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Abstract 1 

An accurate assessment of TP53 status is critical for cancer genomic medicine. Tumors with non-2 

mutational p53 inactivations that failed to identify from DNA sequencing are largely misclassified as 3 

p53-normal, which leads to inaccurate prognosis and downstream association analyses. Here we built 4 

the support vector machine (SVM) models to systematically evaluate p53’s functional status in 5 

multiple TCGA cancer cohorts. Cross-validation using independent samples demonstrated the 6 

excellent performance of the SVM models with mean AUC = 0.9845, precision = 0.9844 and recall = 7 

0.9825. Our model revealed that most (87–100%) wild-type TP53 (TP53WT) tumors are loss-of-8 

function. Further analyses revealed that these genetically normal but functionally impaired tumors 9 

(TP53WT-pLoF) exhibit similar genomic characteristics as those p53 mutants with significantly 10 

increased tumor mutation burden, copy number variation burden, aneuploidy score, and hypoxia score. 11 

Clinically, compared to p53-normal tumors, patients with TP53WT-pLoF tumors have significantly 12 

shortened overall survival and disease-free survival and exhibited increased sensitivity to platinum-13 

based chemotherapy and radiation therapy. The increased sensitivity to radiation therapy is further 14 

validated in glioblastoma patient-derived xenografts models.  15 

  16 
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Introduction 1 

Genomic variants identified from tumor DNA sequencing not only improved our understanding of 2 

cancer genetics (Alexandrov et al., 2013; Stephens et al., 2009; Vogelstein et al., 2013), but also 3 

revolutionized health care by providing diagnoses, informing prognoses, and guiding precision 4 

medicine. For example, breast cancers with loss-of-function mutations in BRCA1/BRCA2 are sensitive 5 

to PARP inhibitors (Bryant et al., 2005; Farmer et al., 2005). Gain or loss of gene function due to 6 

genetic alterations is one of the main drivers of cancer development, and the identification of causal 7 

and targetable genetic aberrations remains a high priority in cancer genomic studies. However, genetic 8 

alteration is not the only mechanism to activate or disrupt gene function; alternative mechanisms 9 

besides direct genetic alterations include DNA methylation and RNA methylation (Agirre et al., 2003; 10 

Glodzik et al., 2020; Tian, Lai, Yu, Li, & Chen, 2020), histone methylation and acetylation (Zhang & 11 

Reinberg, 2001), chromatin topology and nucleosome positioning (Gorkin, Leung, & Ren, 2014; Jiang 12 

& Pugh, 2009), RNA editing (Ruan et al., 2022), RNA splicing (Surget, Khoury, & Bourdon, 2013), 13 

activation/inactivation of upstream regulators (Schoenfelder & Fraser, 2019), protein-protein 14 

interaction (Momand, Zambetti, Olson, George, & Levine, 1992; Teufel, Bycroft, & Fersht, 2009), 15 

and post-translational modifications such as phosphorylation, acetylation, ubiquitination, and 16 

SUMOylation (Ashcroft, Kubbutat, & Vousden, 1999; Igelmann, Neubauer, & Ferbeyre, 2019; Karve 17 

& Cheema, 2011). These molecular mechanisms are prevalent but remain a formidable challenge to 18 

characterize due to heterogeneous causes and a significant impediment for molecular diagnostics, 19 

clinical management, and therapeutic selection for cancer patients. 20 

 21 

Tumor suppressor p53 (encoded by gene TP53) is a transcription factor that binds to its consensus 22 

DNA element and regulates downstream transcriptional programs, and thereby plays critical roles in 23 

preventing tumorigenesis and tumor progression by inducing cell cycle arrest, cell death (apoptosis, 24 

ferroptosis, necrosis, and autophagy), senescence, and DNA damage repair (Liu & Gu, 2022; 25 
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Mantovani, Collavin, & Del Sal, 2019; Vousden & Lane, 2007). TP53 is one of the most extensively 1 

studied genes, and its transcriptional targets have been well characterized, including many that have 2 

been experimentally validated (Fischer, 2017). Meanwhile, it stands out as the most commonly 3 

mutated tumor suppressor gene that has been genetically inactivated in 20 cancer types (Jia & Zhao, 4 

2019), and the somatic mutation frequencies are greater than 50% in ovarian, esophageal, pancreatic, 5 

lung, colorectal, uterine, head and neck, oral (gingivobuccal), soft tissue (leiomyosarcoma), gastric 6 

and biliary tract cancers (ICGC: https://dcc.icgc.org/genes/ENSG00000141510/mutations). TP53 has 7 

become a promising therapeutic target for human cancers. It is found that the restoration of p53 8 

function in established tumors causes tumor regression in vivo, which represents a new and promising 9 

therapeutic approach (Martins, Brown-Swigart, & Evan, 2006; Ventura et al., 2007). p53 activities 10 

have been frequently implicated in chemo- and radiation therapy (Bertheau et al., 2002; Bertheau et 11 

al., 2007; Concin et al., 2000; Lowe et al., 1994; Skinner et al., 2012; Tchelebi, Ashamalla, & Graves, 12 

2014), and p53 dysfunction is also associated with immunosuppression and immune evasion (Cortez 13 

et al., 2016; Guo, Yu, Xiao, Celis, & Cui, 2017; Maddalena et al., 2021). Therefore, an accurate 14 

assessment of p53 functional status is critical for prognosis and personalized medicine. 15 

 16 

The p53 protein is a potent roadblock to tumor development, therefore, it is generally considered that 17 

p53 function is inactivated even in genetically TP53 wild-type tumors. Such concept is supported by 18 

sporadic studies (Bosari et al., 1995; Isaacs, Hardman, Carman, Barrett, & Weissman, 1998; Moll, 19 

LaQuaglia, Benard, & Riou, 1995; Moll, Riou, & Levine, 1992; Tominaga et al., 1993),  but has not 20 

been evaluated systematically in large cohorts of clinical samples. In this study, we aim to predict p53 21 

functional status from the expression profile of its transcriptional targets, particularly for those tumors 22 

with wild-type TP53. To this end, we analyzed the whole-exome sequencing (WES) and RNA-seq 23 

data generated from TCGA breast cancer (BRCA), lung cancer (LUNG), esophagus cancer (ESCA), 24 

and colon cancer (COAD) cohorts. We chose these four cancer types because of abundant cases of 25 
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TP53 truncating mutations that can be considered as the ground truth of loss of function (LoF) and 1 

used to train the SVM models.  2 

 3 

We calculated the composite expression of curated p53 targets as a surrogate measure of p53 activity, 4 

and trained SVM models to predict p53’s status. Specifically, we first cataloged cancer type-specific 5 

TP53 targets through a systematic literature review and performed meta-analyses of p53 ChIP-seq and 6 

RNA-seq data. Then, we calculated the composite expression score (CES) from p53 activated and 7 

repressed genes using algorithms including GSVA (gene set variation analysis)(Hanzelmann, Castelo, 8 

& Guinney, 2013), ssGSEA (single sample gene set enrichment analysis) (Barbie et al., 2009), 9 

combined Z-score (E. Lee, Chuang, Kim, Ideker, & Lee, 2008; Tomfohr, Lu, & Kepler, 2005), and the 10 

first principal component of PCA (principal component analysis). Finally, we trained SVM models 11 

using CES scores from non-cancerous normal tissues (designated as the “NT” group in which p53 12 

function is assumed to be normal) as well as tumor samples harboring TP53 truncating mutations 13 

