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HIGHLIGHTS: 

• Tool to simulate tomograms of membrane-embedded proteins 

• Detangles influence of data acquisition parameters from sample quality issues 

• Rapid evaluation and optimization of cryo-ET data acquisition parameters 

• Proof-of-concept provided with integrins and SARS-CoV-2 spike simulations 
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ABSTRACT:  

The throughput and fidelity of cryogenic cellular electron tomography (cryo-ET) is constantly 

increasing through advances in cryogenic electron microscope hardware, direct electron 

detection devices, and powerful image processing algorithms. However, the need for careful 

optimization of sample preparations and for access to expensive, high-end equipment, make 

cryo-ET a costly and time-consuming technique. Generally, only after the last step of the cryo-

ET workflow, when reconstructed tomograms are available, it becomes clear whether the 

chosen imaging parameters were suitable for a specific type of sample in order to answer a 

specific biological question. Tools for a-priory assessment of the feasibility of samples to 

answer biological questions and how to optimize imaging parameters to do so would be a major 

advantage. Here we describe MEPSi (Membrane Embedded Protein Simulator), a simulation 

tool aimed at rapid and convenient evaluation and optimization of cryo-ET data acquisition 

parameters for studies of transmembrane proteins in their native environment. We 

demonstrate the utility of MEPSi by showing how to detangle the influence of different data 

collection parameters and different orientations in respect to tilt axis and electron beam for two 

examples: (1) simulated plasma membranes with embedded single-pass transmembrane 

αIIbβ3 integrin receptors and (2) simulated virus membranes with embedded SARS-CoV-2 

spike proteins.  

 

GRAPHICAL ABSTRACT: 
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ABBREVIATIONS:  

Cryo-EM: Cryogenic Electron Microscopy 

Cryo-ET: Cryogenic Electron Tomography 

CTF: Contrast Transfer Function 

MEPSi: Membrane Embedded Protein Simulator 

MSE: Mean-Square Error 

MSSIM: Mean Structural Similarity Index Method 

PSNR: Peak Signal-to-Noise Ratio 

 

INTRODUCTION 

Since the ‘resolution revolution’ (Kühlbrandt, 2014) cryogenic electron microscopy structure 

deposition in specialized databases has grown exponentially. In fact, its growth rate is 

significantly higher than X-ray crystallography or nuclear magnetic resonance spectroscopy 

(Sorzano and Carazo, 2022). This trend has been made possible because of a growing number 

of cryo-EM facilities as well as optimized sample preparation and image processing 

procedures. However, these studies are restricted to purified proteins and protein assemblies. 

The interest in in-situ structural information is increasing because proteins in their native 

cellular environment may not always behave similar to those in vitro purified systems. Cryo-ET 

is a state-of-the-art technique that, in principle, can provide such data. In combination with 

averaging techniques, cryo-ET can even enable near-atomic resolution structure determination 

of specific macromolecular complexes within intact cells (Tegunov et al., 2021). However, 

sample preparation protocols, correlation with light microscopy data, setup of appropriate data 

collection parameters, and image reconstruction strategies all need to be carefully optimized 

and verified to yield tomographic reconstructions or sub-tomogram averages that can answer 

specific biological questions. This process is time consuming and costly.  

 

One way to improve upon the current process is the introduction of simulation studies to help 

determine and optimize appropriate parameters. By detangling effects owing to insufficient 

sample quality and to choices of data collection parameters and image reconstruction 

strategies for ideal samples, simulations can help bracketing the expectations of what can be 

achieved with ideal samples prior to investing in imaging and sample optimization. For 

example, if the simulations indicate that it is not feasible to extract the targeted biological 

information from ideal samples, there is no point to invest in sample optimization and imaging. 

Furthermore, as simulations can be cheaper than experiments, a large number of conditions 

and combinations can be tested and evaluated to maximize sample usage and data collection 

time. Finally, simulations potentially allow to detangle the effects of parameters that are not 
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experimentally separable (e.g., missing wedge versus tilt increment), allowing a more complete 

understanding of the influence of the individual parameters.  

