a concentration of 250 units/ml. Lysis by sonication was performed on ice 

using a Qsonica microtip probe (3.2 mm) for 30 seconds, 1 second on/1 second off with amplitude 12-

24% on a Branson sonifier 250. The sample was kept on ice during sonication. After the last round, 2 

ml lysis buffer B and additional DTT were added (final concentration: 100 mM KCl, 50 mM HEPES, 5 

mM NaCl, 3 mM DTT, 1.5 mM MgCl2, 5% glycerol and 1.75% protease inhibitor) and the lysate was 

left to incubate for 30 min on ice. The lysate was clarified by centrifugation for 30 min at 20,000 x g 

and 4°C. 

 

The supernatant was removed and the proteins were precipitated by chloroform/methanol precipitation 

(Wessel and Flügge, 1984), as material to produce Dataset 1. In parallel, the cell debris was washed 

with PBS and resuspended in 6 M guanidine hydrochloride with 50 mM Tris-HCl (pH 8) as before. The 

proteins were then precipitated with the chloroform/methanol precipitation, as material for Dataset 2. 

The samples for both datasets were processed separately but identically. 

The precipitated pellets were processed as described in the proteomics section and peptides were 

cleaned up and stored on C18 HyperSEP cartridges at -80°C until use (Thermo Scientific). 

As a first dimension of fractionation and crosslinked peptide enrichment, peptides were separated by 

strong cation exchange (SCX). Peptides were eluted from the C18 HyperSEP cartridges with 80% 

ACN, 0.1% TFA. Eluted peptides were dried in a vacuum concentrator and resuspended to a 

concentration of approximately 1.25 µg/µl in SCX buffer A (30% ACN, 10 mM KH2PO4). 400 µg were 

injected in SCX buffer A onto a PolySulfoethyl A SCX column (100 × 2.1 mm, 300 Å, 3 µm) with a guard 

column of identical stationary phase (10 × 2.0 mm), (PolyLC, Columbia, MD, USA) mounted on an 
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Äkta pure system (Cytiva, Chicago, IL, USA) running at 0.2 ml/min at 21°C. After isocratic elution, a 

‘step’ elution of 3.5% buffer B (30% ACN, 10 mM KH2PO4, 1M KCl) for 10 min eluted peptides that 

were discarded. Peptides were then eluted with increasing Buffer B and 200 µl fractions were 

collected. The elution was a series of linear gradients with the following targets: 3.5% at 0 min, 11% 

B at 11.5 min, 12.7% at 14 min, 14.5% at 15 min, 16.3% at 16 min, 18.8% at 17 min, 23.3% at 18 min, 

30.3% at 19 min, 40.0% at 20 min, 70% at 21 min. Due to the limited amount of peptides that can be 

loaded on this column this process was repeated 6 times and the corresponding fractions were pooled 

to get enough material per fraction. In all, 24 fractions were carried forward for further processing. 

They were desalted using C18 StageTips, eluted, dried and stored at -80°C.  

For a second dimension of fractionation and crosslinked peptide enrichment we separated each SCX 

fraction by size exclusion chromatography. Desalted peptides were resuspended in 25 µl 30% (v/v) 

ACN and 0.1% (v/v) TFA and treated for 1 min in a sonication bath. They were fractionated using a 

Superdex 30 Increase 10/300 GL column (GE Healthcare) with a flow rate of 10 µl/min using mobile 

phase 30% (v/v) ACN, 0.1% (v/v) TFA. 6 x 50 µl fractions at elution volumes between 1.1 ml and 1.4 

ml were collected and dried in a vacuum concentrator. 

