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Abstract21

Emerging spatial proteomics technologies have created new opportunities to move beyond22

quantifying the composition of cell types in tissue and begin probing spatial structure.23

However, current methods for analysing such data are designed for non-spatial data and ignore24

spatial information. We present SpatialSort, a spatially aware Bayesian clustering approach25

that allows for the incorporation of prior biological knowledge. SpatialSort clusters cells by26

accounting for affinities of cells of different types to neighbours in space. Additionally, by27

incorporating prior information about cell types, SpatialSort outperforms current methods and28

can perform automated annotation of clusters.29

Keywords: spatial proteomics, spatial-aware clustering, cell type annotation, Bayesian30

inference31
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Background32

Recently developed high throughput spatial protein expression profiling technologies can perform33

highly multiplexed phenotyping of single cells, while preserving the spatial organization of tissues.34

Examples of such technologies include imaging mass cytometry (IMC)1, multiplexed ion beam35

imaging (MIBI)2, and co-detection by indexing imaging (CODEX)3. These technologies have36

the capacity to quantify dozens of protein markers at single cell resolution in-situ. This provides37

an opportunity to enhance studies of cellular heterogeneity, by going beyond the quantification38

of cellular composition and allowing for direct inference of cell to cell interactions from spatial39

context.40

A key step when analysing spatial data is to assign cells to their constituent cellular populations41

as defined by expression profiles e.g. T-cells, B-cells, malignant cells etc. To date, the dominant42

paradigm for performing this analysis is to cluster cells based on their expression profile and then43

perform post-hoc annotation of the clusters based on known markers that delineate cell types4–9. As44

we demonstrate, such a procedure is sub-optimal and new approaches tailored to spatial expression45

data are required.46

The clustering step of most two-step analysis have been performed using methods developed47

for disaggregated single cell data4–9, such as PhenoGraph10. A limitation of disaggregate48

methods is that they ignore spatial information, in particular the identity of neighbouring cells.49

Neighbourhood information can be highly informative when inferring the cell types, for example50

if cell types tend to associate due to receptor-ligand signalling. While some recent approaches51

have begun to address this issue for spatial transcriptomic data11,12 using Hidden Markov Random52

Field (HMRF) models13,14, they have thus far only been able to account for an increased affinity53

of cells of the same type to be neighbours. This autonomous cell type interaction assumption54

amounts to “smoothing” the assignment of cells in close proximity to originate from the same55

population. While this is likely a reasonable assumption in many cases, it fails to capture more56

complex biological scenarios involving non-autonomous signalling between cells of different57
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types. Our first contribution in this work is to develop a generalised HMRF model capable of58

handling non-autonomous neighbour interactions.59

The annotation of clusters to identify their cell type in two-step procedures is typically performed60

manually. Manual annotation is problematic as it can be subjective and difficult to reproduce15.61

Furthermore, separating the annotation step from clustering means that valuable “prior”62

information about the expression profiles expected for each cluster are ignored, forcing methods to63

learn de novo the expression profiles of clusters. While a significant number of methods have been64

developed to address the cell type annotation problem for disaggregated single cell data16, we are65

not aware of any approaches that incorporate spatial information. Thus, our second contribution in66

this work is to provide several options for performing joint spatially aware clustering and cell type67

annotation. As we show in the results, this approach improves clustering accuracy while negating68

the need to perform laborious and subjective manual cluster annotation.69

To address these issues outlined above we have developed a Bayesian model, SpatialSort, to jointly70

perform spatially aware clustering and cell type annotation. The input into SpatialSort is a cell by71

marker expression profile matrix, and a graph where edges represent adjacency between pairs72

of cells in space. To capture spatial dependencies between cells, SpatialSort models cell labels73

using an HMRF. We account for different propensities of cell types to be neighbours via an74

interaction matrix with entries indicating the affinity of cell types to neighbour each other. We75

fit the model using Markov Chain Monte Carlo (MCMC) methods. The output of SpatialSort is a76

clustering of cells, and (optionally) annotated identities of each cluster. To test the performance of77

SpatialSort we have conducted benchmarking experiments using synthetic and semi-real datasets.78

We illustrate the utility of SpatialSort by applying it to real world diffuse large B-cell lymphoma79

(DLBCL) dataset profiled with MIBI. Our results demonstrate SpatialSort is able to leverage spatial80

information and prior knowledge of cell type composition to improve clustering and annotation of81

spatial expression data.82
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Results83