 

Simulations have been extensively used in various imaging fields to evaluate image processing 

and reconstruction algorithms. It was in 1974 when the Shepp-Logan phantom was developed, 

a tool to simulate the head and brain for computerized tomography (Shepp and Logan, 1974). 

Since then, the Shepp-Logan phantom has been used as a standard test for evaluating image 

acquisition and reconstruction algorithms in many different fields. For cellular cryo-ET, early 

simulations have been primarily used to validate template matching and sub-tomogram 

averaging approaches (Bartesaghi et al., 2008; Förster et al., 2008) or the effect of typical cryo-

ET artifacts on molecular docking (Volkmann, 2002). More recent efforts have focused on 

improving the accuracy of the image formation model (Himes and Grigorieff, 2021; Parkhurst 

et al., 2021; Vulović et al., 2013; Rullgård et al., 2011; Hall et al., 2011), which is thought to be 

especially crucial for cellular tomography, owing to the thickness of the sample, the crowded 

environment inside cells, and the fact that tilting of large fields of view can lead to major focus 

differences within the sample. For the most part, underlying models designed to emulate 

cellular environments have been crafted by hand (Gubins et al., 2021; Gubins et al., 2020; Xu 

et al., 2011). An algorithm targeting automated generation of cytoplasmic molecular 

arrangements at tunable crowding levels has been developed (Pei et al., 2016) but the 

approach is not suited to simulate membrane embedded molecular distributions. 

 

Here, we introduce MEPSi, the Membrane Embedded Proteins Simulator. This tool was 

developed to allow quick and convenient simulation of membrane protein configurations 

embedded in membranes of tunable curvature. This model generation module is coupled with 

a tilt-series and tomogram generation module that is designed to allow rapid evaluation of 

imaging and data collection parameters either in combination or individually. While MEPSi can 

be used to generate charge densities for validating molecular recognition and sub-tomogram 

averaging and other approaches, its main utility lies in quick and exhaustive evaluation of 

imaging parameters in terms of interpretability and expected upper bunds for quality of 

individual raw tomograms. 

 

METHODS 

MEPSi workflow 

MEPSi has been incorporated into pyCoAn (github.com/pyCoAn/distro), an extended python 

version of the CoAn package (Volkmann and Hanein, 1999). The MEPSi workflow is primarily 

accomplished with three commands within pyCoAn:  
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(1) sim_membrane_prots. This command reads a coordinate list, generates the specified 

membrane geometry, places the proteins on the membrane, and creates a ground-truth 

volume representation of the resulting arrangement. The algorithm uses a three-dimensional 

Archimedean spiral to place the molecules initially at approximately equidistant points within 

the membrane. Parameters that can be adjusted include the membrane curvature, mean 

distance between molecules, the variance of random translations, whether a random rotation 

should be applied, the ratio at which the molecules will be randomly picked from the list, pixel 

size, resolution, and controls for the orientation and size of the output volume. Detailed help 

on all parameters is available within the pyCoAn software. The volume is generated using 

direct generation of the membrane density and Gaussian convolution of the atom positions. 

Optionally, solvent models can be generated and added to the density before tilt series 

simulation (sim_add_solvent).  

 

(2) tilt_simulator. This command reads a ground-truth volume, usually created by 

sim_membrane_prots, and generates an unperturbed basis tilt series with specified 

parameters. The individual tilt images are generated by rotating the volume around the Y axis 

(virtual tilt axis) and projecting the density along the Z axis (virtual electron beam direction). Tilt 

increment, tilt range, and pixel size can be adjusted. This step tends to be the most time-

consuming within the workflow.  

 

(3) tomo_simulator. This command reads a basis tilt series, usually generated by tilt_simulator, 

and generates a simulated tomogram. It allows to adjust the thickness, tilt range and increment, 

pixel size, reconstruction algorithm, defocus, and whether noise should be applied and at what 

signal-to-noise ratio. Detailed help on all parameters is available within the pyCoAn software. 

