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Abstract 19 

Individual tree growth is a key determinant of species performance and a driver of forest 20 

dynamics and composition. Previous studies on tree growth unravelled the variation in 21 

species growth as a function of demographic trade-offs that are partially predicted using 22 

functional traits. They have explored the environmental determinants of species growth 23 

potential and the variation of intraspecific growth over space and time due to environment 24 

and biotic factors. However, variation in individual growth within species remains 25 

underexplored for a whole community and the relative role of species' evolutionary heritage 26 

and of local environments remains unquantified. Here, based on 36 years of diameter 27 

records for thousands of spatialized individuals belonging to 138 species, we assessed 28 

individual tree growth potential in a local neotropical forest community in the Amazon basin. 29 

We further related variation in individual growth potential with taxonomic levels, local 30 

topography, and neighbourhood crowding, before exploring species growth potential link to 31 

functional traits and distribution along the phylogeny. We found that most of the variation in 32 

growth potential was individual, and that taxonomic structure explained a third of the 33 

observed variation. Species growth potential was phylogenetically conserved with positive 34 

conservatism up to the genus level in the vast majority of species. Functional traits of roots, 35 

wood and leaves together predicted species growth potential. Phylogeny suggested joint 36 

selection of species' growth strategies and associated functional traits during convergent 37 

evolutions. Finally, neighbourhood crowding had a significant effect on individual growth 38 

potential, although much of this inter-individual variation remains largely unexplained and the 39 

underlying ecological and evolutionary factors are still little explored. The high intraspecific 40 

variation observed could allow individuals in these hyperdiverse ecosystems to respond to 41 

the variable light and competitive conditions offered by successional niches during forest gap 42 

dynamics. 43 
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Introduction 44 

Individual growth is a key determinant of species performance (Violle et al., 2007) and a 45 

driver of forest dynamics (Hérault et al., 2010) and composition (Russo et al., 2008). Thus, a 46 

comprehensive understanding of the determinants of tree growth is of primary importance for 47 

predicting the fate of tropical forests, especially in the face of increasing anthropogenic 48 

disturbances. Tree growth plays a major role in the ecological strategies of tree species 49 

through demographic trade-offs (Rüger et al., 2019) including a growth-mortality trade-off 50 

(Aubry-Kientz et al., 2015; Philipson et al., 2014; Wright et al., 2010). Fast-growing species 51 

are opposed to slow-growing species (Aubry-Kientz et al., 2015; Phillipson et al., 2014;), with 52 

lower support costs but at greater risk of damage and increased mortality (King et al., 2006). 53 

To forecast the dynamics of tropical forests, efforts have been made to predict the growth of 54 

species. Functional traits have been widely explored and used to predict species growth 55 

(Hérault et al., 2011, Visser et al., 2016, Osazuwa-Peters et al., 2017, Poorter et al., 2010). 56 

Functional traits are defined as phenotypic traits that impact on fitness through their effect on 57 

individual performance, which is defined as the ability to recruit, grow, survive and reproduce 58 

(Violle et al. 2007). Functional traits are therefore expected to play a role in species growth 59 

(but see Yang et al., 2018). Wood density has been shown to be an important determinant of 60 

species growth potential (King et al., 2005; King et al., 2006; Hérault et al., 2011; Visser et 61 

al., 2016), as well as species maximum diameter and height,  ����  of leaf (Hérault et al., 62 

2011), wood anatomical features (Osazuwa-Peters et al., 2017; Poorter et al., 2010) and 63 

hydraulic conductance (Poorter et al., 2010).  64 

 65 

Light interception was recognised early on as a key factor in the growth of species (King et 66 

al., 2005). The role of light has been demonstrated experimentally in seedlings with species 67 

showing a trade-off between shade tolerance and establishment in gaps (Baraloto et al., 68 

2005). Fast-growing species are found in environments with high access to light, where 69 
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shade-tolerant species show reduced growth (Wright et al., 2010). Treefalls open gaps in the 70 

forest creating bright environments and reduced competition from large trees. During forest 71 

succession, gaps are filled by vegetation, resulting in shadier environments and increased 72 

competition from large trees. This process, called forest gap dynamics (Martinez-Ramos et 73 

al., 1989), produces successional niches, which select species with a variety of survival and 74 

growth strategies (Hérault et al., 2010; Rüger et al., 2009). Fast-growing pioneer species 75 

quickly colonise treefall gaps, while slower-growing late-successional species gradually 76 

establish themselves in shadier environments (Craven et al., 2015). Species distribution is 77 

also driven by soil (Kuper et al., 2019) shaping indirectly the structure of the community. 78 