(designated as the “TM” group in which p53’s tumor suppressor function is assumed to be lost). Ten-14 

fold cross-validation demonstrated the excellent performance of our SVM models in discriminating 15 

NT and TM samples. 16 

 17 

We re-evaluated p53 function status of TCGA tumors with the SVM models and compared genome 18 

and chromosome instability measurements to examine the prediction results. We found that almost all 19 

missense mutation samples (termed the “MM” group hereafter) were predicted to be LoF as expected. 20 

Most TP53 wild-type samples (termed the “WT” group hereafter) were also predicted to be LoF 21 

(termed TP53WT-pLoF), suggesting the functional p53 deficiency despite genetic intactness. Further 22 

analyses suggested these TP53WT-pLoF tumors manifest distinctive genomic characteristics compared 23 

to other TP53WT samples that are predicted to be normal (termed TP53WT-pN). TP53WT-pLoF tumor 24 

genomes have dramatically increased tumor mutation burden (TMB), copy number variation burden, 25 
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aneuploidy score, and hypoxia score, consistent with p53’s function as a DNA damage repair regulator 1 

and the “guardian of the genome”. 2 

 3 

Clinically, TP53WT-pLoF patients have significantly shortened overall or disease-free survival 4 

compared to TP53WT-pN patients. Also, our data demonstrate that TP53WT-pLoF tumors exhibited 5 

significantly increased sensitivities to radio-and chemotherapy, providing useful information for 6 

personalized medicine. The increased sensitivity of TP53WT-pLoF tumors to radiation therapy is 7 

further confirmed by the glioblastoma patient derived xenografts models (PDX). 8 

Results 9 

Identification of p53 target genes 10 

Thousands of transcriptional targets of p53 have been reported (Fischer, 2017). Through systematic 11 

literature review, meta-analyses of the 32 p53 ChIP-seq datasets curated by the ReMap 2020 database 12 

(Cheneby et al., 2020), and the RNA-seq data of 54 tissues generated from the GTEx project, we 13 

identified 147 high-confidence transcriptional targets of p53 (Figure 1 a). These 147 genes were 14 

expressed across different tissues and showed p53 binding to their promoters (Supplementary Table 15 

1). To further confirm these p53 target genes, we reanalyzed RNA-seq and ChIP-seq data prior to and 16 

after p53 activation in MCF-7 breast cancer cells harboring the wild-type TP53. Expectedly, there was 17 

no or very weak p53 binding at the promoters of p53 target genes (such as ATF3, BTG2) before p53 18 

was activated by gamma irradiation, while prominent p53 bindings were observed, and the expression 19 

of these targets was consistently increased after p53 activation (Hafner et al., 2017) (Supplementary 20 

Figure 1).  21 

 22 

p53 regulated transcriptional programs vary by cell type (Bouvard et al., 2000; Burns, Bernhard, & El-23 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.28.501874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.28.501874
http://creativecommons.org/licenses/by/4.0/


7 
 

Deiry, 2001; Karsli Uzunbas, Ahmed, & Sammons, 2019). To define cancer-specific p53 targets, we 1 

performed gene expression analyses between NT and TM groups (samples assigned to the testing set 2 

were excluded) using TCGA RNA-seq data and overlapped the identified differentially expressed 3 

genes (DEGs) with the previously selected 147 genes (Figure 1 a).  We selected 47, 55, 36, and 50 4 

p53 targets for BRCA, LUNG, ESCA, and COAD, respectively. 16 genes (ABCB1, ANLN, BIRC5, 5 

CCNB1, CCNB2, CDC20, CDC25C, CDK1, CKS2, ECT2, FAM13C, NEK2, PCNA, PLK1, PMAIP1, 6 

PRC1) were shared by all four cancer types.  As p53 core targets, these 16 genes are significantly 7 

enriched in cell cycle control and DNA damage response pathways (Supplementary Figure 2).   8 

Composite expression of p53 target genes 9 

We interrogated the expression profiles of p53 target genes in four groups, including NT, WT, MM 10 

and TM. As expected, p53-activated and p53-repressed genes exhibited the opposite trends; p53-11 

activated genes were significantly decreased in the TM group, whereas p53-repressed genes were 12 

significantly increased in the TM group, consistent with the p53 LoF status in this group (Figure 1 b-13 

d). p53 target gene expression patterns were similar between the MM and TM groups (Figure 1 b-d), 14 

suggesting impaired p53 function in the MM samples, and that missense/in-frame mutations and 15 

truncating mutations seem to have similar impact on p53’s cellular activity. This is consistent with the 16 

fact that most missense mutations were located within the DNA binding domain, disrupting the ability 17 

of p53 to bind to DNA and transactivate its downstream targets (Kato et al., 2003). 18 

 19 

In the LUNG and BRCA cohorts, the WT group exhibited an intermediate state between the NT and 20 

TM groups, which suggests that p53 function might be compromised in majority of these samples, 21 

despite their intact DNA sequences (Figure 1 b-c). In the COAD cohort, the expression profile of the 22 

WT group was virtually indistinguishable from those of the mutant groups (MM + TM) (Figure 1 d). 23 

Collectively, these data indicated p53 lost its tumor suppressor function in TP53WT samples.  24 
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Training and evaluating SVM model based on the expression of p53 targets 1 

We hypothesized that both mutational and non-mutational p53 inactivation could be predicted from 2 

the altered expression of its transcriptional targets. Toward this end, we calculated the composite 3 

expression score (CES) of p53 target genes using four algorithms, including GSVA (Hanzelmann et 4 

al., 2013), ssGSEA (Barbie et al., 2009), Z-score (E. Lee et al., 2008; Tomfohr et al., 2005), and PCA 5 

(Supplementary Table 2). Compared to the expression of individual genes, CES not only provides a 6 

combined and stable measure of p53 activity but also reduces the dimensionality of the expression data 7 

and mitigates potential overfitting of the SVM model. 8 

       9 

Using LUNG as an example, we observed significant inverse correlations between CES scores 10 

calculated from p53-activated and p53-repressed genes; the Pearson’s correlation coefficients were 11 

0.996, -0.998, and -0.749 for GSVA, ssGSEA, and combined Z-score, respectively (Supplementary 12 

Figure 3 a-c). In addition, there were significant positive correlations (Pearson’s correlation 13 

coefficients ranged from 0.874 to 0.996) among CES scores calculated by different algorithms, 14 

indicating high concordance of these algorithms (Supplementary Figure 3 d-i). When comparing the 15 

CES scores across the NT, WT, MM, and TM groups, we found CES scores of the NT samples were 16 

closely congregated in a narrow range. In contrast, CES scores calculated from the tumor samples 17 

(including WT, MM, and TM groups) showed a higher degree of dispersion, suggesting the increased 18 

heterogeneity of p53 activity in tumor samples (Supplementary Figure 4). Consistent with the gene-19 

level expression data (Figure 1 b), CES scores of WT samples were intermediate between those of NT 20 

and TM, and the CES scores of MM samples resembled those of TM samples (Figure 2 a-j). These 21 

results again suggest that p53 function is compromised in most WT samples.  22 

 23 

Next, we trained SVM models using CES scores from the NT group (assuming p53 is functionally 24 

normal) and TM group (assuming p53 is LoF) separately for the four TCGA cancer types, including 25 
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LUNG, BRCA, COAD, and ESCA. Ten-fold cross-validation demonstrated the excellent performance 1 

of these SVM models. As exemplified by LUNG cohort, the mean precision, recall, F1-score, and 2 