The reconstruction is driven by tomo3d (Agulleiro and Fernandez, 2011) and includes options 

for the Simultaneous Iterative Reconstruction Technique (SIRT) and weighted back projection. 

This step is rapid and allows exploration of many parameters with the same base tilt series in 

a short amount of time.  

 

Parameter modulations or other perturbations are applied to the basis tilt series. For example, 

different contrast transfer function (CTF) and/or noise models can be applied to the basis tilt 

series before selection (sim_apply_ctf and sim_apply_noise respectively). All MEPSi 

commands are completely modular and can be combined with other approaches. For example, 

a volume created by sim_membrane_prots could be used as input to a different, tilt-image 

generator and the resulting tilt series can then be fed back into tomo_simulator or hand-crafted 

volumes can be input to tilt_simulator followed by tomo_simulator.  
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MEPSi is agnostic to the source of the coordinate files (e.g., data base, prediction, hand-

crafted, MD simulations, etc.) but there are two requirements for all coordinate files that need 

to be met: the center of the transmembrane domain needs to be at the origin of the coordinate 

system and the extracellular domain needs to point down the Z axis. pyCoAn provides 

commands to adjust the geometry of arbitrary coordinate files.  

 

Proteins targeted in this study 

The four full-length αIIbβ3 integrin conformers were obtained previously and described in detail 

(Xu et al., 2016). Briefly, models were obtained by combining normal-mode-based and 

statistics-based docking to fit the different domains extracted from crystal structures into cryo-

EM reconstructions. The coordinates of the SARS-CoV-2 spike conformers were obtained from 

the PDB with accession numbers 6VSB (pre-fusion conformation) and 6M3W (post-fusion 

conformation). 

 

Image quality assessment methods 

Three image quality assessment methods were set up in this pipeline and implemented within 

pyCoAn: Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Mean Structural 

Similarity Index Measure (MSSIM). Because none of these measures is intensity-scale 

invariant, each simulated tomogram was normalized to a mean value of zero and a root-mean-

square deviation of one to facilitate meaningful comparison.  

 

Visualization 

Experimental and simulated noise images, as well as slices and orthogonal slice 

representations of the simulated tomograms were visualized with IMOD (Kremer et al., 1996). 

Surface representations of the densities and atomic models were visualized with UCSF 

Chimera (Pettersen et al., 2004).  

 

RESULTS AND DISCUSSION 

We developed MEPSi as a fast and easy-to-use simulation approach with the primary aim to 

determine and optimize cryo-ET data collection parameters (for example tilt range, tilt 

increment, defocus) for transmembrane proteins in their native membrane environment, The 

pipeline developed here includes importing of protein coordinates, rapid charge density 

creation, tilt series generation, and tomogram simulation (Figure 1). In a few steps and in a 

short time, several tomograms with different characteristics can be simulated. The most time-

consuming step of the pipeline is the generation of projection images for the tilt series from a 

charge density. To speed up the subsequent processes, a perturbation-free “basis tilt series” 

is generated from a particular charge density with small pixel size (default: 2 Å), small tilt 
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increment (default: 1º), and large tilt range (default: ±90º). The simulated imaging and data 

collection parameters to be explored (along with perturbations such as noise or miss-

alignment) are then applied to the images in the basis tilt series before or during tomogram 

calculation.  

