
 1 

Message in a Bottle: Archived DNA Reveals Marine Heatwave-Associated Shifts in Fish 1 

Assemblages 2 

 3 

 4 

Zachary Gold1,2*, Ryan P. Kelly3, Andrew Olaf Shelton2, Andrew R. Thompson4, Kelly D. 5 

Goodwin4,5, Ramón Gallego2, Kim M. Parsons2, Luke R. Thompson5,6, Dovi Kacev7, Paul H. 6 

Barber8 7 

 8 

1 Cooperative Institute for Climate, Ocean, & Ecosystem Studies, UW, Seattle, WA 9 

2 Northwest Fisheries Science Center, NMFS/NOAA, Seattle, WA 10 

3 School of Marine and Environmental Affairs, UW, Seattle, WA 11 

4 Southwest Fisheries Science Center, NMFS/NOAA, La Jolla, CA 12 

5 Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological 13 

Laboratory, Miami, FL 14 

6 Northern Gulf Institute, Mississippi State University, Mississippi State, MS 15 

7 Scripps Institution of Oceanography, UCSD, La Jolla 16 

8 Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 17 

 18 

 19 

*Corresponding author Email: zachary.gold@noaa.gov 20 

 21 

Summary: Novel quantitative abundance estimates from archived DNA reveals marine 22 

heatwave-associated shifts in fish assemblages. 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501788doi: bioRxiv preprint 

mailto:zachary.gold@noaa.gov
https://doi.org/10.1101/2022.07.27.501788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 24 

Marine heatwaves can drive large-scale shifts in marine ecosystems but studying their impacts 25 

on whole species assemblages can be difficult. Here, we leverage the taxonomic breadth and 26 

resolution of DNA sequences derived from environmental DNA (eDNA) in the ethanol of a set 27 

of 23-year longitudinal ichthyoplankton samples, combining these with microscopy-derived 28 

ichthyoplankton identification to yield higher-resolution, species-specific quantitative abundance 29 

estimates of fish assemblages in the California Current Large Marine Ecosystem during and after 30 

the 2014–16 Pacific marine heatwave. This integrated dataset reveals patterns of tropicalization 31 

with increases in southern, mesopelagic species and associated declines in important temperate 32 

fisheries targets (e.g., North Pacific Hake (Merluccius productus) and Pacific Sardine (Sardinops 33 

sagax)). We observed novel assemblages of southern, mesopelagic fishes and temperate species 34 

(e.g., Northern Anchovy, Engraulis mordax) even after the return to average water temperatures. 35 

Our innovative preservative derived eDNA metabarcoding and quantitative modeling approaches 36 

open the door to reconstructing the historical dynamics of assemblages from modern and 37 

archived samples worldwide.  38 

 39 

Introduction 40 

Climate-induced marine heatwaves are increasing in frequency and severity with far-reaching 41 

consequences in marine ecosystems (Oliver et al., 2018), ranging from severe organismal stress 42 

to cascading ecosystem effects (Frölicher & Laufkötter, 2018). Notable recent examples include 43 

repeated bleaching events across the Great Barrier Reef (2016, 2017, 2020) (Hughes et al., 2018) 44 

and near-total deforestation in Northern California, USA, kelp forests (2016-19) (Rogers-Bennett 45 

& Catton, 2019). These marine heatwaves precipitated drastic, unprecedented changes in 46 
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 3 

dominant foundational species across hundreds of thousands of square kilometers of shallow, 47 

coastal ecosystems.  48 

The impacts of such large environmentally driven disturbances on coastal marine 49 

ecosystems have been ecologically and economically significant (Cheung & Frölicher, 2020; 50 

Nielsen et al., 2021; Pinsky et al., 2020). In the 1940s, the dramatic collapse of Pacific Sardine 51 

(Sardinops sagax) disrupted marine food webs, causing broad-scale, negative socio-economic 52 

impacts across the Northeast Pacific (Becker et al., 2019; Chavez et al., 2003; Checkley et al., 53 

2017). To better understand the processes driving these complex marine ecosystem dynamics 54 

and to avert similar fisheries collapses within the California Current Large Marine Ecosystem 55 

(CCLME), the California Cooperative Oceanic Fisheries Investigations (CalCOFI) was formed 56 

in 1949. CalCOFI has continuously conducted systematic fisheries-independent surveys of the 57 

southern CCLME from 1951 until the present (Gallo et al., 2019; Lindegren et al., 2013; 58 

McClatchie, 2016) with a focus on monitoring larval fish assemblages, as larval fish dynamics 59 

are a key predictor of ecosystem health and function (Gallo et al., 2019; Nielsen et al., 2021; 60 

Smith & Moser, 2003).  61 

 Larval fish abundances help to characterize the state of marine ecosystems as they track 62 

spawning-stock biomass (Hsieh et al., 2006). Over 70 years, CalCOFI has documented decadal 63 

and annual changes in fish assemblages in response to environmental conditions, identifying 64 

major shifts in response to Pacific Decadal Oscillations and El Niño Southern Oscillations (Gallo 65 

et al., 2019; Moser  P.E. Smith, and L.E. Eber, 1987; H. Moser et al., 2001; Thompson et al., 66 

2012). These decadal and annual changes in ichthyoplankton dynamics are superimposed over 67 

the strong biogeographic assemblage associations with distinct water mass characteristics within 68 

the Southern California Bight (H. Moser et al., 2001). For example, ichthyoplankton 69 
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assemblages differ among the colder and fresher California Current, warmer and saltier 70 

California Counter Current and Central Pacific water mass, and in upwelling conditions across 71 

the continental shelf (Asch, 2015; Lindegren et al., 2013; Smith & Moser, 2003; Snyder et al., 72 

2003). Importantly, periods of elevated temperatures were historically associated with higher 73 

abundances of southern, mesopelagic species and Pacific Sardine while colder periods were 74 

associated with higher abundances of northern, mesopelagic species and Northern Anchovy 75 