Nutrient availability together with water shape species performance with fast-growing 79 

species dying more on the poorest habitat and slow-growing species being outcompeted in 80 

resource-rich habitats (Russo et al., 2008).  81 

 82 

Access to light and nutrients, modulated by forest gap dynamics, topography and 83 

competition, also determines variation in individual growth within species over space and 84 

time. Indeed, species-specific functional traits still poorly predict individual tree rates (Yang 85 

et al., 2018), partly because they ignore individual variation, and because critical aspects of 86 

demographic rates are not captured by most measured functional traits. Individual- and 87 

species-based approaches to functional traits are conceptually fundamentally different 88 

(Poorter et al., 2018): the species-based approach focuses on potential and the individual-89 

based approach on realised traits and growth rates. Forest gap dynamics, notably through 90 

light interception variation, is a key factor shaping the growth of individuals within species 91 

with increased tree growth near canopy openings (Hérault et al., 2010; Schmitt et al., 2022). 92 

Similarly, individuals with greater investment in biomass achieved higher growth rates with a 93 

suggested allocation in light capture (Umaña et al., 2018). Topography is driving both water 94 

and nutrient availability in tropical forests through the dissolution of iron oxides, litter- and 95 

tree-fall transfers and waterlogging (Ferry et al. 2010; John et al. 2007). Therefore, individual 96 

growth within species is faster in valleys than on ridges in neotropical forests (Fortunel et al., 97 
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2018; but see O'Brien Escudero 2021). The effects of abiotic determinants on individual 98 

growth within species can be mediated by biotic interactions and tree ontogeny. 99 

Neighbourhood crowding through competition for resources, including light, nutrients and 100 

water, but also potentially through facilitation, is known to modulate tree growth (Uriarte et 101 

al., 2004; Lewis and Tanner 2000). Individuals' responses to neighbourhood crowding 102 

depend on the species identity of the focal tree and the composition of its neighbours 103 

(Uriarte et al., 2004; Lewis and Tanner 2000). Neighbourhoods interact with other abiotic 104 

factors, e.g. growth is faster in bottomland than on higher ground, but neighbourhood 105 

crowding has a stronger negative effect on growth in bottomland than in higher ground for 106 

one in ten species (Fortunel et al., 2018).  Finally,  tree size, as a proxy for ontogeny, is a 107 

major determinant of individual growth within species (Rees et al., 2010; Hérault et al., 2011; 108 

Gibert et al., 2016), even though  tree size was shown to be less important for growth than 109 

light (Rüger et al., 2011). 110 

 111 

However, most of the studies of intraspecific variation in growth were carried out for a limited 112 

number of species of a community, and the consistency of the observed patterns for across 113 

species of a community remains underexplored. This prevents assessing the relative 114 

contribution to individual growth variability of species evolutionary heritage and individual 115 

adaptation and plasticity in response to  local environments. Individual trees however differ 116 

in many dimensions within and among species with genetic heritage and life history that may 117 

influence their growth response to local abiotic environments and biotic interactions (Le Bec 118 

et al., 2015). Genetic processes within and among species hold promises for understanding 119 

tree growth (Grattapaglia et al., 2009). Evolutionary heritage resulted in convergent species 120 

growth within tree genera from the Amazon Basin (de Souza et al., 2016). A recent study 121 

further suggested individual adaptation of tree growth within species to the successional 122 

niches generated by tropical forest gap dynamics in the tropical species from the Symphonia 123 

genus (Schmitt et al., 2022). The topographic origin of parent trees was also shown to 124 

determine the individual's growth response of the offspring to increasing abundance of 125 
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neighbours (O'Brien Escudero 2022). Altogether, these results plead for a better integration 126 

of species and individuals in tree growth studies, in order to better link individual tree growth 127 

to genetic, phylogenetic and environmental variations. 128 

 129 

Here, we assessed tree growth potential for most individuals in a local neotropical forest 130 

community in the Amazon basin, and related variation in individual growth potential to 131 

taxonomic levels, local topography and neighbourhood crowding, in addition to the species 132 

phylogeny. Based on 36 years of diameter records for 7,961 of spatialized individuals 133 

belonging to 138 species, we constructed individual ontogenetic growth trajectories to infer 134 

individual growth potential using a hierarchical Bayesian model. We used individual growth 135 

potential in a linear mixed model with topography, neighbourhood crowding and taxonomic 136 