 

 

Figure 1. MEPSi (Membrane Embedded Proteins Simulation) workflow. The first step consists of 

importing and converting atomic coordinates, which takes a few seconds. The second step consists 

of generating the molecular arrangement from the imported coordinates, adding the membrane 

contribution with a defined curvature and, optionally, adding a solvent model with or without structural 

noise. This step typically takes few minutes, depending on the size of the volume. The next step 

consists of generating a “basis tilt series” that can be used to generate sub-sampling for the spatial 

parameters tilt range and increment as well as pixel size. It needs to be created with the finest tilt 

increment and pixel size relevant to the simulation aim and with the largest tilt range needed. This step 

is the most time-consuming, typically ranging between 10 mins and 2.5 hrs, but only needs to be done 

once per simulated volume. Once the basis tilt series is generated, the effects of parameters on the 

tomogram quality can be explored quickly, either together, or separately. Currently implemented 

parameters to explore at this level include tilt range, tilt-increment, pixel size, signal-to-noise ratio, tilt-

series alignment accuracy, acceleration voltage, defocus, amplitude contrast, spherical aberration, 

and envelope function fall-off. Impact of packing, membrane curvature, specimen orientation in respect 

to the beam, solvent density and structural noise can also be easily explored but require recalculation 

of the basis tilt series. 
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Charge density modeling 

Under certain conditions, the image formation in the electron microscope can be considered 

as a linear image model (Thon, 1971). For this to hold, the specimen needs to be very thin and 

composed of light atoms. This is referred to as the weak phase object approximation where 

the effect of the specimen on the incoming electron wave is modeled as a spatially varying 

phase shift in the electron wave as it passes through the specimen, modifying the exit wave 

accordingly. The projection approximation assumes that the exit wave can be computed as the 

projected interaction potential of the whole specimen (Kirkland, 2010). Both approximations 

greatly simplify the computational complexity of simulating images but cannot account for 

effects like the curvature of the Ewald sphere (DeRosier, 2000) or multiple scattering events 

and are thus not suitable for very high resolution or thicker specimen.  

 

Single isolated atoms with low to medium atomic number satisfy the conditions for both the 

weak-phase object and the projection approximation and can be treated accordingly. Electron 

scattering by an atom starts with a plane wave incident on the atom which gives rise to an 

outgoing plane wave plus an outgoing spherical wave, assuming spherical symmetry of the 

atom (an assumption that is technically broken in molecules). The amplitude of this exit wave 

is referred to as the electronic scattering factor. Following the first Born approximation, the 

Fourier transform of the scattering factor can be used to calculate the radial atomic potential 

(Kirkland, 2010). Those scattering factors can be parametrized by a weighted sum of five 

Gaussians (Peng et al., 1996). The charge density of a thin enough biological specimen can 

then be approximated using the isolated atom superposition approximation, which neglects the 

minor effects of the bond contributions to the interaction potential (Vulović et al., 2013).  

 

All these approximations speed up calculations significantly if compared to more accurate 

treatments and are the standard implementation for conversion of atom coordinates into 

charge densities in most cryo-EM software packages. However, for large areas of crowded 

molecules such as those in cellular environments, even these approximate calculations tend 

to become a bottleneck for simulations. Although the number of electrons increases with the 

atomic number, the actual size of the atoms is surprisingly similar. The increased charge of a 

nucleus with higher atomic number attracts the electrons more strongly to the nucleus, keeping 

the atomic diameter relatively constant (~1 Å). Thus, directly approximating the radial charge 

distribution of an arbitrary atom as a point scatterer convoluted with a single Gaussian should 

hold at low resolution.  
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In MEPSi we approximate all atoms as point scatterers with equal weights and convolve the 

resulting point-scatterer distribution with a single Gaussian that incorporates the diameter of 

the atoms, fall-off for limited resolution, and, optionally, all sources of uncertainties. This 

strategy leads to a major improvement in computational load. To quantify the penalty in 

accuracy, we compared the results of the full-fletched five-Gaussian approach with our own 

approach. We find that the difference in the resulting charge distributions is negligible down to 

pixel sizes of at least 1.4 Å (the Fourier shell correlation stays above 0.5 up to 2.8 Å and above 

0.143 up to 2.6 Å), especially in the presence of noise and imaging artifact such as the missing 

wedge. Once calculated, the resulting charge density can then be combined with continuum 

models for membranes and bulk solvent. Pixel sizes in cellular tomography are most often 

chosen between 3.5 and 10 Å to maximize the field of view unless high-resolution sub-

tomogram averaging is targeted. New technology potentially allows the recording of large fields 

of view (Peck et al., 2022) with smaller pixel sizes but this technology is not widely used yet. 