(Engraulis mordax) (Chavez et al., 2003; Thompson et al., 2022)(Chavez et al., 2003; Thompson 76 

et al., 2022a). These insights into forage-fish community dynamics across decadal climatic 77 

regime shifts are vital to understanding the effects of climate change on the CCLME (Asch, 78 

2015; Checkley et al., 2017; Lindegren et al., 2013). 79 

  Despite the value of previous CalCOFI ichthyoplankton data, such traditional manual 80 

identification of larvae is labor-intensive, and taxonomic resolution is often limited by a lack of 81 

discernible morphological characteristics (Thompson, Chen, et al., 2017). Here, we reconstruct 82 

ichthyoplankton assemblages over 23 years, using a novel “environmental DNA” (eDNA) 83 

approach: sequencing 12S rRNA gene amplicons (Miya et al., 2015) derived from the ethanol in 84 

which CalCOFI plankton samples were preserved, thereby maintaining the historical samples, 85 

and pair these genetic data with morphological count observations in a joint Bayesian model to 86 

estimate species-specific larval abundance. 87 

 88 

Materials and Methods 89 

Study Design 90 

To investigate decadal changes in the ichthyoplankton assemblages in the southern California 91 

Current vicinity, we identified ichthyoplankton from four stations during spring months. 92 
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Archived spring ichthyoplankton samples were collected across four biogeographically 93 

dissimilar stations (up to 370 km apart) with variable water properties (McClatchie et al., 94 

2016)over 2 decades (1996,1998-2019; Figure S1) (Nielsen et al., 2021; Thompson, Harvey, et 95 

al., 2019). The northernmost station was located offshore of Point Conception, CA within the 96 

California Current (34.14833˚N -121.1567˚W). The second station was located off San Nicholas 97 

Island, CA (33.32333 ˚N, -119.6667˚W) which experiences high variation in annual temperature 98 

depending on the respective strengths of the California Current and Southern California Counter 99 

Current. The third station was a southern coastal inshore station off San Diego, CA (32.84667˚N, 100 

-117.5383˚W) characterized by relatively warmer waters from the California Counter Current 101 

with seasonal (spring) upwelling of cool, nutrient-rich water. The fourth station was a southern 102 

offshore station (31.85000˚N, -119.5683˚W) characterized by sub-tropical oceanic waters. 103 

Decades of research within the study region (Moser  P.E. Smith, and L.E. Eber, 1987; H. 104 

Moser et al., 2001; H. G. Moser et al., 1993; Thompson et al., 2022a) indicate the majority of 105 

species spawn in spring and the resulting ichthyoplankton closely track adult biomass (Hsieh et 106 

al., 2005). Hence, we expect the spring ichthyoplankton to reflect underlying changes in the local 107 

fish assemblages. 108 

At each station, oblique bongo net tows were conducted from 210 m depth to the surface 109 

using standard CalCOFI methods (Kramer et al., 1972; McClatchie, 2014; Thompson et al., 110 

2012; Thompson, McClatchie, et al., 2017;). Cod-end contents of both bongo nets were 111 

preserved at sea. The starboard side was preserved in sodium borate-buffered 2% formaldehyde 112 

and the port side was preserved in Tris-buffered 95% ethanol. Microscopy was conducted to 113 

identify species abundance from formaldehyde-preserved samples following standardized 114 

CalCOFI techniques (McClatchie, 2016). DNA metabarcoding was conducted on the ethanol in 115 
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which port side samples were preserved, conducting eDNA metabarcoding using the ethanol 116 

preservative (as opposed to water, soil, or air) as the target substrate. We refer to this process as 117 

eDNA metabarcoding here in. Ethanol was pipetted off of archived samples and filtered onto 118 

0.2µm PVDF filters, extracted using a modified Qiagen DNeasy Blood and Tissue kit (Curd et 119 

al., 2019), and amplified using the MiFish Universal Teleost (Miya et al., 2015) PCR primer set 120 

targeting the 12S rRNA mitochondrial gene region. We expect morphological and molecular 121 

analyses to be independent, imperfect reflections of a common biological community because 122 

port- and starboard-side samples are not precisely identical. See Supplement 1 methods for full 123 

description. 124 

Estimating Abundance 125 

We estimated the abundance of ichthyoplankton in each jar using a novel joint Bayesian 126 

hierarchical model described in Shelton et al. (2022) and also detailed here. We first model taxon 127 

sequence-read counts from metabarcoding to account for the PCR process, in which each taxon 128 

is subject to a different amplification efficiency based on the primer set used. Furthermore, we 129 

link the sequencing data to the morphological ichthyoplankton counts from paired samples to 130 

constrain the species-specific starting concentrations of DNA in the ethanol jars. The resulting 131 

integrated model leverages the taxonomic breadth and resolution (Gold et al., 2021; Miya et al., 132 

2020) of amplicon sequencing, combining these with the power of morphological counts to yield 133 

species-specific quantitative abundance estimates. By jointly interpreting the genetic and 134 

traditional morphological datasets, we can track changes in abundance for a broad diversity of 135 

larval fish species, yielding a much higher-resolution picture of these assemblages.  136 

We estimate that the number of sequenced amplicons, for any species i, is a nonlinear 137 

function of the species-specific fraction of DNA in the template(Kelly et al., 2019; McLaren et 138 
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 7 

al., 2019; Silverman et al., 2021 ; we use i to represent species, but can be generalized to 139 

represent ASVs or other molecular targets). The amplicons produced during a PCR reaction are 140 

dictated by the amplicon efficiency parameter 𝑎𝑖, which is characteristic of the interaction 141 

between the particular PCR reaction and each species being amplified. Thus, for any species i, 142 

the number of amplicons should be directly related to the efficiency of amplification and the 143 

starting concentration of DNA template such that 144 

𝐴𝑖 = 𝑐𝑖(𝑎𝑖 + 1)𝑁𝑃𝐶𝑅     (1)             145 

where 𝐴𝑖 is amplicon abundance, 𝑐𝑖 is the true number of DNA copies in the reaction 146 

attributable to species i, 𝑎𝑖 is the species-specific amplification efficiency (bounded on (0,1)), 147 

and 𝑁𝑃𝐶𝑅 is the number of PCR cycles used in the reaction (Lalam, 2006). We note this model 148 

assumes that PCR amplification has not approached saturation and therefore the PCR is still 149 

amplifying exponentially. We, and others (McLaren et al., 2019), argue this assumption is valid 150 

because 1) the total concentration of DNA within a filtered ethanol sample is low (<1 ng/μL), 2) 151 

the PCR reagents are supplied in excess and therefore are unlikely to be saturating the PCR, and 152 