AUROC are 0.988 ± 0.013, 0.986 ± 0.02, 0.987 ± 0.016, and 0.986 ± 0.02, respectively (Figure 2 k). 3 

Our SVM model achieved a similar performance for the BRCA cohort (Supplementary Table 3). The 4 

smaller cohort sizes and particularly the limited number of truncating mutation cases in other TCGA 5 

cancer types discouraged us from training cancer-specific SVM models. Instead, we compiled a pan-6 

cancer cohort (n = 5160) consisting of 9 cancer types with high TP53 mutation rates (Supplementary 7 

Figure 5), including BLCA, BRCA, COAD, ESCA, HNSC, LUNG, LIHC, STAD, and UCES. Using 8 

the same procedures, we selected 27 shared p53 repressed genes and 32 shared p53 activated genes for 9 

this pan-cancer cohort (Supplementary Figure 5 a and b), calculated CES scores, and trained an 10 

SVM classifier using the pooled NT (n = 453) and TM (n = 882) samples (Supplementary Figure 5 11 

c and d). Despite the intrinsic heterogeneity of different cancer types, our SVM model demonstrated 12 

outstanding performance with high precision (0.957 ± 0.093), recall (0.971 ± 0.018), macro-averaged 13 

F1-score (0.942 ± 0.080), and AUROC (0.988 ± 0.006) (Supplementary Figure 5 e, Supplementary 14 

Table 3).  15 

Predicting p53 status using SVM models 16 

We applied the trained SVM models to predict the p53 status of TP53WT and TP53MM tumors that had 17 

been excluded intentionally from the training and testing data. The results showed that most TP53WT 18 

samples (87%-100%) and almost all the TP53MM samples (98%-100%) were predicted to be LoF for 19 

all five cohorts, including LUNG, BRCA, COAD, ESCA, and pan-cancer (Supplementary Figure 6). 20 

For example, in the LUNG cohort, 94 % of the TP53WT samples and 100 % of TP53MM samples were 21 

predicted to be pLoF (Figure 3 a). These results suggest the prevalence of p53 inactivation regardless 22 

the TP53 genetic status, presumably by non-mutational mechanisms (Cross et al., 2011; Gogna, Madan, 23 

Kuppusamy, & Pati, 2012; Sasaki, Nie, & Maki, 2007) . 24 
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To demonstrate the prognostic value of the SVM prediction, we divided the TP53WT tumors into two 1 

subgroups including TP53WT-pLoF, which represents samples predicted to be LoF, and TP53WT-pN, 2 

which represents samples predicted to be normal. We then compared the overall survival (OS) of 3 

patients from the LUNG cohort. The 10-year OS rates for patients with TP53WT-pN (n = 20), TP53WT-4 

pLoF (n = 310), TP53MM (n = 419), and TP53TM (n = 254) lung cancers were 77.0%, 30.2%, 24.3%, 5 

16.7%, respectively (Figure 3 b). Therefore, the survival rate of lung cancer patients with TP53WT-6 

pLoF tumors was dramatically decreased by 61% compared to patients with TP53WT-pN tumors after 7 

adjusting for demographic variables including sex, age, and smoking status (P = 0.016, Cox regression). 8 

In contrast, the overall survival of patients with TP53WT-pLoF tumors showed no difference from that 9 

of patients with TP53MM or TP53TM tumors. For the BRCA cohort, 84% (71 out of 85) of the TP53WT-10 

pN tumors are classified as Luminal-A subtype, but we did not observe a significant difference in 11 

progression-free survival (PFS) of patients with these tumors. The remaining 15% (13 out of 85) of 12 

TP53WT-pN cases are normal-like breast tumors, among which the TP53WT-pLoF patients also 13 

exhibited significantly reduced prognosis compared to the TP53WT-pN group (P = 0.017, log rank test) 14 

(Supplementary Figure 7 f). Normal-like tumors were generally considered as “artifacts” of having 15 

high percentage of normal specimens or slow-growing basal-like tumors (Parker et al., 2009). Our data 16 

indicated the PFS is significantly reduced when p53 is inactivated, thus supporting the normal-like as 17 

a distinct tumor subtype rather than the normal tissue contamination. In summary, in both lung and 18 

breast (normal-like) cancers, TP53WT-pLoF tumors exhibit a significantly worse prognosis compared 19 

to the TP53WT-pN tumors.  20 

 21 

Since p53 plays a prominent role in DNA damage repair (Lane, 1992; Levine, 1997), the p53-defective 22 

cells would accumulate more DNA damages than p53 wild-type cells. To test this hypothesis, we 23 

compared genome and chromosome instability measurements, including TMB, copy number variation 24 

burden, and aneuploidy score, between the TP53WT-pLoF and TP53WT-pN groups. We found the 25 
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genome instabilities were indeed significantly increased in the TP53WT-pLoF group compared to the 1 

TP53WT-pN group, suggesting deficient DNA damage repair in TP53WT-pLoF tumors (Figure 3 c-e). 2 

Similar trends were observed in the other TCGA cohorts (Supplementary Table 4). Hypoxia is a 3 

physiological inducer of p53 (An et al., 1998), and p53 is frequently reported to decrease cell hypoxia 4 

by inhibiting HIF1A activity (Ravi et al., 2000; Sermeus & Michiels, 2011; Yamakuchi et al., 2010). 5 

Consistent with these findings, the Buffa hypoxia score (Buffa, Harris, West, & Miller, 2010) was 6 

significantly lower in the TP53WT-pN tumors compared to the TP53WT-pLoF, TP53MM and TP53TM 7 

tumors (Figure 3 f). Collectively, compared to TP53WT-pN tumors, those TP53WT-pLoF tumors 8 

resembled the p53 mutant tumors by manifesting significantly worse prognosis, increased genomic 9 

instability, and higher Buffa hypoxia score. These data not only functionally reaffirm our SVM 10 

predictions but also highlight the necessity of re-stratifying the TP53 status determined from the DNA 11 

sequencing. 12 

Increased sensitivity of TP53WT-pLoF tumors to chemo-and radiation therapy 13 

The role of mutant p53 in response to chemo-and radiation therapy remains controversial. Mutation in 14 

p53 has been linked to reduced sensitivity to chemo-and radiation therapy (Gurtner et al., 2020; 15 

Hutchinson, Mierzwa, & D'Silva, 2020; J. M. Lee & Bernstein, 1993; Lowe et al., 1994; Skinner et al., 16 

2012), while other studies showed that p53 inactivation increases tumor’s sensitivities to chemo- and 17 

radiation therapy (Bertheau et al., 2002; Bertheau et al., 2007; Concin et al., 2000). Direct comparisons 18 

of radiation or chemotherapy efficacy using TCGA samples are not possible due to the lack of clinical 19 

responsiveness data. Instead, we evaluated the chemo- and radiation sensitivity using previously 20 

published gene signatures (Supplementary Table 5) and studied the radiation therapeutic effects with 21 

preclinical animal models. Specifically, chemotherapy sensitivity of lung and breast cancer were 22 

measured by the RPS (recombination proficiency score). The RPS was positively correlated with the 23 

DNA recombination proficiency and was negatively correlated with sensitivity of platinum-based 24 
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chemotherapy, which was clinically validated in breast cancer and NSCLC patients (Pitroda et al., 1 