Here, we chose a pixel size of 2 Å for the analysis as a compromise between current practice 

and future prospects.  

 

Molecular packing  

One significant issue is how to get the packing right in crowded environments. In three 

dimensions, it can be resolved in several different ways including simulated annealing and 

molecular dynamics approaches (Pei et al., 2016). For membrane-bound macromolecules, the 

problem reduces to packing consideration on a two-dimensional manifold. Our approach to this 

issue is to first place the macromolecules in a predefined near-equidistant pattern using a 

three-dimensional Archimedean spiral approach and then apply random translations on the 

surface within a bounding box defined by the equidistance used and the maximum XY radius 

of the respective macromolecule. This approach ensures that there is no overlap between the 

macromolecules on the surface. 

 

Solvent modeling 

The contrast in experimental images is generally much less, typically by about a factor of three, 

than in simulated images using multi-slice approaches (Hÿtch and Stobbs, 1994). This issue 

has been addressed recently by using sophisticated frozen plasmon forward modeling (Himes 

and Grigorieff, 2021) but the improvement comes at a considerable computational cost. 

Instead, we use a continuum solvent model with an adjustable contrast tuning parameter. As 

an added benefit, this strategy allows modeling the effect of denser buffers and or graphene 

films that generate lower contrast than the pure water that is generally used in other biological 

specimen simulators. Optionally, random bumpiness can be introduced into the solvent model 

to emulate structural noise, which has been shown to be an important factor in signal-to-nose 
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ratio considerations (Baxter et al., 2009). To combine the solvent, membrane, and 

macromolecular charge density models, we use a three-dimensional version of Laplacian 

pyramid blending (Burt and Adelson, 1987) to account for displacements of one object from 

another and to mitigate edge effects. This type of blending also effectively emulates the 

existence of a hydration layer around the molecular objects (Shang and Sigworth, 2012). 

 

Contrast transfer modeling 

The effect of the microscope optics on the simulated image can be modeled with the contrast 

transfer function (Thon, 1971). One major determinant of the CTF is the focus value at the 

scattering event. One of the reasons why the projection and weak-phase object approximations 

break down for thicker samples is the fact that the focus value changes while the electrons 

traverse the specimen. This effect is even more relevant for tilted specimen, where the focus 

difference can reach several microns in magnitude at high tilt angles. The maximum resolution 

R achievable from a specimen of thickness t while employing the projection approximation can 

be expressed as 𝑅 ≈ √1.64/(𝑡′𝜆) (Philippsen et al., 2007) where λ is the wavelength of the 

electrons and t’ = t/cos(α) is the tilt-corrected thickness at tilt angle α. For an acceleration 

voltage of 300 kV and a thickness of 250 nm, at the higher end of thickness for cellular lamellae 

obtained by recent cryogenic focused ion beam milling approaches (Tacke et al., 2021), the 

reliable information is restricted to a resolution of 5.5 Å at zero tilt and 7.8 Å at 60º tilt. The 

value for the high tilt is above Nyquist limit for any pixel size larger than 3.9 Å and employing 

the projection approximation for pixel sizes down to 2 Å should not be a major factor 

considering the low signal-to-noise ratio in tomograms and the general magnitude of the 

imaging artifacts.  

 

We exploit this fact by treating the simulated specimen as an infinitely thin slice so only focus 

changes caused by tilting need to be considered. We implement this procedure as a two-

dimensional version of a multi-slice approach, where the projected tilted specimen images are 

subjected to a CTF model in strips parallel to the tilt axis with the defocus modulated according 

to the position of the strip center in the three-dimensional tilted specimen. The width of the 

strips is tunable using the desired defocus step size and strips are blended into a final image 

using Laplacian pyramids. This approach accelerates the calculations significantly if compared 

to the traditional multi-slice approach. 