level to explore the environmental drivers and evolutionary heritage of tree growth. We 137 

further explored the phylogenetic signal of species growth potential and the role of previously 138 

published functional traits in explaining species growth potential. We specifically addressed 139 

the following questions: 140 

1. What is the importance of evolutionary history in the growth potential of tropical 141 

trees? 142 

2. Can functional traits help predict species growth potential? 143 

3. How important is the variability of individual growth potential and how does the local 144 

environment influence it? 145 

We hypothesised species growth to have a phylogenetic signal with conserved interspecific 146 

growth in part influenced by species functional traits. We expected high intraspecific 147 

variation in tree growth influenced by topography and neighbourhood crowding. 148 
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Material and Methods 149 

Study site 150 

The study was conducted in the Guiana Shield, in the coastal region of French Guiana, at 151 

the Paracou field station (5°18′N, 52°53′W). The site is characterised by an average annual 152 

rainfall of 3041 mm and an average air temperature of 25.71°C (Aguilos et al. 2018). A rich 153 

tropical forest occupies this lowland area characterised by heterogeneous microtopographic 154 

conditions with numerous small hills generally not exceeding 45 m in altitude (Gourlet-Fleury 155 

et al. 2004). The site includes fifteen 6.25 ha plots and a 25 ha plot with trees mapped to the 156 

nearest metre and censused (diameter at breast height >10 cm) every 1 to 5 years since 157 

1985. Nine of the plots were intentionally manipulated in 1986 with a range of disturbance 158 

intensities that created a variety of biotic environments (details of the experiment in Hérault 159 

and Piponiot 2018). 160 

Species and individuals 161 

We focused on trees located 20 m from any plot edge for neighbourhood analyses. We used 162 

only (i) trees recruited since the beginning of censuses to exclude large diameter trees that 163 

show little to no variation in their growth trajectories, (ii) trees with at least 10 measurements 164 

to better assess their complete growth trajectories and( iii) species with at least 10 trees 165 

meeting the previous requirements for a good representation of intraspecific variability. We 166 

did include disturbed plots in our study in order to explore  a greater variety of 167 

neighbourhood crowding. 168 

Individual growth 169 

We first explored with a reduced dataset the best model shape (Tab. S1) and the best 170 

hierarchical integration of individual and species effects (Tab. S2) to infer individual growth 171 
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potential. Based on goodness of fit (likelihood), cross-validation (leave-one-out estimate of 172 

the expected log pointwise predictive density, see Vehtari et al., 2007) and prediction quality 173 

(root mean square error of prediction), we chose to model tree diameter over time using the 174 

sum of the arithmetic series of the annual tree growth rate observed at the census year for 175 

each individual with a Gaussian distribution. At any year � since tree recruitment, individual 176 

annual growth rate ����,� can be defined following a Gompertz model (Hérault et al., 2011) 177 

based on individual diameter at breast height from previous census ��	�,���:  178 

����,� 
 ���
� � �
��� �

�
��	
��
��,���/�	����

���
���  179 

with ����� ~ ������� , �� � and ��� � ����� , �� � 180 

where ���
� is the individual maximum growth potential, �����  is the optimal diameter at 181 

which the individual reaches its maximum growth potential, and ���  is the kurtosis defining 182 

the width of the bell-shaped growth-trajectory (see figure 1 in Hérault et al., 2011). �����  and 183 

���  are random effects centred on species parameters ����� and ��� with associated 184 

variances ��  and �� . Thus, annual individual diameter ��	�,� can be calculated as 185 

previous year individual diameter ��	�,��� plus individual annual growth rate ����,�: 186 

��	�,� 
 ��	�,��� � ����,�  

This arithmetic serie can be integrated from individual recruitment to build individual growth 187 

trajectory with annual individual diameter 	�,� : 188 

��	�,� 
 ��	0� � !
���

���

����,� 

where ��	0� is individual diameter at recruitment. Finally, a model can be fitted to predict 189 

annual individual diameter ��	�,� with observed diameter from censuses using a Guassian 190 

distribution: 191 

��	�,� � ����	0� � !
���

���

����,� , �� 

This model was fitted for every census � at which the individual was measured. A Bayesian 192 

method was employed to infer parameters, in particular individual growth potential ���
� , 193 
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using the stan language (Carpenter et al., 2017) and the rstan package (Stan Development 194 