Probabilistic spatially aware clustering with SpatialSort84

We provide a high level overview of the SpatialSort model and inference procedure here, a85

more detailed discussion can be found in the Methods sections. A schematic overview of the86

SpatialSort method is provided in Fig. 1. SpatialSort jointly considers cell expression values87

and neighbourhood spatial structure to perform clustering. To perform unsupervised clustering,88

SpatialSort requires inputs consisting of a multi-sample marker by cell expression matrix and a89

list of sample-specific cell location matrices from spatial expression profiling, which is used to90

identify neighbour cells. Neighbouring cells are defined as cells having a spatial proximity less91

than a user set threshold in pixels. SpatialSort takes the cell location and neighbour relations to92

construct sample-specific cell connectivity graphs that link cells that are spatially proximal. To93

capture the non-random spatial associations between cell types, SpatialSort uses an HMRF to94

allow cells to influence the cluster assignments of their neighbours (Supplementary Fig. 1). As95

exact Bayesian inference for HMRF models is intractable, SpatialSort uses MCMC sampling to96

approximate the posterior distribution and estimate model parameters.97

SpatialSort can be run in a completely unsupervised way when no prior information is available98

about cell populations. However, the majority of spatial proteomic studies utilize markers chosen99

to discriminate among known cell populations. SpatialSort provides two modes for incorporating100

information about these known populations expression profiles. Prior mode takes as an additional101

input a population by marker matrix, which encodes prior knowledge of the degree of expression102

per marker in each cell population. Anchor mode involves the introduction of anchors cells, which103

are expression profiles of cells measured by previous assays and assigned to cell populations.104

Multiple cells from each population may be included in the set of anchors, which can better reflect105

the variability of expression within the population and aid SpatialSort in inferring the expected106

variance of marker expressions. We do not model spatial effects for anchor cells, and thus anchor107

cells can be measured using either disaggregated or spatial technologies. The major constraint for108
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anchors are: i) that a reasonable number of overlapping markers are covered in the anchor and109

the query dataset, ii) the anchor dataset is suitably transformed to have expression which match110

the query dataset. We illustrate the use of anchors derived from disaggregate CyTOF to analyze111

a MIBI dataset later. Both prior and anchor mode can accommodate the discovery of unknown112

populations, for prior mode this amounts to specifying clusters with vague priors for all markers113

and for anchor mode specifying clusters with no anchor cells.114

Modelling non-autonomous cell interactions increases accuracy115

We first sought to systematically explore the impact of incorporating spatial information during116

clustering. To do so we simulated data from the SpatialSort model allowing for non-autonomous117

cell to cell affinities. To simulate real spatial structure, breadth first search was applied on118

neighbourhood graphs generated from a previous IMC study8 as it maintains the spatial structure119

of the subset graph. We explored variations of expression values and spatial structure by generating120

100 datasets each for two types of HMRF interactions parameters which we refer to as ‘biased’121

and ‘uniform’. Biased refers to the condition where cells of the same cluster had a stronger122

affinity to be grouped together spatially, whereas uniform referred to the case where affinities123

were sampled from a uniform distribution. We used these datasets to evaluate three variants of124

the SpatialSort model differing in the number of parameters used to model cell to cell affinities:125

‘0p’ - a single fixed parameter for autonomous affinities; ‘1p’ - same as 0p but with the parameter126

estimated; ‘Kp’ - one parameters per cluster to reflect autonomous and non-autonomous cell to127

cell affinities (Methods). We also compared against a Gaussian mixture model (GMM), which is128

effectively a non-spatial equivalent to SpatialSort.129

The results of this analysis are summarised in Supplementary Figs. 2 and 3 for the biased and130

uniform datasets respectively. Clustering accuracy was assessed using the V-Measure metric with a131

value of 1.0 indicating perfect accuracy17 (Supplementary Table 1). When comparing methods we132

applied the Friedman test to see if there were any significant differences in performance between133

the methods (p-value<0.01) (Supplementary Table 4). If the Friedman test was significant we134
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then applied the post-hoc Nemenyi test with a Bonferroni correction to all pairs of methods to135

determine which methods showed significantly different performance from each other (p-value <136

0.01)18(Supplementary Table 7). All statements of significance are with respect to this procedure.137