 

Noise modeling 

In many simulation applications targeting cryo-ET, the noise component is modeled as white 

additive Gaussian, which has been demonstrated to be inadequate in accounting for common 

imaging artifacts during image processing (Scheres et al., 2007). Here, we model noise as a 
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mixture of Gaussian and Laplacian noise with tunable mixing and noise-correlation 

parameters. Tuning these parameters allows to closely match the simulated noise with 

experimentally observed noise (Figure 2). This noise is then applied to the simulated tilt 

images at defined signal-to-noise ratios before tomogram generation. 

 

Figure 2: Noise modeling using mixtures between Gaussian and Laplacian noise with tunable 

mixing and noise-correlation parameters. The top row shows areas of experimental electron 

micrographs from different experiments with different imaging parameters in regions devoid of 

structures (which should thus only show noise). The bottom row shows the results of the noise 

simulations with parameters adjusted to match the experimental noise.  

 

Processing speed 

The generation of the basis tilt series can take up to 2.5 hours with default parameters for a 

2000 x 2000 x 500 tomogram on a standard workstation. This time can be reduced to less than 

10 minutes while still giving a good visual indication for the quality of the resulting tomograms 

by reducing the size of the tomogram and/or the pixel size before calculating the basis tilt 

series. The latter time frame makes MEPSi amenable to real-time evaluation during data 

collection. In either case, once the basis tilt series is generated, tomograms with different 

parameter settings can be generated in a matter of minutes. The algorithms are optimized for 

multi-CPU usage and do not depend on the presence of graphic cards. 

 

Model systems 

One of the main features of MEPSi is that it allows easy generation of different charge density 

geometries and compositions (Figure 3). Membrane curvature (Figure 3A), the spatial 

distribution and concentration of proteins on the surface (Figure 3B), and ratios within the 

conformational landscape (Figure 3C) can all be easily adjusted. To demonstrate MEPSi’s 

utility we employed MEPSi to characterize the individual influences of the parameters tilt range  
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Figure 3. Tunning membrane curvature, protein densities and composition. A) Curvature 

variation. From left to right: underlying radius 3200, 1200 and 400 Å. B) Tunning of protein 

density on the membrane. From left to right: mean distance between particles 170, 300, and 

550 Å. C) Variation of protein ratios considering two different conformations of integrin, 

(open conformation in red and closed conformation in yellow). From left to right: ratios of 

75/25, 50/50, and 25/75.  

 

and tilt increment for two different proteins, the αIIbβ3 integrin receptor, and the SARS-CoV-2 

spike protein.  For reconstituted systems of αIIbβ3 integrin there is information available from 

X-ray crystallography and Nuclear Magnetic Resonance spectroscopy (Campbell and 

Humphries, 2011) as well as from cryo-EM (Xu et al., 2016; Ye et al., 2008). Only little in-situ 

structural information has been obtained so far (Sorrentino et al., 2021). For αIIbβ3 integrin, it 

is particularly important to be able to map individual conformations and locations on the plasma 

membrane because integrin function is governed by conformational equilibria (Hanein and 

Volkmann, 2018) and spatial clustering (Welf et al., 2012). Whether it is possible to extract this 

information from cellular tomograms directly and what the optimal imaging parameters are to 

achieve this goal is not known. For SARS-CoV-2 spike protein in its native virus context, near-

atomic information after sub-tomogram averaging is available (Turoňová et al., 2020), 

demonstrating that it is possible to extract high-resolution information from in-situ viruses if 

sample and imaging conditions are right. However, a systematic analysis of what imaging 
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parameters would lead to the minimum investment in microscope time and image analysis 

effort is not available. MEPSi opens the avenue for optimizing parameters in both cases.  