Team, 2018) in the R environment (R Core Team, 2020). 195 

Descriptors of individual growth potential 196 

We used the mean neighbourhood crowding index (NCI, Uriarte et al., 2004) over the last 30 197 

years, an indirect measurement of access to light and forest gap dynamics for each 198 

individual. The mean neighbourhood crowding index ��"�  from tree individual i was 199 

calculated as follows: 200 

��"� 
 ∑ ��	�,�
�

�����,������ � exp '� �

�
��,�(    201 

with ��	�,� the diameter of the neighbouring tree j in year t and ��,�  its distance to the 202 

individual tree i. ��"�  is computed for all neighbours at a distance ��,� inferior to the 203 

maximum neighbouring distance of 20 metres. The power of neighbours ��	�,� effect was 204 

set to 2 to represent an area. The decrease of neighbours’ diameter effect with distance was 205 

set to -0.25 to represent trees at 20 metres of the focal trees having 1% of the effect of the 206 

same tree at 0 metres. ��"�   is computed as the mean of ��"�,� per census over the last 30 207 

years denoted by the overline in the equation. 208 

 209 

We used the topographic wetness index (TWI) as proxies of the distribution of soil water and 210 

nutrients in Paracou (Schmitt et al. 2021). Waterlogging and topography have been 211 

highlighted as crucial for forest dynamics (Ferry et al. 2010), species-habitat relationships 212 

(Engelbrecht et al. 2007), and phenotypic variation (Schmitt et al. 2020). TWI was derived 213 

from a 1-m-resolution digital elevation model using SAGA-GIS (Conrad et al. 2015) based on 214 

a LiDAR campaign of the whole Paracou field station done in 2015. 215 

 216 

We also tested the link between functional traits and species growth using the mean values 217 

of the 120 species of Vleminckx et al. (2021) shared with our study. Vleminckx et al. (2021) 218 
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functional data included 19 leaf, stem and root traits. Leaf traits included carbon, nitrogen, 219 

potassium, phosphorus, calcium, and chlorophyll content, carbon 13 isotopic ratio, 220 

toughness, thickness, area and specific area. Stem traits included sapwood specific gravity 221 

and trunk bark thickness. Root traits included specific tip abundance, specific length, wood 222 

specific gravity and fine roots tissue density and diameter. 223 

Analyses 224 

To study the effect of phylogeny and environment, we investigated the effects of family, 225 

genus, species, topography (TWI) and neighbourhood (NCI) indices on individual growth 226 

potential (Gmax) with a linear mixed model. Environmentals variables (TWI and NCI) were 227 

used as fixed effects, while phylogenetic variables (family, genus, and species) were used 228 

as random effects. We reported the resulting marginal (fixed effects alone) and conditional 229 

(fixed and random effects) goodness of fit (R², Nakagawa & Schielzeth 2013). 230 

 231 

We further investigated species growth potential across the phylogeny. To account for the 232 

lognormal distribution of individual growth potential within species, we used the median as a 233 

measure of species growth potential (���
� 
 )�*+�,����
��). We tested the phylogenetic 234 

signal of species growth potential with multiple measures including Pagel’s - (Keck et al., 235 

2016) . We further computed the phylogenetic correlogram of species growth potential using 236 

partistic phylogenetic distance and tested its significance with 999 bootstrap assuming 237 

brownian motion. We explored the phylogenetic signal structure across the phylogeny with 238 

the local indicator of phylogenetic association.  239 

 240 

We finally explored the link between functional traits and species growth potential. We used 241 

a linear model with a step selection of the best model explaining species log-transformed 242 

growth potential  with log-transformed functional traits. We measured functional traits relative 243 

importance in explaining species growth potential averaging over orderings of regressors 244 
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(Groemping 2007). We finally compared the taxonomic and phylogenetic structures of 245 

functional traits with those of species growth potential using linear mixed models with 246 

random taxonomic levels (family, genus,  and species) and phylogenetic correlograms. We 247 

used the tidyverse (Wickham et al., 2019), lme4 (Bates et al., 2015), phylosignal (Keck et al., 248 

2016), and ggtree (Yu 2020) packages in the R environment (R Core Team, 2020) for all 249 

analyses. 250 

Results 251 

We recorded 117 688 diameter measurements in the local community across 7 961 252 

individuals belonging to 138 species, 95 genera and 38 families. We found most of the 253 

variation in growth potential to be among individuals within species (� 
 0.45, Tab. 1), then 254 

among genera within families (� 
 0.09), then among species within genera (� 
 0.04) and 255 

among families (� 
 0.06). The taxonomic structure explains about a third of the observed 256 

variation in individual growth potential (Conditional �� 
 0.318 against Marginal �� 
 0.031). 257 