2014). Tumor radiation sensitivity of breast cancers were measured by the RSS (radiation sensitivity 2 

signature) score. RSS score was calculated from the 51-gene signature reported by Speers et al. and 3 

also validated in patients (Speers et al., 2015) (see Methods). We found that one gene (RAD51) of the 4 

RPS signature and four genes of the RSS signature are overlapped with the p53 targets selected for 5 

LUNG and BRCA (Supplementary Figure 8 a). To explore the relationship between predicted p53 6 

status and the radiation therapy (RT) response in vivo, we analyzed an independent dataset of 35 7 

patient-derived xenografts (PDX) models that recapitulate many salient genetic and phenotypic 8 

features of glioblastoma (GBM) patients  (Vaubel et al., 2020). 9 

 10 

When comparing the RPS score between groups with different p53 statuses in the LUNG cohort, we 11 

found that tumors in the NT group display the highest RPS, while tumors in the TP53MM and TP53TM 12 

groups displayed the lowest RPS. Expectedly, the RPS scores of TP53WT-pN tumors were close to 13 

those of the NT group and were significantly higher than the TP53WT-pLoF tumors (P = 2.8×10-9, two-14 

sided Wilcoxon test). Similar results were observed in the BRCA cohort. Importantly, four BRCA 15 

TP53MM tumors that were predicted to be p53 normal also had significantly higher RPS scores than 16 

the remaining TP53MM samples (P = 0.029, two-sided Wilcoxon test) (Figure 4 a-b). The lower RPS 17 

score was linked to increased mutagenesis, adverse clinical features, and inferior patient survival rates, 18 

but such adverse prognosis could be counteracted by adjuvant platinum-based chemotherapy (Pitroda 19 

et al., 2014). Although mutations in BRCA1/BRCA2 are generally considered to be principal drivers of 20 

homologous recombination deficiency (HRD), strong positive associations between TP53 mutation 21 

ratio and HRD scores have been observed in TCGA pan-cancer analysis (Takamatsu et al., 2021), and 22 

convergent studies demonstrated the involvement of p53 in regulating homologous recombination 23 

(Gatz & Wiesmuller, 2006; Sengupta & Harris, 2005). These data suggested that platinum-based 24 

chemotherapy is more beneficial to TP53WT-pLoF tumors than TP53WT-pN tumors. 25 
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We calculated radiosensitivity scores after dividing the RSS gene signature into positive (i.e., genes 1 

positively correlated with radiosensitivity) and negative (genes negatively correlated with 2 

radiosensitivity) subsets. We only analyzed the TCGA BRCA cohort since the RSS signature was 3 

derived from breast cancer. Compared to the TP53WT-pN tumors, RSS scores of TP53WT-pLoF tumors 4 

were significantly increased when measured by positive genes (Figure 4 c), but significantly decreased 5 

when measured by negative genes, suggesting the increased radiosensitivity of TP53WT-pLoF tumors 6 

(Figure 4 d).  In contrast, the radiosensitivity of TP53MM-pN tumors was significantly decreased, as 7 

compared to tumors in the TP53MM-pLoF tumors (Figure 4 c-d). Importantly, we observed similar 8 

results even after removing the genes that overlapped with p53 signature (Supplementary Figure 8 9 

b-e). Collectively, these results suggest that tumors with the predicted p53 loss-of-function, in 10 

accordance with p53 mutant tumors, are associated with increased sensitivity to platinum-based 11 

chemotherapy and radiation therapy. This is likely because p53 inactivation compromises the DNA 12 

damage repair, and therefore sensitizes tumor cells to chemo and radiation therapies. 13 

 14 

We further confirmed this result using 35 PDX models. We first defined 17 p53-activated and 19 p53-15 

repressed genes from TCGA GBM cohort (Supplementary Table 1). We were unable to train an SVM 16 

model to predict the p53 status, due to the insufficient sample sizes of both normal and tumors 17 

harboring TP53 truncating mutation. Alternatively, we employed the unsupervised clustering to predict 18 

the p53 function status using CES scores calculated from RNA-seq data of PDX mouse models 19 

(Supplementary Table 6). To determine the RT responsiveness, we calculated the ratio of median 20 

survival days between the RT group and the placebo group, and PDX models with ratios >= 1.52 were 21 

considered as RT-responsive (Figure 4 e, Supplementary Table 6). Out of 20 PDXs that were 22 

predicted to be LoF, 15 respond to RT. As a comparison, out of 15 PDXs that were predicted to be p53 23 

normal, only 4 are responders. These results indicate RT sensitivity was significantly increased in 24 

pLoF group (Fisher’s exact test, P = 0.0068) (Figure 4 f and g). Although TP53 somatic mutations 25 
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(determined from WES) were enriched in the pLoF group (Figure 4 f), the association between TP53 1 

genetic mutation and RT response was not significant (Fisher’s exact test, P = 0.13).  In summary, 2 

these data suggested that our in silico predictions successfully uncovered the significant association 3 

between p53 status and RT response, which would be otherwise missed by examining the TP53 genetic 4 

status alone.  5 

Dissecting predicted TP53WT-pLoF  6 

Next, we sought to explore the potential mechanisms and factors that could explain why most of the 7 

TP53WT tumors were predicted to be LoF by the SVM model. We investigated the RNA and protein 8 

expression, re-evaluated all the TP53 missense mutations (reported from WES) by RNA-seq, and 9 

examined the alteration status of p53 upstream regulator MDM2 and MDM4. We did not detect 10 

significant changes in protein abundance between TP53WT-pN and TP53WT-pLoF tumors, and TP53 11 

RNA expressions were even increased in the TP53WT-pLoF tumors (Supplementary Figure 9, taking 12 

LUNG as an example). This is consistent with previous findings that mutant p53 is associated with 13 

increased TP53 mRNA expression (Donehower et al., 2019). Also, this result suggests that the 14 

impaired p53 function in the TP53WT-pLoF group is not likely caused by reduced TP53 mRNA and 15 

protein abundances. 16 

 17 

We then reassessed all the TP53 missense mutations (such as R249 and R273) of TP53WT-pLoF tumors 18 

using the RNA-seq sequence data of the LUNG and BRCA cohorts. Surprisingly, about 10.3% (32 out 19 

of 310) LUNG and 10.2% (57 out of 561) BRCA TP53WT-pLoF tumors are genuine p53 mutants as 20 

demonstrated by the large number of RNA-seq reads carrying the mutant alleles (Supplementary 21 

Table 7).  For example, two lung adenocarcinoma samples (TCGA-55-6987 and TCGA-55-8621) 22 

were reported as TP53WT by TCGA, but the mutant allele fractions (MAF) at 17: g.7577118C>A and 23 

17: g.7577559G>A were 45% (44 out of 98) and 35% (35 out of 100), respectively. It is worth noting 24 
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that the mutant alleles of these two mutations were also detectable from the WES sequence data albeit 1 

with much fewer supporting reads (2 and 5 reads, respectively), which explains why they were omitted 2 

by the TCGA somatic variant caller (Supplementary Figure 10). The significantly increased MAFs 3 

in RNA-seq data is probably due to the preferential expression of the mutant alleles. Interestingly, 4 

compared to the amino acid location of missense mutations reported from WES data, those mutations 5 

identified using RNA-seq data were significantly enriched (P = 1.05×10-6, two-sided Fisher exact test) 6 

at the p53 R249 position in both lung and breast cancers (Figure 5 a and b). The missense mutation 7 

at R249 is generally considered as a structural mutation destabilizing p53 protein due to the altered 3D 8 

structure (Joerger & Fersht, 2016). Also, these mutant tumors rescued from the RNA-seq data 9 

exhibited similar genomic characteristics (tumor mutation burden, copy number variation burden, 10 

aneuploidy score, and Buffa hypoxia score) compared to the TP53MM and TP53TM groups 11 