 

As a proof of concept, we simulated different charge densities with two membrane geometries 

(flat and curved) for in-situ full length αIIbβ3 integrin arrangements. The ‘curved’ membrane 

geometry corresponds to integrins at the tip of filopodia (Sorrentino et al., 2021) and the flat 

geometry corresponds to the arrangement on extended flat membrane regions at sites like 

focal adhesions. For SARS-CoV-2, we only generated one membrane configuration that 

corresponds to a spherical shape with the known virus diameter of around 90 nm (Klein et al., 

2020). For the αIIbβ3 integrin simulations, we drew from the four conformers seen in nanodiscs 

using the percentages from the conformational equilibrium of the activated state (Xu et al., 

2016). Because the effect of parameter changes will be different for different orientations, we 

simulated tomograms with three different orthogonal orientations for each of the curved or flat 

configurations. The basis tilt series were calculated at a tilt increment of 0.25º and ±90º tilt 

range. The direction of the tilt axis coincides with the Y axis and the direction of the electron 

beam (i.e., the projection direction) coincides with the Z axis. Because the membrane of SARS-

CoV-2 viruses are spherical, there was no need to generate tomograms of more than one 

orientation. We used a ratio to 3:1 for post-fusion versus pre-fusion states of the SARS-CoV-2 

spike protein. 

 

For each simulated tomogram, we varied the tilt increment between 1º and 5º and the tilt range 

between 90º (no missing wedge) and ±45º. Effects of these parameters are visually 

summarized for the flat αIIbβ3 integrin configuration with the membrane oriented parallel to the 

Z axis in Figure 4. In this configuration, the contrast of the membrane in the simulated 

tomograms is significantly diminished once a missing wedge is introduced. The membrane 

practically disappears at small tilt range (45º). A tilt range of 70º provides a clear 

improvement in membrane visibility but there are significant distortions in the location of the 

membrane (Figure 4B). Interestingly, modifying the tilt increment does impart a significant 

effect even without introducing a missing wedge (Figure 4C). For a tilt increment of 5º, the 

membrane is severely distorted in the view along the Z axis and there are significant streaks 

in the other two views. The tomogram calculated from 3º tilt increments is less severely affected 

but the sampling artifacts are still of the same magnitude as the signal. A 2º tilt increment 

appears to be sufficient to suppress sampling artifacts to a tolerable level. Smaller tilt 

increments are impractical because of the electron dose will become so low that alignment can 

become unstable. Taken together, a 70º tilt range with a tilt increment of 2º is the best choice 

for this geometry.  
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Figure 4. Simulated tomograms. A) Orthogonal slices representations of simulated tomograms with 

different tilt ranges (tilt increment 0.25º) and the membrane oriented perpendicular to the electron 

beam. Z denotes the view along the direction of the electron beam; Y denotes the view along the 

direction of the tilt axis; X. The inset in the top right corner of every orthogonal slice representation 

shows the Fourier transform of the central slice along the tilt axis. The missing wedge is highlighted 

in blue with a dashed white border. B) Orthogonal slice representations of simulated tomograms 

with different tilt increments (tilt range ±90º). Axis and insets as in A. 

 

Quantification 

An essential component of evaluating different parameter choices is quantification of the 

differences in quality. A good quality metric will not only allow to track how the choice of a 

particular parameter affects the tomogram quality, it will also allow to quantitatively compare  

the effect of different data collection or imaging parameters. We have implemented three 

reference-based image comparison methods that are popular in computer vision: (1) the Mean-

Square Error (MSE), which measures the average squared difference between the simulated  
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Figure 5. Assessing image quality of tilt range and tilt increment in simulated tomograms with 

different membrane geometries. MSE, PSNR and MSSIM as a function of varying parameters. For 

the integrin-based densities two membrane geometries (Flat and Curved) and three orthogonal 

orientations were evaluated whereas for the virus-like structure, which has a spherically symmetric 

membrane, only one orientation was evaluated (Spherical). X denotes that the membrane is oriented 

perpendicular to the tilt axis and parallel to the electron beam, Y denotes that the membrane is 

oriented parallel to both the tilt axis and the electron beam; Z denotes that the membrane is oriented 

perpendicular to the electron beam. 