All variants of the SpatialSort model significantly outperformed the GMM in our experiments.138

The simplest SpatialSort model, the 0p model, had a V-measure which was 0.138 higher than the139

GMM on average for both the biased and unbiased datasets. The Kp model had significantly140

better accuracy than both the 0p and 1p models for both biased and uniform datasets. For the141

biased dataset, the V-measure was on average 0.027 and 0.057 higher for the Kp model when142

compared to the 0p and 1p models respectively. The performance delta between Kp and simpler143

spatial models was much larger for the uniform datasets. The Kp model had an average increase144

of V-measure of 0.112 and 0.093 over the 0p and 1p models respectively.145

The increased accuracy of all variants of the SpatialSort model in comparison to the GMM146

highlights the importance of accounting for spatial structure. The increased delta in performance147

between the Kp and simpler spatial models supports the notion that explicitly accounting for148

non-autonomous cell to cell interactions can lead to significant gains in performance when such149

interactions are present.150

SpatialSort is robust to overlapping expression profiles151

We posited that accounting for spatial structure would improve cluster assignment in the case152

of cells with similar expression profiles. To explore this hypothesis simulated data using the same153

strategy as the previous synthetic experiment, but varied the degree of overlap in marker expression154

distributions. Marker expressions were modelled using Gaussian mixtures that were generated155

using the MixSim R package19, which allowed for controllable overlap of simulate expression156

profiles. We evaluated across 5 different overlaps from 0.025 to 0.125 and varied spatial structure157

by generating 50 datasets for each overlap under both biased and uniform interaction parameters.158

For this analysis we consider only the Kp variant of the SpatialSort model, henceforth referred to159

as SpatialSort. We compared against GMM as a baseline, and also Phenograph10 which is a widely160
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used clustering approach for spatial data. We again applied the Friedman and post-hoc Nemenyi161

test to assess statistical significance.162

Results from this experiment are summarized in Supplementary Figs. 4 and 5. SpatialSort163

significantly outperformed the GMM and Phenograph for all overlap values on both the biased164

and uniform datasets. The average increase of V-measure for SpatialSort versus GMM ranged165

from 0.210 to 0.399 and versus Phenograph ranged from 0.128 to 0.492 (Supplementary Tables 2166

and 8). The performance of all methods degraded as the degree of overlap in expression profiles167

increased. However, SpatialSort’s performance was significantly more robust to increasing overlap168

(Supplementary Tables 5 and 8). This trend held for both biased and uniform datasets. These169

results support the hypothesis that spatial information can help to more accurately cluster cell170

types with similar expression profiles.171

Prior information improves accuracy172

We next sought to explore the impact of incorporating prior information during clustering. To do173

so we generated semi-real datasets by using real cell expression profiles from a 13-dimensional174

CyTOF bone marrow mononuclear cell data downloaded from Levine et al10. Cell labels for175

this dataset were obtained by manual gating in a previous study20 and used as ground truth for176

our analysis. Cell neighbourhood graphs and node labels were generated the same way as the177

synthetic experiments. Expression values were associated with nodes in the graph by assigning178

a cell from the corresponding cluster in the CyTOF data. We explored variations of clusters and179

spatial structure by generating 100 datasets for the biased and uniform interaction parameters.180

The compositions of cell types was similar when simulating data with either of the two types181

of HMRF interaction parameter settings (Supplementary Fig. 6a-b), with the difference in182

datasets manifesting in the spatial organization of cells (Fig. 2a-b). We compared SpatialSort183

in unsupervised, prior and anchor modes to GMM and Phenograph. We performed principle184

component analysis (PCA) to reduce the dimensionality of the data to 8 dimensions for GMM,185

unsupervised SpatialSort and SpatialSort with anchors. No dimensionality reduction was applied186
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when using prior mode for SpatialSort, as specifying prior values of principle components was not187

a realistic use case. Phenograph was also run without PCA dimensionality reduction, as it applies188

its own dimensionality reduction.189

Results of this experiment are summarized in Fig. 2c-d and Supplementary Tables 3, 6 and 9.190

SpatialSort was significantly more accurate than GMM for both biased and uniform datasets using191

all three modes. The average increase in V-measure for SpatialSort ranged from 0.133 to 0.259.192

There was no significant difference in performance between SpatialSort in unsupervised mode193

and Phenograph for the biased dataset, and unsupervised SpatialSort significantly outperformed194