(Supplementary Figure 11).  12 

 13 

As p53 negative regulators, MDM2 and its homolog MDMX (encoded by the MDM4 gene) inhibit 14 

p53 activity via different mechanisms, including transcriptional repression and proteasomal 15 

degradation  (Haupt, Maya, Kazaz, & Oren, 1997; Katz et al., 2018; Wasylishen & Lozano, 2016). It 16 

was found that amplification of MDM2 and/or MDM4 is mutually exclusive with TP53 mutations in 17 

lung cancer (odds ratio = 4.32, P = 2.2×10-16, χ2 test) and breast cancer (odds ratio = 1.46, P = 2.0×10-18 

16, χ2 test) (Figure 5 c). As expected, all of the MDM2 and/or MDM4 amplification samples (LUNG, 19 

n = 38; BRCA, n = 84) were pLoF, and accounted for 12.3% and 15.0% of all TP53WT-pLoF samples 20 

in the LUNG and BRCA cohorts, respectively (Figure 5 d).  21 

Conclusion 22 

In this study, we defined p53 transcriptional targets and calculated their CES as a surrogate measure 23 

of p53 activity, trained and validated SVM models using CES from NT and TM groups, which 24 
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represented p53-normal and p53-LoF, respectively. We demonstrated that p53 status could be 1 

accurately predicted using in silico approach, and showed that non-mutational p53 inactivation is 2 

pervasive in human malignancies. Our analyses further revealed that the predicted TP53WT-pLoF 3 

tumors exhibited a similar level of genomic instability as those with genetic inactivation–including 4 

significantly increased mutations, copy number alterations, and aneuploidy. Similar to p53 mutants, 5 

those patients with TP53WT-pLoF tumors had much worse overall survival than those with TP53WT-6 

pN tumors, highlighting the prognostic value of our prediction. When evaluated using clinically 7 

validated signatures, TP53WT-pLoF tumors exhibited significantly increased sensitivity to platinum-8 

based chemotherapy and radiation therapy. This observation was confirmed in our GBM preclinical 9 

animal models. Finally, TP53WT-pLoF could be partially explained by false negative mutation calls, 10 

or MDM2 and MDM4 amplifications. 11 

Discussion 12 

Genomic instability, self-sufficiency in terms of growth signals, insensitivity to anti-growth signals, 13 

and evasion of programmed cell death are hallmarks of cancer (Hanahan & Weinberg, 2000). These 14 

biological processes are orchestrated by oncogenes (e.g., EGFR, PIK3A, and KRAS) and tumor 15 

suppressor genes (e.g., TP53, RB1, PTEN, and CDKN2A). During tumorigenesis, genomic 16 

amplification (or copy gain) and missense mutation are observed in oncogenes, while genomic deletion 17 

(or copy loss), non-sense, and frameshift mutations are associated with tumor suppressor genes (Soussi 18 

& Wiman, 2015). Indeed, RB1, PTEN, and CDKN2A are generally inactivated by homozygous 19 

deletions, which directly leads to little or no protein expression (Supplementary Figure 12). Unlike 20 

other tumor suppressors, the predominant genomic alteration for TP53 is missense mutation, which 21 

leads to an altered or faulty protein (Supplementary Figure 12). In addition, multiple lines of evidence 22 

have characterized the oncogenic role of mutant p53 (Govindan & Weber, 2014), including the over-23 

expression in p53 mutants, accumulation of mutant p53 protein in the nucleus and the cytoplasm, as 24 
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well as functional studies in vivo and in vitro systems (Bieging, Mello, & Attardi, 2014; Freed-Pastor 1 

& Prives, 2012; Hollstein, Sidransky, Vogelstein, & Harris, 1991; Oren & Rotter, 2010). The primary 2 

goal of this study is to investigate the loss of p53’s tumor suppressor function in tumors that may be 3 

thought to be p53 functionally normal due to lack of TP53 genetic alterations. First, our selected p53 4 

target genes are highly enriched in cell division, cell cycle control, DNA integrity checkpoint, and 5 

DNA damage repair pathways (Supplementary Figure 2 b). Second, we trained SVM models using 6 

normal tissues and tumor samples with truncating TP53 mutations that result in shortened protein. 7 

Therefore, those TP53 missense mutations that were predicted to be LoF (TP53MM-pLoF) should be 8 

interpreted as the “loss of p53’s tumor suppressor function”. We could not rule out the possibilities 9 

that the mutant p53 protein in the TP53MM-pLoF sample have gained oncogenic functions. 10 

 11 

According to our analyses, among TP53WT tumors that were predicted to be LoF (TP53WT-pLoF), 22-12 

25% could be explained by false-negatives (i.e., TP53 mutations that failed to be detected from the 13 

WES assay) or MDM2 and MDM4 amplification. However, the underpinning mechanisms for the 14 

remaining 75-78% are unknown and warrant further investigation. We analyzed the DNA methylation 15 

data generated from the Infinium HumanMethylation450 BeadChip array, but did not detect significant 16 

differences between TP53WT-pLoF and TP53WT-pN tumors among all nine CpG sites that mapped to 17 

TP53 (cg02087342, cg06365412, cg10792831, cg12041075, cg12041429, cg13468400, cg16397722, 18 

cg18198734, cg22949073). Presumably, p53 function is compromised by other transcriptional, post-19 

transcriptional and post-translational mechanisms (Bode & Dong, 2004; Dai & Gu, 2010). For those 20 

TP53WT samples that were predicted to be p53 normal, we did not detect significant differences in 21 

tumor purities (measured by IHC) between TP53WT-pN and other tumor samples in LUNG (P = 0.460, 22 

Wilcoxon rank sum test) and BRCA cohorts (P = 0.066, Wilcox rank sum test), suggesting that these 23 

TP53WT-pN tumors are not attributed to lower tumor cellularity. We also observed four TP53MM 24 

samples that were predicted to be p53 normal from the BRCA cohort, including TCGA-E2-A1B1, 25 
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TCGA-LD-A74U, TCGA-BH-A1FE, and TCGA-EW-A1P1 (Supplementary Table 8 c). All 1 

reported mutations from these four samples could be confirmed from RNA-seq alignments with high 2 

mutant allele frequencies, which rules out the possibility of false positives or cross-sample 3 

contaminations. The potential reasons remain unclear, and the limited sample size precludes systematic 4 

evaluations.   5 

 6 

Gene expression reflects the downstream effects of transcriptional regulation. This study demonstrated 7 

that composite expression calculated from a group of logically connected genes is a reliable measure 8 

of the activity of their common upstream regulator. A large number of truncating mutations in TP53, 9 

providing a reliable way to identify loss of function cases, made this analysis particularly approachable. 10 