The neighbourhood crowding index (NCI) had a marked negative significant effect on 258 

individual growth potential (6 
 �0.99, � 7 0.001 alone Fig. 1B, and 6 
 �0.53, � 7 0.001 259 

knowing taxonomy Tab. 1) which explained 10% of the observed variation alone (�� 
260 

0.102, Fig. 1B) and 3% of the observed variation knowing taxonomy (Marginal �� 
 0.031, 261 

Tab. 1). The topographic wetness index had no effect on individual growth potential (6 
262 

�0.04, � 
 0.260 Tab. 1). 263 

Species growth potential was significantly structured in the phylogeny (Pagel’s - 
 0.78, � 7264 

0.001, Fig. 1A, Tab. S3). Phylogenetic autocorrelogram revealed a short distance significant 265 

positive association and a long distant significant negative association of species growth 266 

potential in the phylogeny (Fig. S1). The local indicator of phylogenetic association 267 

highlighted the conservation of species growth potential at the genus level (Fig. S2), as 268 

illustrated for instance with fast growing species from the Cecropia genus opposed to slow 269 
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growing species from the Eschweilera genus (Fig. 1A). However, a few species have 270 

different growth potential in the same genus, such as slow growing Drypetes variabilis 271 

opposed to fast growing Drypetes fanshawei. 272 

Functional traits explained 40% of the observed variation of species growth potential among 273 

120 tropical tree species (�� 
 0.394). Leaf potassium content, sapwood specific gravity, 274 

fine roots diameter and specific length had significant negative effects on species growth 275 

potential, while leaf nitrogen content had a significant positive effect (Tab. 2). Sapwood 276 

specific gravity and leaf nitrogen content had the largest relative importance (resp. �� 
 0.18 277 

and �� 
 0.11), while other traits had small relative importance (�� : 0.04). Moreover, these 278 

6 functional traits had a phylogenetic autocorrelogram similar to species growth potential 279 

with a short distance significant positive association, stronger for sapwood specific gravity 280 

than other traits (Fig. S3). 281 

  282 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501745doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501745


Table 1: Effects of phylogeny and environment on individual growth potential. We 283 

investigated the effects of family, genus, species, topography (TWI) and neighbourhood 284 

crowding (NCI) indices on individual growth potential (Gmax) with a linear mixed model. First 285 

rows show estimates, confidence intervals (CI) and significance (p-value) for environmental 286 

fixed effects. Middle rows show estimates for variance components from phylogenetic 287 

random effects. The last row shows marginal (fixed effects alone) and conditional (fixed and 288 

random effects) goodness of fit. 289 

 290 

;�<����
�  � 

Predictors Estimates CI p-value 

Intercept 4.00 3.48 – 4.51 <0.001 

;�<���"� � -0.53 -0.59 – -0.46 <0.001 

;�<�=>"� � 1 � -0.04 -0.10 – 0.03 0.260 

Random effects 

Residual 0.45   

Species | Genus | Family 0.04   

Genus | Family 0.09   

Family 0.06   

Marginal R² / Conditional R² 0.031 / 0.32   

    

 291 
 292 
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 293 

 294 

Figure 1: Variation in the growth potential of individuals and species as a function of 295 

neighbourhood crowding, taxonomic levels or across phylogeny. A. Individual growth 296 

potential ( ) is significantly decreasing with neighbourhood crowding index (NCI, 297 

). B. The variation of individual growth potential ( ) 298 

across taxonomy show most of the variation at the individual ( , Tab. 1), then 299 

explained by genus ( ) before species ( ) and family ( ).  C. The 300 

distribution of species growth potential (Median[ ]) across the phylogeny from slow 301 

growing species in dark blue to fast growing species in yellow (log-scale) is phylogenetically 302 

structured (Pagel’s ) with a significant positive autocorrelation to a 303 

phylogenetic partistic distance below 100 (Fig. S2), corresponding to the genus level (Tab. 304 

1).  305 

  306 
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Table 2: Effects of functional traits on species growth potential. We extracted traits from 307 