Samples for analysis were resuspended in 0.1% v/v formic acid, 3.2% v/v acetonitrile. LC-MS/MS 

analysis was conducted in duplicate for SEC fractions, performed on a Q Exactive HF Orbitrap LC-

MS/MS (Thermo Fisher Scientific, Germany) coupled on-line with an Ultimate 3000 RSLCnano system 

(Dionex, Thermo Fisher Scientific, Germany). The sample was separated and ionized by a 50 cm 

EASY-Spray column (Thermo Fisher Scientific). Mobile phase A consisted of 0.1% (v/v) formic acid 

and mobile phase B of 80% v/v acetonitrile with 0.1% v/v formic acid. LC-MS was performed at a flow 

rate of 0.3 μl/min. Gradients were optimized for each chromatographic fraction from offline 

fractionation ranging from 2% mobile phase B to 45% mobile phase B over 87 min, followed by a linear 

increase to 55% over 5.5 min, then an increase to 95% over 2.5 min. The MS data were acquired in 

data-dependent mode using the top-speed setting with a 2.5 second cycle time. For every cycle, the 

full scan mass spectrum was recorded in profile mode in the Orbitrap at a resolution of 120,000 in the 

range of 400 to 1,450 m/z. Normalized AGC = 3e6; Maximum injection time = 50 ms; Dynamic 

exclusion = 30 s; In-source CID = 15.0 eV. For MS2, ions with a precursor charge state between 3+ 

and 6+; Normalized AGC target = 5e4; Maximum injection time = 120 ms; Loop count = 10. 

Fragmentation was done with stepped-HCD collision energies 18, 24 and 30% and spectra were 

recorded with a resolution of 60,000 with the Orbitrap. 

 

A recalibration of the precursor m/z was conducted based on high-confidence (<1% FDR) linear 

peptide identifications. The recalibrated peak lists were searched against the sequences and the 

reversed sequences (as decoys) of crosslinked peptides using the Xi software suite (version 1.7.6.4) 

(https://github.com/Rappsilber-Laboratory/xiSEARCH) for identification (Mendes et al., 2019). The 

following parameters were applied for the search: MS1 accuracy = 2 ppm; MS2 accuracy = 5 ppm; 

Missing Mono-Isotopic peaks = 2; enzyme = trypsin (with full tryptic specificity) allowing up to two 

missed cleavages; crosslinker = DSSO (with reaction specificity for lysine, serine, threonine, tyrosine 

and protein N termini); Noncovalent interactions = True; Maximum number of modifications per peptide 

= 1; Fixed modifications = Propionamide on cysteine; variable modifications = oxidation on methionine, 

methylation on glutamic Acid, deamidation of asparagine (only when followed by glycine in the 

sequence), hydrolyzed/aminolyzed DSSO from reaction with ammonia or water on a free crosslinker 

end. For DSSO, additional loss masses for crosslinker-containing ions were defined accounting for its 

cleavability (“A” 54.01056 Da, “S” 103.99320 Da, “T” 85.98264 Da). The database used was all 

proteins identified in each sample with an iBAQ > 1e6 (1716 proteins for Dataset 1, 1726 proteins for 

Dataset 2). 
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Prior to FDR estimation, matches were filtered for those with at least 4 matched fragments per peptide, 

for crosslinking to lysines or N-termini, and for having cleaved DSSO signature doublet peaks 

representing each matched peptide. The candidates were filtered to 2% FDR on protein pair level 

using xiFDR version 2.1.5.5 (https://github.com/Rappsilber-Laboratory/xiFDR) (Fischer and 

Rappsilber, 2017). 

Crosslinking MS Dataset 3 

Frozen crosslinked cell pellets (600 mg wet cell mass) were used in dataset 3 preparation. Lysis was 

performed the same as for cells used for Datasets 1 and 2. The supernatant was further separated to 

simplify the crosslinked proteome to aid analysis. All steps were performed at 4°C. The lysate was 

clarified by centrifugation for 30 min at 20,000 x g. Soluble and insoluble proteome were separated by 

ultracentrifugation in a Beckman Coulter 70Ti fixed angle rotor at 38,000 rpm (100,000 x g) for one 

hour. The pellet was retained for digestion and crosslinking MS analysis. The supernatant was 

concentrated to 10% of the initial volume using a 100 kDa cutoff Amicon filter (Merck Millipore). 