Phenograph in the uniform dataset. When using prior mode, there was no significant difference195

between SpatialSort and Phenograph for the biased dataset, and again SpatialSort significantly196

outperformed Phenograph for the uniform dataset. SpatialSort demonstrated its best performance197

in the anchor mode. Using anchors SpatialSort outperformed GMM and Phenograph on both198

the biased dataset and the uniform dataset. SpatialSort in unsupervised mode was significantly199

outperformed in all cases by both prior and anchor modes. A significant difference in performance200

was observed between prior and anchor modes in the biased dataset, however it was not observed201

in the uniform dataset with both methods reporting V-measures near 0.97. These results suggest202

the including prior or anchors information significantly improves the accuracy of spatially aware203

clustering.204

Employing anchors to characterize the spatial architecture of DLBCL205

To illustrate the real-world utility of SpatialSort we next analysed a MIBI dataset of 116,000 cells206

from a cohort of 29 patients with DLBCL. For each patient, two regions of interest (ROI) were207

obtained to address variations in tumour content. We also incorporated the expression data of208

128,673 cells from a previously clustered CyTOF assay of the same 29 patients to provide anchors209

for the characterization of the cellular composition of the tumour micro-environment in the MIBI210

data. We further subsetted the MIBI and CyTOF data by retaining only marker channels present in211

both modalities, which were CD45, CD19/PAX5, CD3, CD4, CD8, CD45RO, CD57, CXCR5,212
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PD-1. A linear normalization was applied to scale data from the two modalities to the same213

expression range, and dimensionality reduction with PCA was applied. We then ran the 0p, 1p214

and SpatialSort (Kp model) models with anchors to perform label transferring.215

The results of this analysis are summarized in Fig. 3 and Fig. 4. With spatial data, we were able216

to investigate the interaction matrices which indicate the observed frequency of two cell types217

to be spatially proximal. All three spatial models were able to capture the strong autonomous218

interaction between B cells (Fig. 3a-b, Supplementary Fig. 7a) due to the property of DLBCL219

having substantially higher tumour cell content than cells of other types21 (Supplementary Fig. 8).220

However, we observed a significant difference (p-value=0.00, Pearson chi-squared test) in the cell221

type distribution estimated by the 0p model compared to the SpatialSort and 1p models (Fig. 3c-d,222

Supplementary Fig. 7b).223

Visualization with cluster specific heatmaps (Fig. 3e-f, Supplementary Fig. 7c) revealed some224

clusters from the 0p model having higher disparity in expression patterns between cells than that225

of SpatialSort and 1p models. Applying the Davies-Bouldin score22, SpatialSort and the 1p model226

were superior at 1.92 compared to the 0p model at 2.67, with a lower score indicating higher227

coherence and less noise within clusters. Additionally, visualization of the cellular associations228

in the spatial structure using patient-specific neighbourhood graphs depicted an over-smoothing229

effect from the 0p model compared to the 1p and SpatialSort models (Fig. 4a-c). An exemplar230

from sample P7683 illustrates that SpatialSort can more effectively resolve cell types consistent231

with lineage marker intensities and effectively distinguish between cell types with overlapping232

expression profiles. Furthermore, these results suggests that the non-random associations between233

cellular phenotypes in the spatial structure can be more effectively identified when autonomous234

and non-autonomous interactions are inferred in spatially aware clustering.235
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Discussion and conclusions236

SpatialSort provides two important advancements over current state of the art methods for237

analysing spatial protein expression data. First, SpatialSort accounts for potential affinities238

between non-autonomous cell neighbours while clustering. This more accurately models the239

underlying biology and improves over the smoothing approach implicit in current HMRF based240

models11,12. Second, SpatialSort provides the ability to incorporate prior information about the241

expected cellular populations present. This improves upon post-hoc labelling of clusters due to242

the fact that prior information is directly incorporated while clustering, increasing accuracy.243

SpatialSort’s main limitation is computational complexity due to the challenges of posterior244

inference. The posterior distribution is doubly intractable because not only is the normalization245

constant of the posterior distribution difficult to evaluate explicitly, as is typical for Bayesian246

models, but also the likelihood of the HMRF. Previous HMRF based approaches have avoided247

this issue by using a single autonomous affinity value set manually11,12, thus avoiding the need248

to compute the normalization constant of the HMRF. Our results suggest this limits current249