3) evidence from previous studies supports these assumptions (McLaren et al., 2019; Shelton et 153 

al., 2022; Silverman et al., 2021). However, future models could be developed to account for a 154 

saturating PCR curve (Lalam, 2006). 155 

If amplicons could be perfectly observed, Equation 1 would faithfully relate amplicon 156 

abundance to the biological value of interest, 𝑐𝑖, the true number of template DNA copies. 157 

Unfortunately, standard metabarcoding does not allow for such direct observation of amplicon 158 

abundance because, unlike in qPCR amplification of a single target, the production of all the 159 

varieties of amplicons generated during a sequencing run cannot be tracked, and are not 160 

amenable to simple quantification due to combined effects of the PCR process and subsampling.  161 
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To illustrate this point, the number of amplicons expected for any species with 𝑐𝑖 > 0 is very 162 

large due to 𝑁𝑃𝐶𝑅 being a large number and 𝑎𝑖 typically not being close to 0, (e.g. with 𝑐𝑖 = 2, 𝑎𝑖 163 

= 0.75, and 𝑁𝑃𝐶𝑅 = 36, 𝐴𝑖  = 1.12 × 109). Thus, given there are typically many species being 164 

amplified simultaneously, a single reaction can produce 1010 or more DNA copies with the actual 165 

number driven primarily by the 𝑎𝑖 values among species and 𝑁𝑃𝐶𝑅. Importantly, not all 166 

molecules of DNA are transferred through each molecular step, particularly as DNA sequencing 167 

machines do not read all of the copies from such a reaction; they read only a small fraction of the 168 

reads (on the order of 106 to 107 reads) (Egozcue et al., 2020; Silverman et al., 2020). This 169 

subsampling changes what in Equation 1 appears to be a single-species process – each species 170 

being amplified independently – into a multi-species process where the number of amplicons 171 

observed for species i depends upon both the amplicons produced for species i = 1 and the 172 

amplicons produced for species i = 2, 3, ..., I in the same reaction. Observations of amplicons are 173 

thus compositional data, meaning they are the proportions of the sample amplicon reads and 174 

therefore convey relative quantitative information of the observed species, and therefore need to 175 

be analyzed as such (Gloor et al., 2017). 176 

To harness the ability to generate quantitative data from Equation 1 as much as possible, 177 

we develop a model for a single sample with many species. As above, if we let I index species 178 

with I = 1, 2, ..., I, then we can write a deterministic Equation for the number of amplicons 179 

observed in log-space as 180 

log (𝐴𝑖) = log(𝑐𝑖) + 𝑁𝑃𝐶𝑅 log(𝑎𝑖 + 1) + log(η)   (2)   181 

where the only new term is η, representing the proportion of reads observed from a given 182 

sampling run. Note that in this formulation η is a single value shared across all species in a 183 

sample and serves to scale the number of amplicons observed. Additionally, we can rewrite the 184 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501788doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

number of DNA copies in terms of the proportional number of larvae counts, 𝛽𝑖 , such that log(𝛽𝑖) 185 

= log(𝑐𝑖) − log(∑ 𝑐𝑖𝑖 ). Note that the second term in this equation, log(∑ 𝑐𝑖𝑖 ), is a sum of the 186 

counts across all species, and so is a single shared value for all species. As such it can be 187 

integrated into the value η that scales the overall abundance for each species i, 188 

log (𝐴𝑖) = log(β𝑖) + 𝑁𝑃𝐶𝑅 log(𝑎𝑖 + 1) + log(η)            (3)  189 

This equation is appealing because it provides a process-oriented description of the 190 

biology of interest (the β parameters), a term for how PCR modifies our amplicon sequence 191 

count observation of the true abundance ( 𝑁𝑃𝐶𝑅 log(𝑎𝑖 + 1)), and a term for how subsampling of 192 

DNA reads will adjust the number of amplicons observed (log(η)). This third term also links all 193 

of the single-species components to produce a multi-species model. It is important to note that 194 

while both Equations 2 and 3 use the term η, the interpretation and plausible range of this 195 

parameter are distinct in the two equations. In Equation 2, 0 < η ≤ 1, while in Equation 3 η is not 196 

constrained to be less than 1 (η > 0). 197 

In practice, PCR and subsampling are not deterministic but random processes (Egozcue 198 

et al., 2020). Furthermore, we are rarely interested in results from a single sample but rather 199 

multiple samples collected across sites j and times t. In addition, we let λijtk be the expected 200 

number of amplicons observed, with k indexing unique PCR reactions to account for the fact that 201 

there may be multiple individual PCR reactions for a single collected sample, 202 

log (λ𝑖𝑗𝑡𝑘) = log(β𝑖𝑗𝑡) + 𝑁𝑃𝐶𝑅 log(𝑎𝑖 + 1) + log(η𝑗𝑡𝑘)                      (4)  203 

In this case, 𝑎𝑖 is assumed to be constant for each species among all sites, times, and PCR 204 

reactions (this assumption is strongly supported by McLaren et al., 2019; Shelton et al., 2022; 205 

Silverman et al., 2021). We incorporate stochasticity by allowing to the number of observed 206 
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 10 

amplicons to vary from the deterministic mean by specifying the observed values as following a 207 

negative binomial distribution, 208 

Y𝑖𝑗𝑡𝑘  ~ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(λ𝑖𝑗𝑡𝑘 , 𝜙)             (5)  209 