When obtaining sufficient training data is not practical, unsupervised machine-learning approaches 11 

such as K-means clustering, semi-supervised learning, principal component analysis (PCA), and neural 12 

networks could be used as an alternative to the SVM model.  13 

 14 

TP53 is the most mutated gene in human cancers. Our analyses further revealed that most TP53WT 15 

tumors are genetically normal but phenotypically deficient in p53 function.  This finding demonstrates 16 

an inherent limitation in the stratification and segmentation of patients based on DNA markers alone 17 

and encourages the development of “ensemble” approaches based on genomic, epigenomic, 18 

transcriptomic and proteomic data.  19 

Materials and Methods 20 

Data collection  21 

We downloaded somatic mutation data for TP53 from the LUNG (LUSC + LUAD), BRCA, COAD, 22 

ESCA, BLCA, HNSC, LIHC, STAD, and UCES datasets on cBioPortal (https://www.cbioportal.org/) 23 
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along with pre-calculated meta scores including the fraction of genome altered (FGA), mutation count, 1 

aneuploidy score, and Buffa hypoxia score. TCGA WES and RNA-seq BAM files for BRCA and 2 

LUNG were downloaded from the GDC data portal (https://portal.gdc.cancer.gov/), which were used 3 

to re-evaluate p53 mutation status. TCGA level-3 RNA-seq expression data of selected cancers and 4 

the corresponding demographic and survival data were downloaded from the University of California 5 

Santa Cruz’s Xena web server (https://xena.ucsc.edu/). Pre-calculated raw RNA-seq read counts were 6 

used to identify differentially expressed genes between the NT and TM groups, log2-transformed 7 

FPKM (i.e., Fragments Per Kilobase of exon per Million mapped fragments) was used to calculate 8 

CES scores, and TPM (i.e., Transcript Per Million) was used to calculate GSVA to evaluate chemo-9 

and radiotherapy sensitivities. ChIP-seq data (p53 binding peaks) were downloaded from the ReMap 10 

2020 database (Cheneby et al., 2020) (https://remap.univ-amu.fr/). Gene expression data (TPM) of 11 

normal tissues were downloaded from the GTEx (release V8) data portal (https://gtexportal.org/home/).    12 

Identification of p53 target genes across different cancer types

To identify p53 targets for each cancer type, we employed a series of steps. First, we started with 147 14 

genes that have been experimentally validated as p53 targets, including 116 genes activated by p53 15 

and 31 genes repressed by p53 (Fischer, 2017). We further analyzed the publicly available ChIP-seq 16 

data from ReMap 2020 (Cheneby et al., 2020) and found that 99% of the p53 target genes from the 17 

Fischer et al. study have at least one p53 peak within the promotor region, which is defined as +/- 1 18 

kb around the transcription start site (TSS). The basal level expression of p53 targets in normal tissues 19 

was evaluated using the GTEx (Consortium, 2015) RNA-seq data. Specifically, we first calculated the 20 

median TPM across all samples in each tissue type, and then calculated the mean of median TPMs 21 

across all tissue types. The result showed that the mean of median TPMs of each p53 target gene was > 22 

1 TPM, indicating that these 147 p53 targets were reliably expressed across GTEx normal tissues and 23 

thus were included in our downstream analyses.  24 
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 1 

Since p53 might regulate a specific set of genes in different cancer types (Fischer, 2017), and to define 2 

cancer-specific p53 targets, we first performed differential expression analysis in each cancer by 3 

comparing the NT group (considered to be p53 functionally normal) to the TM group (considered to 4 

be p53 functionally impaired). Note, samples assigned to the testing set were not used for the 5 

differential expression analysis.  Then, the differentially expressed genes (adjusted p-value < 0.05 and 6 

|fold change| > 2) were intersected with the 147 genes defined previously. We defined p53-activated 7 

and p53-repressed genes as those downregulated and upregulated in the TM group, respectively. The 8 

differential analyses were conducted using the R package DESeq2 on the raw RNA-seq reads counts 9 

(Love, Huber, & Anders, 2014).  10 

Computation of composite expression scores 11 

CES is a single enrichment score that provides intuitive and stable measurement of p53 activity in each 12 

cancer. We used four algorithms to calculate the CES including (1) Gene Set Variation Analysis 13 

(GSVA), a gene set enrichment method that estimates variation of pathway activity over a sample 14 

population in an unsupervised manner (Hanzelmann et al., 2013); (2) single-sample GSEA (ssGSEA), 15 

an extension of GSEA, which calculates separate enrichment scores for each pairing of a sample and 16 

gene set (Barbie et al., 2009); (3) The first Principal Component (PC1) score of the principal 17 

component analysis (PCA); and (4) combined Z-score, a normalized value based on the mean and 18 

standard deviation (E. Lee et al., 2008; Tomfohr et al., 2005). To calculate the combined Z-score, gene 19 

expression values (log2(FPKM)) of each sample were converted into Z-scores by Z = (x – μ)/σ, where 20 

μ and σ is the average and standard deviation of log2(FPKM) across all samples of a gene. Given a 21 

gene set γ = {1,…,k} with standardized values z1,…,zk for each gene in a specific sample, the combined 22 

Z-score Zγ for the gene set γ is defined as: 23 
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𝑍𝛾 =
∑ 𝑍𝑖
𝑘
𝑖=1

√𝑘
 1 

 2 

GSVA, ssGSEA, and Z-score were calculated for p53 activated and repressed targets separately, while 3 

PC1 was calculated using all p53 targets, which resulted in a total of seven CES scores for each sample. 4 

The GSVA package (https://www.bioconductor.org/packages/release/bioc/html/GSVA.html) was 5 

used to compute GSVA, ssGSEA, and Z-score. The Python package sklearn (https://scikit-6 

learn.org/stable/) was used to perform PCA analyses.  7 

Training and evaluating the performance of SVM models 8 

Since the prediction of p53 status is a binary classification, we chose to use the SVM model–a widely 9 

used, supervised machine-learning method. SVM models with linear kernel were trained using the 10 

CES scores of NT (normal tissue, coded as “0”) and TM (truncating mutations, coded as “1”) groups. 11 

GridSearch was used to pick the proper C and gamma parameters for the SVM model. We used TCGA 12 

data for both training and testing; no separate or external validation set was used. The number of 13 

samples available for training/testing depended on the cancer type. The number of training and testing 14 

samples (n) were 362, 246, 99, 64, and 1335 for the LUNG, BRCA, COAD, ESCA, and pan-cancer 15 

cohorts, respectively (Supplementary Table 8 a). A total of seven features (GSVAactivated, 16 

GSVArepressed, ssGSEAactivated, ssGSEArepressed, Zscoreactivated, Zscorerepressed, and PC1) were used in the 17 

SVM models. Therefore, p << n for all SVM models built in this study, where p represents the number 18 

of features (predictor variables) and n represents the number of samples.  19 

 20 

We applied ten-fold cross-validation to evaluate the performance of the SVM model. Specifically, we 21 

used the “train_test_split” function from the “sklearn.model_selection” class to split the samples (i.e, 22 

NT and TM samples) into training set (75%) and testing set (25%). We performed the differential 23 
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expression for gene selection and trained the SVM models with the training set, and then used the 1 

testing set to evaluate the performance. This enforced that the training and test sets were independent. 2 

In each iteration, a confusion matrix was made, and performance measurements (i.e., sensitivity/recall, 3 

precision, accuracy) were calculated. Finally, we summarized the performance of models with the 4 

mean of the measurement scores and the ROC (receiver operating characteristic) curves. The 5 

performance measurements are defined as below: 6 

recall =
TP

TP + FN
 7 

precision =
TP

TP + FP
 8 

accuracy =
TP + FN

TP + TN + FP + FN
 9 

F1 =
2

recall−1 + precision−1
 10 

 11 

Where FN = false negative; FP = false positive; TN = true negative; TP = true positive. We used the 12 