For lysate separation by size exclusion chromatography, 100 µl of concentrated lysate was loaded 

onto a Biosep SEC-S4000 (7.8 x 600) size exclusion column on an ÄKTA Pure (GE) Protein 

Purification System pre-equilibrated with running buffer (5% glycerol, 100 mM KCl, 50 mM HEPES, 5 

mM NaCl, 1.5 mM MgCl2) and separated at 0.2 ml/min. 50 x 200 µl fractions were collected at elution 

volumes 10 ml (end of the void volume) to 18 ml. The fractions were pooled into 8 pools. The 8 protein 

pools were pelleted by acetone precipitation.   

The 8 pools from protein SEC and the pellet from the ultracentrifugation step were digested as for 

Datasets 1 and 2 and stored on HyperSEP C18 SPE solid phase columns at -80°C prior to peptide 

fractionation. SCX plus subsequent SEC fractionation was performed for each pool of peptides as 

described for Datasets 1 and 2. Whenever amounts were insufficient, SCX fractions were pooled to 

have at least 20 µg prior to separation by SEC. 

Samples were resuspended in 0.1% v/v formic acid, 3.2% v/v acetonitrile. LC-MS/MS analysis was 

conducted in duplicate for SEC and SCX fractions, performed on an Orbitrap Fusion Lumos Tribrid 

mass spectrometer (Thermo Fisher Scientific, Germany) coupled on-line with an Ultimate 3000 

RSLCnano system (Dionex, Thermo Fisher Scientific, Germany). The sample was separated and 

ionized by a 50 cm EASY-Spray column (Thermo Fisher Scientific). Mobile phase A consisted of 0.1% 

(v/v) formic acid and mobile phase B of 80% v/v acetonitrile with 0.1% v/v formic acid. LC-MS was 

performed at a flowrate of 0.3 μl/min. Gradients were optimized for each chromatographic fraction 

from offline fractionation ranging from 2% mobile phase B to 45% mobile phase B over 100 min, 

followed by a linear increase to 55% over 5.5 min, then an increase to 95% over 2.5 min. The MS data 

were acquired in data-dependent mode using the top-speed setting with a 2.5 second cycle time. For 

every cycle, the full scan mass spectrum was recorded in the Orbitrap at a resolution of 120,000 in 

the range of 400 to 1,450 m/z. Normalized AGC = 250%, Maximum injection time = 50 ms, Dynamic 

exclusion = 60 s. For MS2, ions with a precursor charge state between 4+ and 7+ were selected with 

highest priority and 3+ were fragmented with any cycle time remaining. Normalized AGC target = 

200%, Maximum injection time = 118 ms. Fragmentation was done with stepped-HCD collision 

energies 18, 24 and 30 % and spectra were recorded with 60,000 resolution with the Orbitrap. 

 

Spectra recalibration, database search with xiSEARCH, and FDR thresholding with xiFDR was 

performed the same as for Dataset 1. 
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CoFrac-MS 

Co-fractionation experiments were performed in triplicate on crosslinked and non-crosslinked cells as 

described in ‘Biomass production’. Lysis of cells was performed the same as described for crosslinking 

MS dataset 3 with lysate separated by size exclusion chromatography. 50 x 200 µl fractions were 

collected at elution volumes 10.5 ml to 20.5 ml. Proteins were pelleted by acetone precipitation. High-

molecular weight range protein standards (Cytiva) were used to calibrate the elution profiles.  

Protein digestion and peptide cleanup was performed as described above. 10% of each sample (by 

volume) was acquired on a Q Exactive HF Orbitrap Mass Spectrometer (Thermo Fisher Scientific, San 

Jose, USA) connected to an Ultimate 3000 UHPLC system (Dionex, Thermo Fisher Scientific, 

Germany). Settings were as described in ‘Proteomics for protein abundance estimation’ 

 

Mass spectrometry raw data was processed using MaxQuant 1.6.12.0 under default settings with 

minor changes: two allowed missed cleavages; variable modifications per peptide: oxidation on Met, 

acetylation on protein N-terminal peptides, and for the crosslinked samples additionally DSSO-OH 

and DSSO-NH on lysines and N-termini. Carbamidoethylation on Cys was set as fixed modification. 