 

values and the actual values (ground truth); (2) the Peak Signal-to-Noise Ratio (PSNR), which 

measures the ratio between the maximum possible value of a signal and the strength of the  

distortions; and (3) the Mean Structural Similarity, (MSSIM), which attempts to quantify the 

image degradation as the change of perception in structural information and is thought to better 

match human visual quality perception than the other two metrics (Zhou, 2004). All three 
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metrics reveal clear and mostly similar trends as a function of varying parameters (Figure 5). 

Interestingly, for many membrane geometry/orientation combinations the tilt increment has as 

much or more influence on the metrics as the tilt range. The one exception is the flat membrane 

geometry when oriented perpendicular to the electron beam (flat Z). Here, the MSE is almost 

an order of magnitude higher at ±45º tilt range than the MSE of the other geometry/orientation 

combinations. The tilt increment dependence is comparable to the others. The reason for the 

high MSE is that the membrane all but disappears from the reconstructions when the missing 

wedge grows, leading to a large pixel-wise difference in the membrane regions. Because both 

the PSNR and the MSSIM are considering localized signal strength, they are not picking up as 

much on the absence of the membrane, indicating that these metrics are more focused on the 

appearance of the particles in the reconstruction. 

 

CONCLUSIONS 

In cryo-ET one of the most difficult problems is the interpretation of the data after 

reconstruction. In addition to the high noise levels and low contrast, the imaging system and 

the chosen imaging parameters significantly distort the imaged structures. MEPSi can help to 

visualize the extent of the expected distortions and aid interpretation of experimental 

tomograms. In particular, the orientation of the membrane in respect to the tilt axis and the 

electron beam can have a major influence on the interpretability of the reconstruction (Figure 

6). If the membrane is oriented perpendicular to the tilt axis and parallel to the electron beam 

(i.e. oriented along the X axis), the overall distortions for a typical experimental setting (tilt 

range ±60º, tilt increment 3º) are significantly less disturbing than the other two membrane 

orientations. Clearly the worst scenario is when the membrane is orientated perpendicular to 

the electron beam. In this case, the membrane is not visible in either of the orthogonal slices.  

 

We demonstrated the utility of MEPSi for evaluating and comparing the effects of modifying 

data collection parameters for different membrane geometries. MEPSi is currently targeting 

membrane embedded molecules and is a versatile tool to explore the imaging and data 

collection parameter space as well as perturbations typical for cryo-ET such as high noise 

levels, structural noise, and misalignment of tilt images. Possible extensions of the method 

include adding capacity to simulate cytosolic distributions of macromolecules and/or filaments 

alongside the membrane embed molecules. In terms of additional parameters to explore, beam 

damage models, electron dose, and models for beam-induced distortions would be attractive. 

Another attractive option is the exploration of alternative reconstruction algorithms in our 

framework, Because of the modular design of MEPSi, it can also be adapted to use more 

accurate (albeit more time-consuming) forward models to validate and explore molecular 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501771doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501771


 17 

recognition approaches or high-resolution sub-tomogram classification and averaging 

methodology. 

 

 

Figure 6. Influence of orientation on protein direct visualization. A. Schematic representation of the 

simulated geometry.  B. Surface representations of charge density of integrins embedded in a flat 

membrane. Three orthogonal orientations were generated. All views along the Z axis (beam 

direction). The same integrin molecule is marked in all views. C, Orthogonal slice representations of 

the ground truth densities corresponding to the orientations shown in B. The same molecule as in B 

is circled. The view with the red circle corresponds to the view along the X axis, the one with the 

green circle to the view along the Y axis and the one with the orange circle to the view along the Z 

axis. D. Orthogonal slice representations through a simulated tomogram (tilt range ±60° and tilt 

increment 3°). The same molecule as in B is circled, color scheme as in B. 
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