𝜙 = exp [ 𝜏0 + 𝜏1log (λ𝑖𝑗𝑡𝑘)]              (6)  210 

where the expected value and variance of Y𝑖𝑗𝑡𝑘 are 𝑬[Y𝑖𝑗𝑡𝑘] =  λ𝑖𝑗𝑡𝑘 and 𝑉𝑎𝑟[Y𝑖𝑗𝑡𝑘] =  λ𝑖𝑗𝑡𝑘 +211 

 
λ𝑖𝑗𝑡𝑘

2

𝜙
, respectively. Note that we allow for the scale parameter 𝜙 to vary with the predicted mean, 212 

such that the amount of dispersion in the negative binomial shifts to be large when λ is small and 213 

to decrease as λ increases. 214 

However, by itself, this model has substantial identifiability problems; in the absence of 215 

additional information, it is not possible to estimate the β and a parameters from metabarcoding 216 

data alone. Including morphological count data enables us to estimate the confounded parameters 217 

by bounding additional information about the underlying species abundances. Below we discuss 218 

how these two datasets are integrated (see Shelton et al. (2022) for the application of mock 219 

community data to similarly calibrate metabarcoding data). 220 

For each sampled station, we have two independent sets of observed data: 1) counts of 221 

larval/juvenile fishes for each taxon from the formaldehyde jars (Z𝑖𝑗𝑡; indexes as above) and 2) 222 

counts of amplicons for each taxon from ethanol jars (Y𝑖𝑗𝑡𝑘). These observed data arise from a 223 

common (but unobserved) biomass for each species at each station-year combination (γ𝑖𝑗𝑡 a 224 

latent (unobserved) variable). 225 

We assume that the data are counts for each species in each sample, Z𝑖𝑗𝑡, derived from 226 

the true density of each species γ𝑖𝑗𝑡, the fraction of total specimens counted in each vial, P𝑗𝑡, and 227 
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the volume of water filtered for that station relative to a standard volume, V𝑗𝑡; V𝑗𝑡 ≈ 1 for most 228 

samples, V𝑗𝑡 < 1 indicates a smaller volume of water was sampled. 229 

Z𝑖𝑗𝑡 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(θ𝑖𝑗𝑡)                                  (7)  230 

log(θ𝑖𝑗𝑡) = log(𝛾𝑖𝑗𝑡) +  log (P𝑗𝑡) + log (V𝑗𝑡)             (8)  231 

We consider β𝑖𝑗𝑡 to be the true proportion of biomass at a given station-year for each taxon i, 232 

β𝑖 =
𝛾𝑖𝑗𝑡

∑ 𝛾𝑖𝑗𝑡𝑖
. 233 

We note that microscopy counts were modeled as Poisson-distributed given their 234 

relatively small absolute values and low variance (Thompson, McClatchie, et al., 2017), and 235 

amplicon sequence data were modeled using a Negative Binomial distribution given their 236 

relatively high absolute values and high variability among replicates (Figure 1). These statistical 237 

distributions are commonly used in models of count and amplicon data, respectively (Chambert 238 

et al., 2018; Meyer-Gutbrod et al., 2021; X. Ren & Kuan, 2020).  239 

To combine our information from the manual counts and metabarcoding, we need to 240 

recognize that our observations (Y𝑖𝑗𝑡𝑘 and Z𝑖𝑗𝑡) are linked together by a common variable (𝛾𝑖𝑗𝑡) 241 

and thus we can model them jointly (Hobbs & Hooten, 2015). We represent the amplification 242 

process using Equations 5 and 6 above (amplicons were sequenced in triplicate reactions for each 243 

jar). The manual counts are modeled as in Equations 7 and 8. 244 

Our model assumes the fraction of template DNA in each sample is proportional to the 245 

counts of individual species’ larvae in each paired jar (McLaren et al., 2019). Moreover, we 246 

assume that in each sample there is template DNA from species that are uncounted, 247 

unidentifiable, or otherwise unobserved (Egozcue et al., 2020). In practice, this DNA might 248 

derive from stochastic sampling between each side of the bongo net, excreted waste, stray tissue, 249 

cells, or microscopic genetic material extracted along with the visible larvae. 250 
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The above is sufficient if all of the species identified by morphological counts are 251 

identical to the species identified by the genetic methods. But this is often not the case; some 252 

larvae are not separable to species based on morphology and some species are not separable to 253 

species based on a single genetic primer. Furthermore, some species do not amplify at all in the 254 

PCR (𝑎𝑖≈ 0) or else are undetected, being swamped out by the far-more-common amplicons of 255 

other species. To accommodate non-overlapping sets of species among sampling methods we 256 

introduce a new variable, 𝛾𝑀𝑖𝑗𝑡 , which specifies the true (M is for “main”) density of species i at 257 

site j and time t. We assume that there is a mapping between this main density and the density 258 

observed by each sampling method. Specifically, we assume the species in the main list maps 259 

uniquely on to no more than one taxonomic group in each observation method, but multiple main 260 

species can map onto a single group for each observation method. For example, if the 261 

observation of larval counts identified a specimen as Sebastes sp., we assume this may map onto 262 

one or more specific taxa (e.g., Sebastes paucispinis) in the main list, but conversely, Sebastes 263 

paucispinis on the main list may not map to more than one entity identified by each observation 264 

method. 265 

We can construct a mapping matrix, 𝐌𝑀𝑆, that transforms the species in the main list, 𝛾𝑀 266 

(a vector of length 𝐼𝑀 , the number of true species in the sample) into the species grouping 267 

observed by sampling method S, 𝛾𝑆 (a vector of length 𝐼𝑆, the number of groups observed by 268 

method S). We drop the j and t subscript because this mapping does not depend on the identity of 269 

the community being sampled. Then, 270 

𝛾𝑆  ~ 𝐌𝑀𝑆  𝛾𝑀                             (9)  271 

𝐌𝑀𝑆 is a 𝐼𝑆 by 𝐼𝑀 matrix. 272 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501788doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