HMRF methods to effectively be spatial smoothers. We address this issue using the double250

Metropolis-Hastings algorithm to approximately sample from the posterior. However, this251

precludes the possibility of using more computationally efficient approaches such as expectation252

maximization and variational methods for inference. Despite this, our analysis of real datasets253

with over 100,000 cells took on average 1.1 minute per sampling iteration or 9 hours to perform254

an entire run on a personal laptop computer. For extremely large datasets we would suggest255

downsampling the number of cells based on a breadth first search of the neighbour graphs. Though256

we have not explored it in this work, there is also significant opportunity for parallelisation across257

disconnected components of the neighbour graph.258

In this work we have primarily focused on the application of SpatialSort to proteomic data.259

However, there is no reason the model could not be modified to work with transcriptomic data.260

The key consideration would be that transcriptomic data is typically integer valued in contrast261
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to proteomic data which is continuous. To address this, the user could perform a suitable262

transformation of the count data to make it continuous as is common in the differential expression263

literature23. An alternative approach we leave for future work would be to replace the Normal264

emission distribution for the data with discrete distribution such as a Negative-Binomial24.265

We believe SpatialSort will be a valuable contribution to the spatial expression toolbox for many266

biologists. It addresses several unmet needs in the field and identifies several novel issues that have267

thus far been ignored.268
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Methods269

A generative model for spatially-aware clustering of expression data270

SpatialSort is an instance of a Hidden Markov Random Field (HMRF) model. HMRFs models are271

defined on an undirected graph G = (E, V ) where E is the set of edges in the graph and V are the272

set of vertices or nodes. Because the graph is undirected we assume that E is a set of sets, where273

elements of E are sets of the form {u, v} with u, v ∈ V .274

Let the observed data be denoted by Y = {yn}Nn=1, where N is the total number of data points and275

N = |V | , in the case of SpatialSort a data point is the measured expression profile of a cell. We276

assume yn ∈ RM where M denotes the number of proteins measured. Each data point yn has an277

associate latent variable xn ∈ {1, . . . , K}, where K is the number of clusters or cell populations278

in the case of SpatialSort. Let X = {xn}Nn=1 denote the set of all latent cluster allocation variables279

where each xn is the label of a node n in the graph G. We assume X follows a Markov Random280

Field (MRF) distribution where the value of xn depends on the values of its immediate neighbours281

in the graph. We denote the set of neighbours of xn in G by N (n) = {n|{n, n′} ∈ E}. The MRF282

is governed by K × K affinity matrix which we denote by β. The specification of the priors for283

the entries of β is deferred to the next section where we describe variants of the SpatialSort model.284

Each cluster k has an associated parameter θk, which in the case of SpatialSort represents the mean285

and precision of expression of proteins for cells associated with cluster k. Each component of θk,286

denoted θkm, is assumed to be independent and given a NormalGamma prior distribution. Given xn287

and {θk}Kk=1 we assume the values of yn are conditionally independent. The full joint distribution288

for the model is given in equation 1.289

p(X, Y, {θk}Kk=1, β) = p(β)p(X|β)
K∏
k=1

p(θk)
N∏

n=1

p(yn|xn, {θk}Kk=1) (1)

The term p(X|β) describes the MRF component of the joint distribution. The MRF distribution is290

a product of terms for each edge in the graph. Each term in the product is the exponential of the291
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entry in the matrix β corresponding to the identity of contributing edges. The unnormalized form292

of p(X|β) is given in equation 2.293

p(X|β) ∝
∏

{n,n′}∈E

exp(βxnx
n
′ )

= exp

 ∑
{n,n′}∈E

βxnx
n
′

 (2)

The normalization constant Z(β) of p(X|β) can be found by summing over all possible values of294

X = {xi}Nn=1, which is intractable for all but small values of N . As we discuss later this poses an295

inferential challenge when updating β.296

Thus the full hierarchical model, except for the specification of β, is as follows.297

θkm = (µkm, τkm) ∼ NormalGamma(·|µ0, λ0, α0, β0, )

X|β ∼ MRF(·|β)

ynm|xnm = k, {θℓ}Kℓ=1 ∼ Normal(·|µkm, τkm)