The database used covered all 4,191 proteins listed for B. subtilis 168 in UniProt (Reviewed Swiss-

Prot). The ‘matching between runs’ feature was disabled. Protein quantification was done using the 

iBAQ approach. Proteins identified-by-site only, decoys and contaminants were discarded from the 

data. Coelution data was plotted using the seaborn 0.10.0 package  (Waskom, 2021) using data 

normalized to the maximum of all intensities for a given protein throughout the fractionation and 

smoothed with a sliding window average. Elution profiles for three crosslinked and three non-

crosslinked replicas are reported in Table S3. 

 

CoFrac-MS analysis for candidate PPI generation with PCProphet 
The MaxQuant output was filtered to remove ribosomal proteins, and the data was further filtered to 

proteins having at least three identified peptides and 9.5x106 iBAQ in all three replicas of either the 

crosslinked or the non-crosslinked condition. CoFrac-MS analysis of both crosslinked and non-

crosslinked conditions was performed with PCProphet v1.2 (Fossati et al., 2021) with standard 

settings. The complex database used by PCProphet was made up of interacting protein pairs 

downloaded from SubtiWiki reduced to only those where both proteins are present in our filtered input 

data. As we were interested in a score for co-fractionating proteins without further GO enrichment, we 

used the positive complex score prior to GO enrichment (rf.txt) of each replica and condition, and 

assigned this value to all pairs making up the complexes. In order to only infer candidates within the 

SEC column resolving range, we only considered complexes of up to 10 members and with peak 

elution before 19.2 ml. The resulting protein pairs were filtered to a positive complexScore of 0.8 or 

higher in at least 2 replicas of either the crosslinked or the non-crosslinked condition to retain only the 

highest confidence candidates. Each pairwise combination of proteins within the complexes was 

derived, yielding 667 protein-protein interactions submitted to AlphaFold-Multimer. The SubtiWiki 

repository was updated to include CoFrac-MS candidate interactions whenever these validated 

previous annotation, confirmed crosslinking MS interactions, or yielded high-confidence models. 
 

Protein structure prediction 

The full protein-protein interaction list from SubtiWiki (March 2022) (Pedreira et al., 2022) was filtered 

to remove interactions with homologous structures. Homology to the PDB was taken as a match by 

BLASTP (v. 2.9.0+) (Camacho et al., 2009) with Evalue < 1-3 and at least 30% sequence identity to a 

structure present in the PDB (database downloaded 16 Feb 2022). Paralogs mapping to the same 
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PDB chains were retained. PPI candidate pairs from crosslinking MS, coelution and SubtiWiki were 

further filtered to remove within-ribosome interactions. For experimentally-derived PPIs, protein pairs 

having homologs in the PDB were retained. Interactions were annotated as present in STRING version 

11.5 (Szklarczyk et al., 2021) if their combined score exceeded 0.4.  

2032 PPI candidate pairs were submitted to AlphaFold-Multimer v2.1.0 (Evans et al., 

2022)(release November 2021, database downloaded 30 November 2021) and ran with full database 

size and the ‘is_prokaryote’ flag for MSA pairing switched off. Maximum structure template date was 

set to 1 November 2021. 5 models were predicted per run. A small fraction of runs ended in errors, 

and 1977 PPIs were modeled. Models were evaluated based on ipTM, pTM, predicted aligned error 

matrix and pLDDT score extracted from the runs. The top-ranking model by ipTM is used for the 

figures. For error control, 300 B. subtilis proteins from this dataset were predicted in complex with 300 

random E. coli proteins and evaluated on the basis of ipTM score in relation to 10 subsamples of the 

1977 PPIs predicted in the main dataset. 

Accessible interaction volume for YugI and YabR AlphaFold models was computed using 

DisVis with a rotational search angle of 15° against the structure of the B. subtilis ribosome (PDB id 

3j9w) (Sohmen et al., 2015). Crosslinking MS restraints were defined between 2.5 and 28Å Cα-Cα. 