 For example, if there are four species in the community and method only observes three 273 

groups, the matrix 𝐌𝑀𝑆 could look like this 274 

𝐌𝑀𝑆 =  [
1 0 0 
0 1 0
0 0 1

   0
   1
    0

]            (10) 275 

This might happen if species 2 and species 4 (columns 2 and 4, respectively) were from the same 276 

genus and the PCR primer from method S can only resolve those two species at the genus level. 277 

To provide a further example, take an invented community of four species with 𝛾𝑀 =278 

{1, 15, 6, 7} individuals in the community. The true community as observed through method S 279 

would be 280 

[
1

22
6

] =  [
1 0 0 
0 1 0
0 0 1

   0
   1
    0

] [

1
15
6
7

]            (11) 281 

and so 𝛾𝑆   is a linear combination of the true community. Of course, there is no requirement that 282 

elements of 𝛾𝑀 be integers, but that makes the above example easy and transparent. 283 

It is easy to incorporate this added complexity into the models in the previous section. If 284 

we assign method S to be manual counts and W to be the Mifish PCR primer, we need to 285 

construct a main list of species to define 𝛾𝑀 and build two mapping matrices, 𝐌𝑀𝑆  and 𝐌𝑀𝑊,  286 

that determine which species or species-groups are observed by each method. We can then add a 287 

subscript for each additional method and use the same form as above. For example, 288 

log(θ𝑆𝑖𝑗𝑡) = log(𝛾𝑆𝑖𝑗𝑡) +  log (P𝑆𝑗𝑡) + log (V𝑆𝑗𝑡)           (12)  289 

log (λ𝑊𝑖𝑗𝑡𝑘) = log(β𝑊𝑖𝑗𝑡) + 𝑁𝑊,𝑃𝐶𝑅 log(𝑎𝑊𝑖 + 1) + log(η𝑊𝑗𝑡𝑘)        (13)  290 

And with additional sampling methods, we can make different mappings from the true 291 

abundance to the observations of each method. 292 
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We develop and fit the above model in a Bayesian framework using the Stan language, as 293 

implemented in RStan (Stan Development Team, 2021). All code is available as supplementary 294 

material. Table S1 provides prior distributions used in the model. 295 

We ran five MCMC chains with 1,000 warmups and 4,000 sampling iterations. We 296 

retained every other MCMC sample. We initiated each chain at randomly determined starting 297 

values. The model converged (�̂� < 1.01; Gelman–Rubin diagnostics) and had no divergent 298 

transitions. We performed standard posterior predictive checks to assess model fit. 299 

We highlight that the above modeling framework allows us to take advantage of the 300 

strengths of metabarcoding sampling, namely higher sensitivity and taxonomic resolution, as 301 

well as the strengths of morphological counts, namely quantitative abundance estimates. 302 

Together, the application of the integrated model provides a higher resolution characterization of 303 

ichthyoplankton assemblages by providing abundance estimates for a broader diversity of 304 

species than observed by morphological counts alone. 305 

Data Analysis 306 

After model estimation, we calculated mean abundance estimates (larvae counts per standardized 307 

volume towed) per species per station per year. Mean abundance estimates were used as our 308 

response variable in the following analyses. The resulting estimates capture major and 309 

sometimes highly unexpected changes to the fish assemblages during and after the 2014–2016 310 

Pacific marine heatwave, the warmest 3-year period in the North Pacific in over 100 years of 311 

recorded history driven by a massive influx of warm, saline water from the central Pacific (Jacox 312 

et al., 2018). Given that similar ocean conditions persisted well beyond 2019 (A. S. Ren & 313 

Rudnick, 2021), we compare ichthyoplankton assemblages before and after the marine heatwave. 314 

A suite of environmental variables – not just sea surface temperature (SST) – changed 315 
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dramatically during the event. Upwelling strength and location, dissolved oxygen, salinity, and 316 

other environmental covariates shifted during the climate-change influenced marine heatwave 317 

(Gentemann et al., 2017; Morgan et al., 2019; A. S. Ren & Rudnick, 2021; Schroeder et al., 318 

2019). Here we use SST as a proxy for the onset and continuation of this suite of changes, 319 

documenting the resulting shift in community assemblage without attempting to identify any 320 

singular mechanistic driver responsible for this shift.  321 

We visualized anchovy and sardine – key taxa of management interest – abundance over 322 

time by calculating the mean log (abundance) of each species per station per year. We then 323 

plotted the mean log (abundance) of each of the four stations while error bars represent the 95% 324 

confidence intervals (CI) observed for a given species at a given station in that year.  325 

To evaluate the effect of the marine heatwave on CCLME fishes, we compared estimated 326 

species abundances before the marine heatwave (1996–2013) to that estimated both during and 327 

after the marine heatwave for each station (2014–2019). We first calculated the mean abundance 328 

for each species at each station for each model run. We then subtracted the before the marine 329 

heatwave species-site abundance means from the after the marine heatwave species-site 330 

abundance means for each model run to evaluate changes in marine heatwave abundance per 331 

species per station per model run. We then calculated a 95% CI of change in marine heatwave 332 

abundance per species to identify which species were significantly different before vs. during 333 

and after the marine heatwave at each station. We further plotted the change in marine heatwave 334 

abundance for each “species grouping” by habitat associations derived from previous CalCOFI 335 

research (See Supplement 1 methods)(Hsieh et al., 2005). 336 

All data and code to conduct analyses and generate all figures are available on GitHub 337 

(https://github.com/zjgold/CalCOFI_eDNA) and associated Google Drive link 338 
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(https://drive.google.com/drive/folders/12cU9mY_CWoro-339 

x6Hgh_pgv_66zZEzm1h?usp=sharing) [will be replaced with a Dryad repository upon 340 

acceptance].  341 

 342 

Results 343 

eDNA metabarcoding of ethanol preservative with MiFish 12S (Miya et al., 2015) generated a 344 

total of 59.9 million sequence reads across 84 jars representing 90 unique DNA extractions and 345 

262 unique PCR technical replicates. All sequence data were processed using the Anacapa 346 