Vleminckx et al. (2021) for the 120 species shared with our study, and used a linear model 308 

with a step selection of the best model explaining species growth potential with log-309 

transformed growth potential and functional traits. We thus selected 6 root, stem and leaf 310 

functional traits. Columns show estimates, confidence intervals (CI), significance (p-value), 311 

and relative importance (R²) for selected functional traits. The last row shows raw and 312 

adjusted goodness of fit. 313 

 314 

;�<����
�  � 

Predictors Estimates CI p-value R² 

Intercept -0.01 -0.15 – 0.13 0.882  

leaf toughness 0.18 -0.01 – 0.37 0.063 0.02 

leaf nitrogen content 0.38 0.22 – 0.55 <0.001 0.11 

leaf potassium content -0.24 -0.41 – -0.07 0.005 0.04 

sapwood specific gravity -0.57 -0.76 – -0.39 <0.001 0.18 

fine roots diameter -0.49 -0.82 – -0.17 0.003 0.04 

specific root length -0.35 -0.67 – -0.02 0.035 0.03 

R² / R² adjusted 0.424 / 0.394    

  315 
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Discussion 316 

Using 36 years of diameter records for thousands of spatialized individuals belonging to 138 317 

species, we found that the evolutionary heritage of species shaped individual growth 318 

trajectories, explaining up to one third of the observed variation in growth potential among 319 

the eight thousand individuals studied. Functional traits of wood, leaves and roots together 320 

predicted species growth potential, showing that multiple functional dimensions determine 321 

the performance of tropical tree species in their environments. Phylogenetic correlograms 322 

suggested joint selection of species' growth strategies and associated functional traits during 323 

convergent evolutions. Nevertheless, at the individual tree level, forest gap resulted in fast-324 

growing trees in high light conditions with reduced competition, as opposed to slow-growing 325 

trees in low light conditions with strong competition. But the ecological and evolutionary 326 

drivers of the high variability in individual growth potential remain largely undetermined, and 327 

the underlying factors, which include phenotypic plasticity and genetic adaptations, are little 328 

explored. The high intraspecific variation observed could allow individuals in these 329 

hyperdiverse ecosystems to respond to the variable light and competitive conditions offered 330 

by successional niches during forest gap dynamics, in addition to the many other potential 331 

environmental dimensions that shape the coexistence of species. 332 

Evolutionary history shapes the growth of tropical trees 333 

We found that evolutionary history shaped individual growth potential. Previous studies 334 

already highlighted regionally a phylogenetic signal in species growth potential in the 335 

Amazon Basin, with evolutionarily related genera having more similar growth values  than 336 

expected by chance (de Souza et al., 2016). Regionally, woody biomass and tree size also 337 

showed a strong phylogenetic signal in tropical dry forests (de Aguiar-Campos et al., 20201), 338 

besides longevity rather than growth determined biomass (Körner 2017). Similarly, Cadotte 339 

et al., (2009) found evolutionary relationships explaining grasslands productivity. Thus, 340 
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evolutionary history shapes observed phylogenetic and functional diversity at the regional 341 

scale, with for instance lasting influences from the Paleoclimate (Svenning et al., 2015; 342 

Bosela et al., 2016). Our results are in agreement as we also identified a strong phylogenetic 343 

signal in species growth potential with positive phylogenetic correlation up to the genus level, 344 

showing that previous regional scale results hold locally. To our knowledge, our study is the 345 

first attempt to link individual growth potential to species growth potential. Using taxonomy 346 

as a proxy for evolutionary heritage of species, we found that the evolutionary history of 347 

species explained up to one third of the observed variation in growth potential among the 348 

eight thousand individuals studied. Thus, evolutionary history is an important determinant of 349 

individual variation in growth stronger than the direct effect of the environment, at least for 350 

the topography and neighbourhood crowding tested here. 351 

 352 

Several convergent evolution resulted in similar growth patterns of species within genera 353 

with, for instance, repeated evolution of fast-growing species in Urticaceae, Fabaceae, 354 

Hypericaceae, and Melastomataceae families with species respectively belonging to the 355 

Cecropia, Inga, Vismia and Miconia genera. This pattern might be explained by repeated 356 

evolution constrained by forest gap dynamics, leading to shade-tolerance under closed 357 

canopies as opposed to fast-growing pioneer species in light gaps (de Souza et al., 2016). 358 

Indeed, Cecropia, Visimia and Miconia are for instance recognized as pioneer species 359 

colonising first light gaps after a treefall (Dalling et al., 1998). Convergent evolutions of 360 

habitat specialisation could also explain the divergent growth of genera within families. For 361 

instance at the species level, Fine et al., (2014) evidenced specialisation to white sands or 362 

flooded soils within Protieae. Nevertheless, the fact that topography and forest gap 363 

dynamics, two major determinants of the local community (e.g. Ferry et al., 2010; Molino and 364 