Crosslinks were mapped to structures using xiVIEW (www.xiview.org) and visualised using UCSF 

ChimeraX (Pettersen et al., 2021) and PyMol.  

For trimer prediction, 33 trimers were submitted to AlphaFold-Multimer v2.2.1 (release June 

2022, database downloaded 25 June 2022) based on dimers where the best model by ipTM had ipTM 

> 0.65. AlphaFold 2.2.1 was run with full database size with 2 predictions with different random seeds 

per model. Maximum structure template date was set to 1 November 2021.  

Bacterial strains and plasmids 

All strains are derived from the laboratory wild type strain B. subtilis 168. Deletion of the genes yabR, 

yugI and pdhI was achieved by transformation with PCR products constructed using oligonucleotides 

to amplify DNA fragments surrounding the respective genes and including an antibiotic resistance 

cassette as described (Guérout-Fleury et al., 1995). The same procedure was applied to fuse His-tags 

to the c-terminus of yabR and yugI and a FLAG-tag to rocF. The plasmid for overexpression of PdhI 

was constructed by amplifying phdI from chromosomal DNA and cloning the gene between a BamHI 

and a XbaI restriction site of the vector pBQ200 (Martin-Verstraete et al., 1994).   

Genetic manipulation 

Transformation of E. coli and the plasmid DNA extraction was performed using standard procedures 

(Sambrook et al., 1989). B. subtilis was transformed with plasmids, genomic DNA, or PCR products 

following a two-step protocol (Kunst and Rapoport, 1995). Transformants were selected on SP plates 

containing the appropriate antibiotics. Fusion polymerase, T4 DNA ligases and restriction enzymes 

were used according to the manufacturer. DNA fragments were purified via the QIAquick PCR 

purification kit (Qiagen, Hilden, Germany). DNA sequences were determined by Sanger sequencing. 

Chromosomal DNA from B. subtilis was isolated using the peqGOLDBacterial DNA Kit (Peqlab, 

Erlangen, Germany). 
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Bacterial two-hybrid assay 

To validate protein-protein interactions, a bacterial two-hybrid system based on an interaction-

mediated reconstruction of the adenylate cyclase (CyaA) from Bordetella pertussis was used 

(Karimova et al., 1998). For this purpose, the two fragments of CyaA (T18 and T25) are fused to a bait 

and a prey protein. Interaction of these two proteins leads to functional complementation of CyaA and 

ultimately to the synthesis of cAMP. This is monitored by measuring the activity of a cAMP-CAP-

dependent promoter of the lac operon that codes for ß-galactosidase in E. coli.  The plasmids pUT18, 

pUT18C, p25N and pTK25 were used for the fusion of the proteins of interest to the T18 and T25 

fragments of CyaA, respectively. The resulting plasmids are listed in Supplemental Table S8. The E. 

coli strain BTH101 was co-transformed with corresponding pairs of plasmids. Protein-protein 

interactions were visualized by plating the transformed strains on LB plates containing 100 µg/ml 

ampicillin, 50 µg/ml kanamycin, 40 µg/ml X-Gal (5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside), 

and 0.5 mM IPTG (isopropyl-ß-D-thiogalactopyranoside). The plates were incubated for 40 h at 30°C. 

Growth assays 

To analyze the growth of B. subtilis mutant strains, the bacteria were cultivated in LB medium to 

inoculate precultures in MSSM minimal medium (Gundlach et al., 2017) containing glucose. The 

cultures were grown until the exponential growth phase was reached, harvested, resuspended in 

MSSM containing no carbon source and then the OD600 was adjusted to 0.2. This was used to 

inoculate the strains to an OD600 of 0.1 in a 96 well plate (Microtest Plate 96 Well, Sarstedt) in MSSM 

minimal medium containing the desired additions. Growth was measured using the Epoch 2 Microplate 

Spectrophotometer (BioTek Instruments) set to 37°C with linear shaking at 237 cpm (4 mm) for 24 h 

or 44 h. The OD600 was recorded every 10 min. 
 