Scikit-learn (www.scikit-learn.org) Python package for SVM modeling and ten-fold cross-validation. 13 

We used pandas (https://pandas.pydata.org/), numpy (https://numpy.org/), and scipy 14 

(https://www.scipy.org/) for data processing and numerical analyses. Details of SVM models are 15 

available in Supplementary Table 9. All TCGA barcodes (i.e., sample identifiers) for training and 16 

testing used in this study are listed in Supplementary Table 8 b-f. Python source code is available 17 

from https://github.com/liguowang/epage

Re-evaluation of TP53 mutation status using RNA-seq 19 

The genomic locations of TP53 somatic mutations in LUNG and BRCA samples were downloaded 20 

from the cBioPortal (https://www.cbioportal.org/). The reference and mutant allele counts were then 21 

calculated from the RNA-seq BAM file using Samtools’ pileup engine and an in-house Python script 22 
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(Li et al., 2009). The samples with fewer than 10 read counts at a given genome site were discarded 1 

(n=41), and a cut-off of minor allele frequency = 0.1 was employed to determine the genotype. A 2 

sample was determined as TP53 mutated if there are at least five high-quality reads (Phred-scaled 3 

sequencing quality and mapping quality > 30) supporting the mutant allele. 32 and 57 TP53WT samples 4 

met this criterion in LUNG and BRCA samples, respectively. The Integrative Genomics Viewer (IGV) 5 

was used to manually inspect the variants and visualize the alignments.  6 

Investigation of two independent treatment-related signatures 7 

Tumor chemotherapy sensitivity (i.e., RPS score) was estimated from the 4 genes involved in DNA 8 

repair (RIF1, PARI/F2R, RAD51, and Ku80/XRCC5) reported by Pitroda et al. (Pitroda et al., 2014). 9 

Tumor radiation sensitivity signature (RSS) scores in breast cancer were calculated from the 51-gene 10 

signature reported by Speers et al. (Speers et al., 2015), and the genes were divided in to “positive” 11 

and “negative” groups according to the correlation between their expression level and radiation 12 

sensitivity. The R package GSVA (Hanzelmann et al., 2013) was used to calculate the RPS and RSS 13 

scores. Specifically, according to the study of Pitroda et al., the original RPS was defined as the sum 14 

of the expression levels times -1 after log2 transformation and Robust Multi-array Average (RMA)-15 

normalization. In this study, RPS was represented by -GSVA of TPM. 16 

GBM derived xenografts  17 

Glioblastoma patient-derived xenografts (PDX) were generated by the Mayo PDX National Resource 18 

(Vaubel et al., 2020). Mice with established orthotopic tumors were randomized in groups of 5–10 19 

mice and treated with placebo and radiation therapy (RT). To determine the RT responsiveness of 20 

PDX, we first calculate the ratio of median survivals between the RT group and placebo group. A 21 

cutoff value (1.52) was determined as the changing point on the non-parametric kernel density curve 22 

(Supplementary Table 6).  23 
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 1 

DNA (WES) and RNA (RNA-seq) sequencing were performed by Mayo Clinic medical genomic 2 

facility or Translational Genomics Institute (TGen) using the SureSelect (Agilent, Santa Clara, CA) or 3 

TGen Strexome V2 capture kits. Raw sequencing reads were aligned to both human (hg38) and mouse 4 

(mm10) reference genomes to remove any reads potentially originated from the mouse tissue. Then, 5 

filtered WES and RNA-seq data were analyzed using Mayo's MAP-RSeq and GenomeGPS workflow, 6 

respectively. The raw sequencing data were submitted to the NCBI Sequence Read Archive with 7 

accession # PRJNA543854 and PRJNA548556 for WES and RNA-seq, respectively. Annotated 8 

genomic and transcriptomic data are also publicly accessible through the cBioPortal 9 

(https://www.cbioportal.org/study/summary?id=gbm_mayo_pdx_sarkaria_2019). 10 
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the corresponding demographic and survival data were downloaded from the University of California 1 

Santa Cruz’s Xena web server (https://xena.ucsc.edu/). Pre-calculated raw RNA-seq read counts were 2 

used to identify differentially expressed genes between the NT and TM groups, log2-transformed 3 

FPKM (i.e., Fragments Per Kilobase of exon per Million mapped fragments) was used to calculate 4 

CES scores, and TPM (i.e., Transcript Per Million) was used to calculate GSVA to evaluate chemo-5 

and radiotherapy sensitivities. ChIP-seq data (p53 binding peaks) were downloaded from the ReMap 6 

2020 database (Cheneby et al., 2020) (https://remap.univ-amu.fr/). Gene expression data (TPM) of 7 

normal tissues were downloaded from the GTEx (release V8) data portal (https://gtexportal.org/home/). 8 

All of the results generated in this study are included as supplementary data sets (supplementary table 9 

1-8). 10 
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Abbreviations 1 

AUROC, area under the receiver operating characteristic 2 

BAM, binary version of SAM (Sequence Alignment/Map) file 3 

BRCA, breast invasive carcinoma 4 

CES, composite expression score 5 

ChIP-seq, chromatin immunoprecipitation sequencing 6 

COAD, colon adenocarcinoma 7 

ESCA, esophageal carcinoma 8 

FGA, fraction of genome altered 9 

FN, false negative 10 

FP, false positive 11 

FPKM, Fragments Per Kilobase of exon per Million mapped fragments 12 

GoF, gain of function 13 

GSVA,  gene set variation analysis 14 

GTEx, genotype-tissue expression 15 

HNSC, head and neck squamous cell carcinoma 16 

HRD, homologous recombination deficiency 17 

ICGC, International Cancer Genome Consortium 18 

IHC, immuno histochemistry staining 19 

LIHC, liver hepatocellular carcinoma 20 

LoF, loss of function 21 

MM, missense mutation 22 

MAF, mutant allele fractions 23 

NSCLS, non-small cell lung carcinomas 24 

NT, normal tissue 25 

OR, odds ratio 26 

PCA, principal component analysis 27 

PDX, patient derived xenografts 28 

ROC, receiver operating characteristic 29 

RPS, recombination proficiency score 30 

RSS, radiation sensitivity signature 31 

ssGSEA, single sample gene set enrichment analysis 32 

STAD,  stomach adenocarcinoma 33 

SVM, support vector machine 34 

TCGA, The Cancer Genome Atlas 35 

TPM, transcript per million 36 

TM, truncating mutation 37 

TMB, tumor mutation burden  38 

TN, true negative 39 

TP, true positive 40 

UCES, uterine corpus endometrial carcinoma 41 

WES, whole exome sequencing  42 

WT, wildtype 43 
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Figure 1. Identification of p53 target genes and their expression profiles in TCGA lung, breast, and colon 43 

cancers. (a) The analytic workflow to identify p53 target genes, train and validate SVM models. (b-d) Heatmaps 44 

show the expression profiles of p53-activated and repressed genes in TCGA lung, breast, and colon cancers. Samples 45 

in each cohort were divided into four groups according to TCGA designation, including NT (adjacent normal tissue), 46 

WT (tumor tissue with wild-type TP53), MM (tumor tissue with TP53 missense mutation or in-frame mutation), and 47 