The model can be trivially extended to multiple samples or regions of interest by treating each new298

sample as separate connected components of the MRF graph.299

Specifying the affinity matrix300

The affinity matrix β is assumed to be symmetric, thus there are up to K(K+1)
2

∈ O(K2) free301

parameters that need to be specified. In practice, it neither computationally feasible nor statistically302

efficient to treat all entries of β as free parameters. Here we discuss several parameterizations of β303

which lead to different variants of the SpatialSort model.304

The simplest and most commonly employed parameterizations of β is to use a single value, βs,305

which is shared across all diagonal entries and setting the off diagonals to 0 i.e. βkk = βs and306

βkl = 0 for k ̸= l. This simple model, often referred to as as the Potts model, captures affinities of307
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cells of the same type and assumes that they all have the same strength. Due to the intractability308

of the normalization constant Z(β) of p(X|β), it is common to fix βs. We refer to the variants of309

SpatialSort with βs fixed as the 0p and with βs estimated as the 1p model. For the 1p model we310

assign βs a Uniform(0, 1) prior. For the 0p model we fix βs to 0.5 for all analyses performed in311

this work.312

The limitation of the standard Potts model, is the inability to capture affinities between clusters313

(cell populations) of different types. To address this we consider a richer parameterization of β314

which allows for variable strengths of autonomous interactions, and allows for non-autonomous315

interactions. We refer to this model as the Kp model, as there are K parameters which need to be316

estimated. In the Kp model the diagonals of β are set to βkk = βs
k which accounts for variable317

affinities for autonomous interactions. We define βd
k = 1 − βs

k and let βkl =
βd
k+βd

l

2
for the off318

diagonal terms to capture non-autonomous interactions. We assign a Uniform(0, 1) prior to βs
k.319

Incorporating prior knowledge into clustering320

The incorporation of prior knowledge of the marker proteins can be applied to improve clustering321

accuracy. A quaternary coded K by M prior expression matrix can serve as an input parameter322

of SpatialSort, where each row is a prior belief of the marker intensities for a cluster. Through323

coding values from 0 to 2, the mean parameter µkm of θkm is then translated to the 25th, 50th, and324

75th percentiles for each marker expression of Y . The value -1 is a special case which translates325

to a zero mean coupled with an high variance, which occurs in the case when we do not have prior326

knowledge on the expression of markers.327

Another approach is to leverage previously annotated cell types and anchor clusters to specific328

expression profiles. The introduced cells are referred to as anchors, as they are observed variables329

influencing the updates of cell cluster assignments and strongly anchor clusters to a specific330

expression signature profile. Anchors have a fixed cluster assignment and do not contribute331

to the HMRF graph. The anchors act to specify the distribution parameters of their associated332

clusters. This approach improves the accuracy of clustering and allows for label transfer between333
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disaggregate and spatial datasets.334

Inference of latent cluster labels and cell-cell interactions335

Inference on X and β constitutes of computing the (marginalized) posterior distribution, which336

can be formulated as:337

P (X, β|Y ) ∝ P (Y |β,X)P (X|β)P (β)

Closed-form solutions are intractable due to the complexity of the model, instead we employ338

Markov Chain Monte Carlo sampling methods to approximate the posterior distribution. Cell339

labels xn are sampled through a collapsed Gibbs sampler (CGS). The interaction parameters β340

are sampled via a Double Metropolis-Hastings (DMH) sampler25. Detailed information about the341

CGS and DMH steps are described in the Supplementary Note. One full iteration of the inference342

algorithm perform five updates of β using the DMH algorithm and one update of X using Gibbs343

sampling.344

Obtaining point estimates of the MCMC trace345

Given the approximated posterior distribution of X and β through sampling, referred to as the346

MCMC trace, we summarize the posterior by deriving point estimates for downstream analysis.347

To derive a point estimate for X , we construct a distance matrix using Hamming distance and348

apply hierarchical clustering. For all experiments on synthetic and real datasets, we ran SpatialSort349

for 500 iterations. A burn-in portion of half the MCMC trace is removed as standard practice.350

For unsupervised clustering, we optimize the Maximization of Posterior Expected Adjusted Rand351

(MPEAR)26 criterion which yields a sequence of consensus class labels given the MCMC trace.352

In anchor mode, we do not optimize MPEAR, instead we use the last sample given the trace has353

reached convergence.354
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Preprocessing355