Ribosome purification and Western blot of endogenously His-tagged YugI and YabR 

For ribosome purification, strains carrying His-tagged versions of YabR and YugI or FLAG-tagged 

RocF were grown in 1 l LB containing 150 µg/ml spectinomycin (Sigma Aldrich) (YugI/YabR) or 35 

µg/ml zeocin (Thermo Fisher Scientific) (RocF) until an OD600 of 0.5. Cells of each strain were 

centrifuged for 15 min at 5000 x g and 4°C. Medium was discarded and the pellet cooled in an ice 

water bath. The ~500mg pellet was dissolved in 2 ml Tico buffer (20 mM Hepes, 6 mM MgOAc, 30 

mM KOAc, 2 mM DTT, pH 7.6) and lysozyme was added to a final concentration of 0.4 mg/ml. Cell 

lysis was achieved by freeze-thaw cycles on ice and completed with mild sonication on ice using a 

Qsonica microtip probe (3.2 mm) for 2x 15 seconds 1 second on/1 second off with amplitude 12-24% 

on a Branson sonifier 250. Genomic DNA was shredded by centrifugation in QIAshredder tubes 

(Qiagen) at 10,000 x g and 4°C for 2 min and digested by addition of RNAse-free DNAse I (Promega) 

for 10 min on ice. Lysates were clarified by centrifugation for 10 min at 10,000 x g at 4°C.   

Ribosomes were separated from equal optical density units loaded onto 10-40% (w/v) sucrose 

gradients and centrifuged for 4 h at 32,000 rpm in a Sw-40 Ti rotor (Beckmann Coulter) at 4°C. Sucrose 

gradients were fractionated with a GradientStation (BioComp) monitoring A260. Protein was isolated 

from fractions of interest via ethanol precipitation. 40% of the protein material of each fraction was 

analyzed by Western blot using an anti-his antibody (Penta-His antibody, Qiagen #34660), or an anti-

FLAG antibody (Merck #F1804). Detection was performed with a secondary antibody conjugated with 

horseradish peroxidase (Anti-Mouse IgG Peroxidase antibody, A3682, Sigma Aldrich). 
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Implementation in SubtiWiki 

The SubtiWiki repository was updated to include crosslinking MS interactions, excluding those within 

the ribosome and those involving the highly abundant ribosomal proteins (L7/bL12, RplL; L1/uL1, 

RplA; S3/uS3, RpsC), the elongation factors (Ef-Tu/Tuf and Ef-G/FusA), and the RNA chaperones 

(CspC, CspB). The SubtiWiki repository was updated to include CoFrac-MS candidate interactions 

whenever these validated previous annotation, confirmed crosslinking MS interactions, or yielded 

high-confidence models. The interactions can be assessed on the corresponding gene pages where 

they are shown in a graphical display. A click on the green line connecting two interaction partners 

gives a link to the relevant publications. Moreover, the PPIs are shown in the Interaction browser, an 

interactive network presentation. 

High-confidence AlphaFold-Multimer predictions of the 153 binary (ipTM > 0.85) and 14 trimeric 

complexes (ipTM > 0.8) have been integrated in the Structure viewer carousel of SubtiWiki. To 

facilitate access to the predicted complex structures, a link to a complete list of all involved proteins is 

provided in the sidebar under “Special pages” (http://subtiwiki.uni-

goettingen.de/v4/wiki?title=Predicted%20Complexes). 
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accession XXX. Proteomic data is deposited in ProteomeXchange JPOST with accession XXX. Top-

scoring models are available in ModelArchive with accession ZZZ. Protein-protein interactions and 

top-scoring models are added to the SubtiWiki repository (http://subtiwiki.uni-goettingen.de/).  
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Figure 1 - PPI candidate identification using crosslinking MS and CoFrac-MS 

A- PPIs identified at 2% PPI-level FDR (interactions to seven abundant and highly crosslinked proteins are 

removed for clarity). Previously uncharacterised proteins are shown in blue. Selected complexes are highlighted. 