Sabatier 2001), have less explanatory power than taxonomy reveals the importance of past 365 

evolutionary constraints on the growth trajectories of individual trees through species 366 

heritage compared to the direct effect of the current environment to which individual trees 367 
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could respond through microadaptations and phenotypic plasticity (e.g. Schmitt et al., 2021; 368 

2022). 369 

 370 

Taken together, our results therefore partly support species-averaged community ecology 371 

approaches, at least for growth trajectories (but see last paragraph). Swenson et al., (2013) 372 

suggested the use of phylogenetic approaches to understand community assembly. 373 

However, phylogeny alone is not sufficient to predict demographic rates (Che-Castaldo et 374 

al., 2018). Indeed, phylogenetic approaches must be conducted with caution given the high 375 

remaining intraspecific variability (see last paragraph) and the differences observed among 376 

closely-related species. 377 

Multiple functional dimensions together predict the species 378 

growth potential 379 

Using the 120 species in common with Vleminckx et al. (2021), we found six functional traits 380 

explaining an important part of variation in species growth potential (40%). Sapwood specific 381 

gravity was already shown as a major predictor of species growth (King et al., 2005; King et 382 

al., 2006; Hérault et al., 2011; Visser et al., 2016), with fast-growing species investing less in 383 

wood resulting in a low density as opposed to slow-growing ones. Leaf nitrogen content was 384 

the second most important predictor in our study, with nitrogen-rich species growing faster, 385 

as already observed for pioneer species (Aidar et al., 2003), and in rich environments 386 

(Russo et al., 2008). Leaf potassium and toughness were also small predictors of species 387 

growth potential. Finally, root traits also predicted species growth potential with fast-growing 388 

species investing less in their root systems with decreased fine roots diameters and higher 389 

specific root length, as already shown for temperate species (Comas, Bouma and Eissenstat 390 

2002, Comas and Eissenstat 2004) but never in the tropics, in the limit of our knowledge. 391 

Soil heterogeneity can be expected to play a key role in shaping root traits (Vleminckx et al., 392 

2021), while the dynamics of forest gaps cannot be excluded either (Xiang et al., 2013). 393 
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Future research on the role of root traits in tropical tree growth is thus particularly promising 394 

given that tropical forests harbour the greatest diversity of root characteristics (Ma et al., 395 

2018). Interestingly, species growth potential is better predicted by the combination of traits 396 

from roots, wood and leaf, in accordance with the idea of multiple functional dimensions that 397 

allow tropical tree species to optimise their performance in a given environment Vleminckx et 398 

al. (2021), while participating together in a whole plant economic spectrum (Reich 2014).  399 

 400 

Finally, we found a similar phylogenetic structure between the 6 functional traits and species 401 

growth potential, with significant and positive phylogenetic correlation at short distance, in 402 

particular in sapwood specific gravity  (de Souza et al., 2016). The traits explaining the most 403 

species growth had the strongest positive phylogenetic correlation (e.g. sapwood specific 404 

gravity), while traits such as leaf potassium content and toughness had smaller positive 405 

phylogenetic correlation only significant to a short phylogenetic distance (<50). The similarity 406 

between phylogenetic correlograms suggests a joint selection of species growth strategies 407 

and associated functional traits during convergent evolutions. This result further supports the 408 

use of phylogeny and related traits  to predict species growth trajectories and potential 409 

demography (Swenson 2014; Tucker et al., 2018; Paquette et al., 2015). 410 

Individual growth potential is influenced by forest gap dynamics 411 

but remains largely unexplained 412 

We found evolutionary heritage shaping the individual growth of tropical trees, with functional 413 

traits as important predictors of species growth potential. However, we still observe a huge 414 

intraspecific variation with individual growth potential varying widely within species (CVlog = 415 

98% [35-430%]). The growth trajectories of individual trees are strongly and negatively 416 

affected by the average neighbourhood crowding over the last 30 years (10%), which can be 417 

related to the mosaic of light and competition environments shaped by forest gap dynamics 418 