For the semi-real dataset experiments, a 13-dimensional CyTOF dataset of bone marrow356

mononuclear cells were downloaded from Levine et al. Cells without labels from gating were357

discarded. An arcsin transformation was applied to normalize the dataset. Dimensional reduction358

with PCA was performed on the markers for unsupervised clustering, anchor mode, and GMM.359

For the real-world DLBCL dataset experiments, CyTOF DLBCL datasets were normalized by360

marker against a spike-in control to account for machine drift and batch effects in staining. This361

dataset was then normalized by a hyperbolic arcsin function. MIBI DLBCL datasets were also362

normalized by a hyperbolic arcsin function and divided by 10 to reduce expression intensity to363

the same scale as CyTOF. As there were no common B cell lineage marker between CyTOF364

and MIBI, CD19 and PAX5 were treated as equivalent. In the anchor experiments, spatially365

aware downsampling through breadth first search was performed on the MIBI data to 2000 cells366

per sample. Addition subsetting was done on both CyTOF and MIBI datasets to retain only367

overlapping markers: CD45, CD19/PAX5, CD3, CD4, CD8, CD45RO, CD57, CXCR5, PD-1.368

Dimensional reduction with PCA was performed on the common cell type lineage markers between369

the two modalities. The top six principal components were used as input for label transferring.370

Benchmarking371

For all forward simulations, Gaussian mixture simulations and semi-real simulations, we applied372

GMM as a benchmarking method using the GaussianMixture function from the scikit-learn373

package version 0.24.227. The number of components for GMM were set to the same number374

of clusters as were set for SpatialSort. For the latter two simulations, we additionally applied375

Phenograph version 1.5.710 with default parameters for benchmarking. Clustering accuracy376

was assessed using the V-Measure metric which is a harmonic mean between completeness and377

homogeneity17.378
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Figure 1: Schematic overview of SpatialSort. SpatialSort requires expression, cell location,
and neighbour relation data as inputs. For each patient, a neighbour graph modeled by a MRF
is built to represent the spatial context. Using both expression data and spatial structure for
inference, SpatialSort jointly infers cluster assignment and the interaction parameter of the HMRF
to probabilistically assign each cell to a given cell type cluster in an unsupervised setting. When an
expectation of certain cell types or a collection of labeled data is present, a prior expression matrix
or an anchor expression matrix can be incorporated to improve clustering or perform label transfer.
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Figure 2: Performance on semi-real spatial CyTOF data. a) An example of a spatial neighbour
graph of a singular sample in the biased dataset. Nodes indicate a single cell color-coded by
cluster assignment. Cells tend to engage in autonomous interactions spatially. b) An example
of a spatial neighbour graph of a single sample in the uniform dataset as a comparison. Uniform
interaction terms render cells to have a random chance of neighbouring any type of cell. c) Boxplot
of V-measure scores to show clustering accuracy of various methods fitting on 100 semi-real biased
datasets and d) uniform datasets.
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Figure 3: Cell type annotation of DLBCL MIBI data using SpatialSort allows for more effective
cell-cell interaction analysis than the 0p model. a) The interaction matrix for 29 patients with
DLBCL generated using the SpatialSort model. Each cell of the matrix represents the probability
distribution of an edge to be between two cell types in the HMRF. An edge represents cells of a
cell type to be spatially proximal and interacting with cells of another cell type. b) The interaction
matrix for 29 patients with DLBCL generated using the 0p model. c) The cell type distribution bar
graph of the clustering results from using the SpatialSort model. Counts are log-scaled. d) The cell
type distribution bar graph from using the 0p model. e) An exemplar cluster heatmap of a CD4+
CD45RO+ CD57- CXCR5+ PD-1+ T cell from using the SpatialSort model. f) A cluster heatmap
of the same cell type from the 0p model for comparison.
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Figure 4: Cellular associations in the spatial organization of DLBCL MIBI data depicted by
patient-specific neighbour graphs using SpatialSort. a) Spatial distribution of the expression of
lymphocyte lineage markers, PAX5 and CD3, across cells in sample P7683. Color represents
normalized intensity of expression. b) Neighbour graphs of sample P7683 plotted by spatial
coordinates. Cells are color-coded by cell type assignment inferred by the 0p model, 1p model,
and SpatialSort in anchor mode. c) Sample-specific expression heatmaps for sample P7683. Rows
are color-coded by cell type in (b).
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