B- The accessible interaction space of YugI and YabR to the 30S ribosome calculated by DisVis (van Zundert 

and Bonvin, 2015). The volumes represent the positions consistent with 10 of 14 detected crosslinks for YugI 

and 6 of 8 crosslinks for YabR, indicating the location of their binding sites on the 30S ribosome. C- Sucrose 

gradient (10-40% v/w) of B subtilis lysate separating the 70S, 50S and 30S ribosomes from smaller proteins and 

their complexes. Western blots show that his-tagged YabR and YugI co-migrate in the sucrose gradient with the 

30S ribosome, the control, FLAG-tagged RocA, does not. D- Averaged elution profiles from the CoFrac-MS 

analysis of the RNAP (across subunits and replica) and the known binders GreA and NusA (across replica). 

Top: non-crosslinked cells; Bottom: crosslinked cells. One standard deviation from the mean per fraction is 

shaded. E- The 1977 predicted  PPIs for AlphaFold-Multimer interface prediction from crosslinking MS, CoFrac-

MS and SubtiWiki. F- Overlap of candidate PPI datasets along with previously known structures from the PDB 

(seq. identity > 30% and Evalue < 10-3).  
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Figure 2 - Structure prediction of binary complexes with AlphaFold-Multimer  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2022. ; https://doi.org/10.1101/2022.07.26.501605doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501605
http://creativecommons.org/licenses/by/4.0/


 

28 

A- The 1977 protein-protein interactions (PPIs) modeled by AlphaFold-Multimer distribute over the full pTM and 

ipTM range, with a subpopulation of highly confident predictions with ipTM > 0.85. Insets showing high-ranking 

models colored by dataset of origin, and the top-ranking PPIs not previously annotated in SubtiWiki. B- 

Breakdown of score distributions by PPI origin. Annotation of score distributions for PPIs annotated by being 

present in the PDB (seq. identity > 30% and Evalue < 10-3) or by their presence in STRING (combined score > 

0.4). “Novel interaction” refers to a previously unknown PPI, while “novel interface” refers to the lack of 

homologous structures for the PPI in the PDB. C- Noise model evaluation of ipTM distribution of AlphaFold PPIs. 

Subsamples of 300 PPIs from our datasets (target distribution) are compared to 300 PPIs made up of random 

B. subtilis proteins from the PPI candidate list combined with random proteins from the E. coli genome (noise 

distribution). While targets show a bimodal distribution, indicating the high confidence of models with ipTM > 

0.85, the noise distribution is one-tailed, approximating the likelihood of random interface prediction in the various 

ipTM ranges. D- A novel PPI from the coelution dataset showing the alanine tRNA synthetase subunit AlaS 

interacting with the uncharacterised protein YozC. The high ipTM value is reflected in the predicted aligned error 

plot, which also shows that the C-terminal region of AlaS, not involved in the interaction, is flexible with respect 

to the YozC-AlaS module. E- Bacterial-2-hybrid assay to validate the interaction between YozC and AlaS. N- or 

C- terminal fusions of YozC and AlaS to the T18 and T25 domains of the adenylate cyclase CyaA were created 

and tested for interaction in the E. coli strain BTH101. Colonies turn dark as a result of protein interaction which 

leads to the restoration of the adenylate cyclase activity and therefore expression of the ß-galactosidase. A 

leucine zipper domain was used as a positive control. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 26, 2022. ; https://doi.org/10.1101/2022.07.26.501605doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.26.501605
http://creativecommons.org/licenses/by/4.0/


 

29 

 

Figure 3- Crosslinking MS validation of AlphaFold-Multimer models 

A- Percentage of heteromeric crosslink restraint violation per range of ipTM. B- Bubble plot showing numbers 

of heteromeric crosslinks violated for each PPI identified by crosslinking MS against the ipTM and pTM 

distribution. C- Successful predictions consistent with crosslinking MS, including predictions of paralogs (YtoP-