(Schmitt et al., 2022). In a nutshell, we observe fast-growing trees in high-light conditions 419 
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with decreased competition opposed to slow-growing trees in low-light conditions with strong 420 

competition within and among species. Fast-growing pioneer species opposed to slow-421 

growing species under closed-canopies are widely known and expected at the interspecific 422 

level (Dallinget al., 1998; Molino and Sabatier 2001; King et al., 2005; Hérault et al., 2011), 423 

but we also evidenced fast-growing individual opposed to slow-growing individual within 424 

species along successional niches, advocating for a wide niche successional-breadth of 425 

tropical tree species (e.g. Schmitt et al., 2022 for Symphonia species). The effect of 426 

competition and its reduction has already been suggested as a factor increasing tree radial 427 

growth within species in the context of selective logging, especially within shade-tolerant 428 

species (Peña-Claros et al., 2008). Indeed, logging gaps, with increased light acces, results 429 

in increased tree growth at short distance from the gap, especially within slow-growing 430 

species (Hérault et al., 2010). Rare species have been also shown to be more sensitive to 431 

light variation (Rüger et al., 2011). The effect of crowding can be a direct limit to light access 432 

expected in successional niches, but the effect of neighbours identity found in tropical trees 433 

(Potvin et al., 2008) also suggest other above- and below-ground competition and facilitation 434 

processes. In short, forest gap dynamics with tree fall results in successional niches ranging 435 

from high light and low competition after recent tree fall to low light and high competition in 436 

closed canopies, and we found along this gradient fast-growing species and individuals 437 

within species in early-succession niches as opposed to slow-growing species and 438 

individuals within species in late-succession niches. 439 

 440 

Nevertheless, forest gap dynamics only explained a tenth of the high variation of individual 441 

growth potential within species. Topographic position, proxied with topographic wetness 442 

index, did not influence the individual growth variation within species in our study (but see 443 

O’Brien and Escudero 2021), despite its known importance in tropical forest dynamics (Ferry 444 

et al., 2010). The role of topography on individual growth potential was weak, but we can 445 

assume that topography shapes species growth through species evolutionary heritage, as 446 

several species studied showed locally pervasive habitat preferences along topography 447 
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(Allié et al., 2018; Schmitt et al., 2021b) and microgeographic adaptations to topography 448 

(Schmitt et al., 2021). Consequently, ecological and evolutionary factors of individual growth 449 

potential remain largely undetermined. And the process through which forest gap dynamics 450 

and undetermined factors affect individual growth potential remains also underexplored. The 451 

spatio-temporal variation of forest gap dynamics led to assume growth potential variation 452 

within species to be due to phenotypic plasticity (dos Santos et al., 2020). However, recent 453 

studies revealed local adaptation (O’Brien and Escudero 2021) and microadaptation 454 

(Schmitt et al., 2022) of individual trees within species to neighbourhood crowding and 455 

competition resulting in varying individual growth potential. Thus forest gap dynamics could 456 

have both a strong evolutionary heritage on species and shapes genotypes within species 457 

with strong spatio-temporal variations (Schmitt et al., 2022).  458 

 459 

Intraspecific variability in performance can have strong implications for species coexistence 460 

(Chesson 2000, Clark 2010). Clark (2010) suggested that intraspecific variability allows 461 

species to differ in the distribution of their responses to the environment and thus to pass 462 

environmental filtering: an individual may persist in a given environment with a suitable 463 

phenotype while the same environment would have filtered out the average phenotype of the 464 

species. This  hypothesis is consistent with theories that predict the coexistence of a greater 465 

number of species, with competition being stronger within species, among individuals, than 466 

among species (Chesson 2000). Modelling approaches further supports the hypothesis that 467 

intraspecific genetic and phenotypic variability promotes species coexistence (Lichstein et 468 

al., 2007). In the case of forest gap dynamics, late-successional species have been shown 469 

to have more variation in response to competition and light variation than early-successional 470 

species (Peña-Claros et al., 2008; Hérault et al., 2010). The high intraspecific variation 471 

observed (CVlog = 98%) could therefore allow individuals in these hyperdiverse ecosystems 472 

to adjust to the variable conditions of light and competition offered by the successional 473 

niches during the closure of the forest gaps, in addition to the other numerous potential 474 

niches shaping the high-dimensional coexistence of species (Clark 2010). Consequently, the 475 
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methodology used in our study paves the way to future research on determinants and 476 

processes shaping tree growth within and among species. The combination of studies from 477 

forest censuses (e.g. this study), modelling approaches (e.g. Schmitt et al., 2020b), and 478 

experimental studies (e.g. O’Brien and Escudero 2021)  holds promise for a better 479 

understanding of tree performance within and among species, with the potential to better 480 

explain and predict species coexistence and forest dynamics. In particular, linking individual 481 

genotypes within species to forest gap dynamics, topography and individual growth potential 482 

(Schmitt et al., 2022) among several species to extrapolate to the community level seems a 483 

promising approach to elucidate the determinants of tree growth. 484 
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