Toolkit (Curd et al., 2019). After quality control, sequence-variant (ASV) dereplication, and 347 

decontamination processes (Curd et al., 2019; Gallego et al., 2020; Gold et al., 2021), we 348 

retained a total of 54.5 million reads (technical replicate range: 36,050–1.2 million reads) (See 349 

Supplement 1 Methods). From these data, we classified 130 unique taxa including 103 species-350 

level assignments (79%), 15 genus-level assignments (12%), 11 family-level assignments 351 

(8.5%), and one class-level assignment. Through these molecular taxonomic assignments, we 352 

identified two distinct morphologically indistinguishable lineages (ASVs) of the Northern 353 

Lanternfish (Stennobrachius leucopsarus). The two lanternfish lineages exhibited dramatically 354 

different ecological patterns across the samples and were therefore treated separately.  355 

 Independent microscopy-count data from paired, matching formalin-preserved samples 356 

consisted of 9,610 larvae sorted across 84 jars. From these data, we classified a total of 92 unique 357 

taxa including 76 species-level assignments (83%) and 16 genus-level assignments (17%). 358 

For our integrated Bayesian model, we focused on the 56 species that had sufficient 359 

representation across the metabarcoding data set to achieve model convergence (observed in >10 360 

technical PCR replicates) and thus provided reliable quantitative estimates (Figure 1). Model fits 361 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501788doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

yielded station-, species-, and year-specific larval abundances for 56 fish species spanning a 23-362 

year period. 363 

Quantitative Abundance Estimates 364 

As expected, given the compositional nature of the metabarcoding dataset, we observed a poor 365 

correlation between (uncorrected) eDNA metabarcoding derived amplicon abundance and 366 

morphological larvae counts (Figures 1a & S2). In contrast, model output predicted larval 367 

abundance with high accuracy, particularly for larvae with abundant amplicon and 368 

morphological counts (Figure 1b, c).  369 

 370 

 Figure 1. Bayesian Joint Model Improves Quantitative Abundance Estimates 371 

Observed (uncorrected) eDNA metabarcoding derived sequencing reads and 372 

morphological counts do not follow a clear linear relationship (a). This non-linearity is 373 

unsurprising given that observed reads are a function of both DNA concentrations (here 374 
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assumed proportional to morphological counts) as well as species-specific amplification 375 

efficiencies (here unknown). Thus, without accounting for species-specific amplification 376 

efficiencies within the compositional amplicon data set, we do not expect to observe a 377 

strong correlation between the two. Predicted mean counts (b) and sequences (c). The one-378 

to-one line is plotted in red and Pearson correlation coefficients (r) are reported. Although 379 

variance is high at low observed morphological counts and observed sequence reads, our 380 

model substantially improves quantitative estimate accuracy. Non-detections drove a large 381 

amount of the observed variance, particularly at low observed morphological counts 382 

(n<10) and sequences (n<3,176). 383 

  384 

Displacement of Target Fish Species and Tropicalization of Fish Assemblages Associated with 385 

the Marine Heatwave 386 

Marine ichthyoplankton assemblages transformed during the 2014–2016 marine heatwave where 387 

southern, mesopelagic species increased while several temperate species of ecological and 388 

economic importance declined. Such synchronous changes in the marine ichthyoplankton 389 

assemblages occurred during the marine heatwave despite the hundreds of kilometers between 390 

stations and unique biogeographic characteristics associated with each sampled geographic 391 

location (see Supplement 1 results). For example, the mesopelagic Mexican Lampfish 392 

(Triphoturus mexicanus) was at peak abundance during the marine heatwave and extended its 393 

typical range both poleward and into coastal shelf waters by hundreds of kilometers (Figure 2, 394 

S3-13).  395 

Ichthyoplankton assemblages shifted over time throughout the study region (Figures 2). 396 

Subtropical, mesopelagic species uniformly increased during and after the marine heatwave, 397 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.27.501788doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.27.501788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

while many coastal species typically seen in the region tended to decrease (Figure 2, S3-13). In 398 

particular, the abundances of northern, mesopelagic species and fisheries targets such as Pacific 399 

Sardine (Sardinops sagax) and North Pacific Hake (Merluccius productus) were significantly 400 

lower after the onset of the marine heatwave and tended not to co-occur with warm associated 401 

southern, mesopelagic taxa (Figure 2). 402 
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 403 

Figure 2. Novel Marine Heatwave Assemblages 404 

Shifts in species abundances with the onset of the marine heatwave (1996–2013 vs. 405 

2014–2019). Synchronous increases in southern mesopelagic species and Northern 406 

Anchovy (Engraulis mordax)were observed across all stations. Stations are in rows, 407 
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species in columns, and the change in abundance between the two ecological phases is 408 

shown as the response variable. Fisheries targets including Pacific Sardine (Sardinops 409 

sagax) and North Pacific Hake (Merluccius productus), as well as many other benthic 410 

and coastal species, had concurrent negative associations. Significant differences during 411 

and after the marine heatwave are marked with + or -. 412 

 413 

Biomass Changes in Forage Fishes 414 

We observed dramatic changes in anchovy and sardine abundance (larvae counts per 415 

standardized volume towed) across the 23-year time series (Figure 3). In particular, during and 416 

after the marine heatwave we observed high anchovy abundance (max: 3,548, mean ± sd: 397 ± 417 

834), more than a five-fold increase in abundance than before the onset of the marine heatwave 418 

(62 ± 192). This observation was particularly dramatic given the low abundances immediately 419 

preceding the marine heatwave (1 ± 1.4). In contrast, on average, sardine abundances remained 420 

low before (31 ± 65) and during the marine heatwave (8 ± 19). However, there were regional 421 

variations in this pattern with relatively high sardine abundances at the San Diego Offshore 422 

station from 2005-2008 (119 ± 72) and an increase in Sardine abundance in nearshore coastal 423 

waters at the San Nicholas station after the marine heatwave (50 ± 6).   424 
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 425 
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Figure 3. Synchronous Increase in Anchovy Abundance During and After Marine 426 