YsdC, RocA-PutC). Self crosslinks in gray, heteromeric crosslinks in orange. D- Crosslinks highlighting flexibility 

within the OpuAA-OpuAB dimer. The OpuAA N-terminal domain is predicted with a high pAE to the C-terminal 

region. The crosslinks corresponding to these interdomain distances are also violated, indicating flexibility 

between these 2 domains. Left: Self crosslinks in gray, heteromeric crosslinks in orange; center: satisfied 

crosslinks (<30 Å Cα-Cα) in blue, violated crosslinks in red; right: predicted aligned error plot.  
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Figure 4 - Building complexes from binary interaction predictions 

A. All dimeric PPIs with predicted ipTM >0.65 which form connected groups of only 3 proteins are shown. B. 

The 33 candidate 1:1:1 trimers PPIs modeled by AlphaFold-Multimer (version 2.2.1) distribute over the full pTM 

and ipTM range (inset). Trimers with an ipTM > 0.80 are labeled. C. Selected predicted structures of trimeric 

complexes with ipTM > 0.80 and their associated PAE plots. Crosslinks are visualized on LutA-LutB-LutC; and 

satisfied crosslinks (<30 Å Cα-Cα) in blue, violated crosslinks in red. 
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Figure 5 - PdhI/YneR is an inhibitor of the E1 subunit of the pyruvate dehydrogenase 

A- Homology model of B. subtilis E1 pyruvate dehydrogenase (PDH) based on the Geobacillus 

stearothermophilus E1p structure (PDB id 3dv0) (Pei et al., 2008) in surface representation. The space-fill model 

of pyruvate is located in the active site based on the template structure. The E1 PDH is a dimer of dimers of the 

PdhA and PdhB subunits, with the active site formed at the interface between a PdhA and a PdhB copy. B- 

Mapping of crosslinks onto the E1 PDH model derived from combining AlphaFold-Multimer models. Satisfied 

crosslinks (<30 Å Cα-Cα) in blue, violated crosslinks in red. C- AlphaFold-Multimer predictions for PdhA-PdhB-

PdhI/YneR. The top-ranked solution by ipTM (0.89) describes the PdhA-PdhB subcomplex that does not make 

up the active site, while the 9th-ranked solution (0.81) identifies the active site interface. Crosslinking data 

clarifies the interactions between PdhI and PdhA/B. Pyruvate and 3-deaza-TdHP shown as space-fill models. 

Crosslink coloring as in B. D- Circle view of crosslinking MS data mapped onto the E1 PDH-PdhI/YneR model 

derived by combining AlphaFold solutions onto the known stoichiometry. Satisfied crosslinks (<30 Å Cα-Cα) in 

blue, violated crosslinks in red. E- PDH-PdhI model constructed from AlphaFold-Multimer models of the PdhA-

PdhB-PdhI trimer. PdhI/YneR binds at the pocket opening onto the active site. F- Visualization of the active site 

in the AlphaFold-Multimer model (solid cartoon) with ligand positions derived PDB id 3dv0 (transparent cartoon 

and sticks). PdhI/YneR occludes the entrance to the active site by inserting Y31 into the pocket used for entrance 

of the lipoate cofactor that comes to reduce the thiamine ring in the enamine-ThDP intermediate. The original 

structure was solved in the presence of the enamine-ThDP analogue 3-deaza-TdHP (Pei et al., 2008). Key 

residues for ligand coordination are predicted in the same conformation by AlphaFold-Multimer. G- CoFrac-MS 

data showing coelution of PdhA, PdhB and PdhI. The shaded area corresponds to the standard deviation 

between replicas. H- Growth curves on glucose and pyruvate. Growth experiment of wild type (blue) B. subtilis, 

PdhI/YneR overexpression (green) and PdhI/YneR knockout ΔyneR (red) in MSSM minimal medium with 5 mM 

KCl comparing growth on either glucose or pyruvate as a sole carbon source. Empty vector control in orange. 

Lines represent the mean. The shaded area corresponds to the standard deviation between replicas.  
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