Heatwave  427 

Posterior estimates for larval fish abundances (larvae counts per standardized volume 428 

towed) over time at each of the four sampled stations. Joint modeling of metabarcoding 429 

and morphological counts reconstructed increases in Northern Anchovy (Engraulis 430 

mordax) [blue] during the recent Pacific Marine Heatwave and low spawning of Pacific 431 

Sardine (Sardinops sagax) [red] over the past decade (points are means and error bars are 432 

95% credible intervals; the shaded region is during and after the marine heatwave). SST 433 

is plotted above the Northern Anchovy and Pacific Sardine abundances for reference. 434 

 435 

Discussion 436 

Application of eDNA metabarcoding on preserved ichthyoplankton samples reveals marked 437 

shifts in California Current Large Marine Ecosystem ichthyoplankton communities over a period 438 

of 23 years, including the tropicalization of these communities during the 2014–2016 marine 439 

heatwave. Although raw sequence abundance correlated poorly to manual ichthyoplankton 440 

counts, the application of a joint Bayesian hierarchical model (Shelton et al., 2022) resulted in a 441 

strong correlation between metabarcoding and ichthyoplankton counts, particularly for abundant 442 

species. Combined, this study demonstrates the feasibility of eDNA metabarcoding from ethanol 443 

used to preserve bulk samples, and that this data can provide quantitative abundance estimates 444 

that preclude the need for manual counting of ichthyoplankton, creating novel research 445 

opportunities from preserved sample collections (Gallo et al. 2019). Ultimately, our approach to 446 

studying historical fluctuations in ichthyoplankton assemblages reveals climate-associated 447 
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biological changes in the CCLME and suggests ways in which these changes could alter the 448 

function and socio-economic benefits derived from marine ecosystems. 449 

Displacement of Target Fish Species and Tropicalization of Fish Assemblages Associated with 450 

the Marine Heatwave 451 

The tropicalization of ichthyoplankton communities during the 2014–16 marine heat wave is 452 

consistent with multiple recent studies that demonstrate the tropicalization of terrestrial and 453 

marine ecosystems in response to climate change (Chaudhary et al., 2021; Vergés et al., 2016). 454 

These shifts can induce novel species interactions, catalyzing changes in ecosystem function 455 

(Frölicher & Laufkötter, 2018; Morgan et al., 2019). In the current study, we observe the 456 

combination of high abundances of both Northern Anchovy and southern mesopelagic species 457 

(Nielsen et al., 2021; Thompson, Harvey, et al., 2019)– a pattern unique to the previous >70-year 458 

CalCOFI dataset (Moser P.E. Smith, and L.E. Eber, 1987; Thompson et al., 2022a).  459 

The collapse of specific fisheries such as sardines is well-documented (Chavez et al., 460 

2003; Checkley et al., 2017). Results suggest that these and other coastal pelagic fisheries targets 461 

may continue to be scarce as environmental conditions that are similar to the 2014–2016 marine 462 

heatwave become more common (Nielsen et al., 2021; Santora et al., 2020; Thompson, Harvey, 463 

et al., 2019). Although the ecological implications of these novel assemblages are, by definition, 464 

unpredictable, our results suggest that if future assemblages resemble those seen in the marine 465 

heatwave, increases in Northern Anchovy and southern mesopelagic fishes are likely to be 466 

associated with decreases in Pacific Sardine and North Pacific Hake in the Southern CCLME 467 

(Piatt et al., 2020; Robinson et al., 2018), fundamentally changing ecosystems and fisheries 468 

relative to the recent past (Thompson et al., 2022a).  469 

 470 
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Biomass Changes in Forage Fishes 471 

Sardine and anchovy fluctuations have been a major focus of fisheries research since the 1950s 472 

because of their commercial value and/or they are prey for other high-value fishery species and 473 

species of management concern (Checkley et al., 2017). Our model estimates are consistent with 474 

other studies (Sydeman et al., 2020; Thompson et al., 2022a) that documented a decline in both 475 

sardines and anchovy beginning in 2005. In the wake of the marine heatwave, anchovy continued 476 

to be abundant while sardine remained low (Figure 3). Although anchovy larvae abundance was 477 

low in spring during the 2014–2016 marine heatwave, anchovy recruitment was high in the 478 

summer of 2015 (Thompson, Schroeder, et al., 2019). Anchovy mature in approximately one to 479 

two years (Parrish et al., 1986; Sydeman et al., 2020), and thus the 2015 class likely began 480 

spawning in mid-2016 (Thompson et al., 2022a), leading to high anchovy spawning stock 481 

biomass and larval abundances by 2016 and lasting into at least 2021 (Thompson et al., 2022b; 482 

Weber et al., 2021). 483 

 The rise in anchovy and continued low abundances of sardine during the marine 484 

heatwave is an ecological surprise. Correlative analyses between basin-scale environmental 485 

indices such as the Pacific Decadal Oscillation indicate that, for the latter half of the 20th century, 486 

anchovy thrived under cooler conditions and sardine under warmer conditions (Chavez et al., 487 

2003). However, our findings and others (Checkley et al., 2017; McClatchie, 2012; Nielsen et 488 

al., 2021; Thompson, Harvey, et al., 2019) suggest that the mechanisms that govern the 489 

population dynamics of these species are not a mere function of temperature, but that more 490 

complex factors drive recruitment dynamics of these species (Thompson et al., 2022a). For 491 

example, despite largely synchronous responses of fish assemblages to the marine heatwave, 492 

sardine declines were not consistent across the CCLME (Figure 3), with refugia of localized 493 
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abundance in nearshore waters potentially driven by distinct, favorable conditions (Checkley et 494 

al., 2017; Sydeman et al., 2020; Thompson et al., 2022a). 495 

Further improving our mechanistic understanding of drivers of forage fish dynamics will 496 

better inform ecological predictions in the face of extreme ocean events such as marine 497 

heatwaves, which are likely to increase in frequency and duration under climate change (Deutsch 498 

et al., 2015; Frölicher et al., 2018; Howard et al., 2020; Oliver et al., 2021). As we demonstrate, a 499 

combination of metabarcoding and visual surveys can characterize and quantify species across 500 

trophic levels  (Rose et al., 2015), and this has the potential to reveal ecological mechanisms. 501 

Here, we used metabarcoding to accurately characterize the abundance and composition of larval 502 

fishes in CalCOFI plankton samples, capturing forage fish recruitment patterns.  503 

  Several major hypotheses seeking to explain forage fish recruitment variability are 504 

underpinned by the capacity of young larvae to consume appropriate prey that facilitates faster 505 

growth (Hare, 2014). Unfortunately, accurately characterizing the larval prey field has 506 

traditionally been difficult as such prey are generally too small to be accurately sampled by nets 507 

(Robert et al., 2014). Metabarcoding of water samples from the same locations where larvae are 508 

collected, however, can characterize the larval prey field at an unprecedentedly high level of 509 

detail (James et al., 2022). In addition, metabarcoding of the stomachs of larval fishes can then 510 

identify actual prey items that were consumed by larvae. Evaluating the larval prey field and gut 511 

contents through metabarcoding will help us to finally understand the drivers of recruitment 512 

volatility in coastal pelagic and other fishes, allowing for improved prediction of forage fish 513 

population dynamics (Barbato et al., 2019; Erdozain et al., 2019; Garcia-Vazquez et al., 2021; 514 

Mariac et al., 2018; Nielsen et al., 2021; Pitz et al., 2020; Sydeman et al., 2020).  515 
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Such improvements in the characterization and prediction of forage fish abundances are 516 

critical for undersetting the ecology of this system as this unexpected rise in anchovy during and 517 

after the 2014- marine heatwave resonated throughout the CCLME (Santora et al., 2020). For 518 

example, California sea lion pups grew at anomalously high rates after their mothers consumed 519 

copious anchovy forage and produced ample milk (Robinson et al., 2018). High rates of almost 520 

exclusively anchovy consumption also seemingly induced thiamine deficiency in adult salmon 521 

resulting in poor condition of recruits (Thalmann et al., 2020). Birds capable of feeding on 522 

anchovy thrived (Thompson, Harvey, et al., 2019) while those unable to consume anchovy 523 

perished (Piatt et al., 2020). Given that conditions comparable to the 2014–2016 marine 524 

heatwave are predicted to be more common in the CCLME in the future (Oliver et al., 2018), our 525 

results suggest that continued biological responses to both anchovy-dominated forage-fish 526 

assemblages and marine heatwave-associated ocean warming conditions are likely to be without 527 

modern analog (Thompson et al., 2022a). 528 

Novel Insights from Legacy Collections 529 

Our novel approach of metabarcoding eDNA from ethanol used as a preservative combined with 530 

joint Bayesian hierarchical modeling provides quantitative estimates by non-destructively 531 

sampling legacy collections via metabarcoding, and at the same time provides a mechanistic 532 

framework for determining absolute abundance estimates from compositional amplicon 533 

sequencing data (Gloor et al., 2017; McLaren et al., 2019; Silverman et al., 2021). Importantly, 534 

the application of metabarcoding approaches allowed us to differentiate variants and species that 535 

were not morphologically identifiable in the ichthyoplankton (Thompson, Chen, et al., 2017). 536 

For example, metabarcoding identified unique variants of the Northern Lampfish 537 

(Stennobrachius leucopsarus) that are morphologically indistinguishable and combined as a 538 
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complex exhibited little change before and after the marine heatwave. However, these two ASVs 539 

had markedly different responses to the marine heatwave with one variant largely disappearing 540 

after the marine heatwave onset (Figure 2). Thus, by illuminating such unseen variation, 541 

molecular methods reveal ecological dynamics otherwise hidden by shared larval morphology. 542 

Beyond improved taxonomic resolution, the key advantage of our mechanistic framework 543 

is the ability to derive quantitative estimates from metabarcoding data. Determining abundance 544 

from eDNA metabarcoding has been challenging, with mixed results (Fonseca, 2018; 545 

Lacoursière-Roussel, Côté, et al., 2016; Yates et al., 2019). A distinct feature of our eDNA 546 

sampling is that each larva in a bulk collection has experienced the same conditions in a constant 547 

volume of ethanol. As such, these samples may be more amenable to estimating abundance 548 

accurately than eDNA derived from water samples which are impacted by a suite of additional 549 

challenges (Barnes & Turner, 2016; Harrison et al., 2019; Shelton et al., 2022).  Furthermore, a 550 

unique aspect of this study is that we had morphological counts to ground truth compositional 551 

metabarcoding data. However, our framework (elaborated in Shelton et al. 2022) suggests that 552 

any estimate of abundance (e.g., qPCR) or amplification efficiency (e.g., derived from mock 553 

communities) can achieve similar results (McLaren et al., 2019; Silverman et al., 2021). Follow-554 

up work to this study will further this framework and the application of mock communities to 555 

better characterize the mechanisms driving high variance at low larvae abundance, particularly 556 

the patterns of non-detections across technical replicates. However, regardless of the source of 557 

observed variance, we demonstrate our framework and applied model successfully allow for 558 

quantitative estimates of abundance from metabarcoding data (Figure 1). 559 

Unlocking such quantitative metabarcoding approaches expands the potential for linking 560 

ecological assemblages to environmental processes beyond just presence-absence analyses 561 
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(Lacoursière-Roussel et al., 2016; Stoeckle et al., 2021; Yates et al., 2019). Such quantitative 562 

approaches may prove critical in modeling and predicting future ecosystem change, although 563 

directly linking assemblage dynamic responses to climate-driven forces remains inherently 564 

challenging. While the CalCOFI samples are specific to ichthyoplankton from the CCLME, bulk 565 

collection of community samples is commonly used to survey plankton, insects, pollen, gut 566 

contents, and microbiomes, among many other targets (Deiner et al., 2017). As such, here we 567 

provide broadly applicable methodology with which to efficiently understand modern and 568 

historical changes in ecological communities. 569 
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