TM (tumor tissue with TP53 truncating mutation). CES, composite expression score; DEA, differential expression 48 

analysis; FC, fold change; GTEx, Genotype-Tissue Expression; pLoF, predicted loss of function; pN, predicted 49 

normal; SVM, support vector machine. 50 
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Figure 2. Composite expression scores (CES) and the ROC curve of the SVM model built from the TCGA lung 27 

cancer cohort. (a-c) CES scores of p53-activated genes calculated by GSVA, ssGSEA, and Z-score. In each panel, 28 

the blue, yellow, red, and purple box-and-whisker plots indicate the distribution of CES scores in NT, WT, MM, and 29 

TM groups, respectively. (d) CES score calculated by the first principal component scores (PC1). The p53-activated 30 

and p53-repressed genes were combined. (e-g) CES scores of p53-repressed genes calculated by GSVA, ssGSEA, 31 

and Z-score. (h)  A two-dimensional PCA plot shows the clusters of NT, WT, MM, and TM groups. (i-j) Three-32 

dimensional scatter plots show the combinatorial effects of CES score calculated from p53-activated genes and 33 

repressed genes, respectively. (k) The performance of the SVM model was evaluated using ten-fold cross-validation. 34 

GSVA, gene set variation analysis; ssGSEA, single-sample gene set enrichment analysis; PCA, principal component 35 

analysis; AUC, area under the curve; ROC, receiver operating characteristic; NT, normal tissue; TP53WT, samples 36 

with wild-type TP53; TP53MM, samples with TP53 missense mutation or in-frame mutation; TP53TM, samples with 37 

TP53 truncating mutation. 38 
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Figure 3. Evaluation of the SVM predictions in the TCGA lung cancer cohort. (a) A sunburst chart shows the 25 

breakdown of the lung cancer samples before (inner and middle layer circles) and after (outer layer circle) prediction. 26 

Samples used to train the SVM model include NT (adjacent normal tissue) and TP53TM (tumor tissue with TP53 27 

truncating mutation) groups, representing p53-normal and p53-LoF status, respectively. Samples that were subjected 28 

to SVM prediction include TP53WT (tumor tissue with wild-type TP53) and TP53MM (tumor tissue with TP53 29 

missense mutation or in-frame mutation) groups. Samples in TP53WT and TP53MM groups were predicted to be normal 30 

(pN) or LoF (pLoF) by the SVM model. (b) Left: overall survival of patients with TP53MM, TP53TM, TP53WT-pN 31 

(wild type TP53 which were predicted to be normal) and TP53WT-pLoF (wild-type TP53 which were predicted to be 32 

loss of function) tumors. Right: forest plot of a Cox Proportional-Hazards model showing p-values, hazard ratios, 33 

and the 95% confidence intervals for covariates. (c) Upper panel: Comparison of tumor mutational burden (TMB) 34 

among TP53WT, TP53MM, and TP53TM groups. Lower panel: the TP53WT tumors were further divided into two 35 

subgroups (TP53WT-pN and TP53WT-pLoF) according to the SVM prediction. (d) Similar to (c), comparison of the 36 

copy number variation burden measured by “Fraction of genome altered”. (e) Similar to (c), comparison of the 37 

aneuploidy score. (f) Similar to (c), comparison of hypoxia score.  38 
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Figure 4. Relationships between p53 status and chemo-and radiation therapy sensitivities. (a-b) Comparison of 21 

the RPS scores (represented by -GSVA here, see Methods) amongst the NT, TP53WT-pN, TP53WT-pLoF, TP53MM, 22 

and TP53TM groups in the TCGA LUNG and BRCA cohorts, respectively. (c-d) Comparison of the RSS scores of 23 

positive and negative genes amongst NT, TP53WT-pN, TP53WT-pLoF, TP53MM-pN, TP53MM-pLoF, and TP53TM 24 

groups in the BRCA cohort, respectively. RSS was calculated from genes positively associated with radiosensitivity 25 

using the GSVA algorithm. (e) Distribution of ratio of median survival days between the RT group and the placebo 26 

group. PDX models with ratios >= 1.52 were considered as RT-responsive. (f) A heatmap shows the p53 function 27 

status predicted by unsupervised clustering using composite expression (GSVA, ssGSEA, and PC1) of GBM specific 28 

p53 target genes in PDX data. RT response and TP53 mutation status of each sample are color coded on the right 29 

side. (g) A contingency table shows that pLoF samples are associated with RT responsive. 30 
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Figure 5. Dissection of TP53WT-pLoF cases. (a-b) Lollipop charts show the position of missense mutations 25 

identified using RNA-seq data but missed from the whole-exome sequencing data in TCGA lung adenocarcinoma 26 

(LUAD) and breast invasive carcinomas (BRCA), respectively. (c) Oncoprint plot shows the TP53’s original and 27 

predicted status, comparing with the MDM2 and MDM4 amplification status. Percentages of samples with 28 

TP53/MDM2/MDM4 variations among the prediction set (MM and WT samples) are listed on the right side, as well 29 

as the numbers of these samples (indicated by bar plots). (d) Pie charts show the fraction of TP53WT-pLoF cases that 30 

can be explained by “mutation detected from RNA-seq” (green) and “MDM2 or MDM4” amplification (red).   31 
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Supplementary figures 1 

Supplementary Fig. 1 2 
Validation of p53 target genes in γ irradiated MCF-7 cells harboring wild type TP53. 3 

Supplementary Fig. 2 4 
Core p53 targets among the four cancer cohorts (LUNG, BRCA, COAD and ESCA). 5 

Supplementary Fig. 3 6 
Correlations between different CES scores. 7 

Supplementary Fig. 4 8 
Comparison of CES score distributions among different TP53 groups. 9 

Supplementary Fig. 5 10 
Pan-cancer analysis. 11 

Supplementary Fig. 6 12 
Distribution of predicted p53 status for TP53WT (WT group) and TP53MM (MM group) tumor samples across the 13 
five cohorts. 14 

Supplementary Fig. 7 15 
Comparing progression-free survival (PFS) of TP53MM, TP53TM, TP53WT-pN and TP53WT-pLoF patients of 16 
TCGA BRCA cohort. 17 

Supplementary Fig. 8 18 
Relationships between p53 status and chemo-and radiation therapy sensitivities after removing the overlapped 19 
genes. 20 

Supplementary Fig. 9 21 
Comparison of p53 expression levels between TP53WT-pN and TP53WT-pLoF samples in LUNG cohort. 22 

Supplementary Fig. 10 23 
Examples of TP53 somatic mutations identified from RNA-seq data but missed by TCGA WES calls. 24 

Supplementary Fig. 11 25 
p53 mutants identified from RNA-seq data (indicated as the RM group) exhibit similar genomic characteristics 26 
as the TP53MM and TP53TM groups. 27 

Supplementary Fig. 12 28 
Genomics alteration status of TP53 and the other well-known tumor suppressor genes across different TCGA 29 
cancer types. 30 
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Supplementary Fig. 1. Validation of p53 target genes in γ irradiated MCF-7 cells harboring wild-type TP53. (a) 35 
Changes of expression levels of p53 targets after γ irradiation, and γ irradiation with nutlin treatment. (b) 36 
Visualization of p53 binding sites (p53 ChIP-seq signals) around the promoter regions of genes in (a). 37 
  38 
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Supplementary Fig. 2. Core p53 targets among the four cancer cohorts (LUNG, BRCA, COAD and ESCA). (a) 38 
Venn diagram shows the overlaps of p53 targets among the four cancer types. (b) Gene Ontology (GO) enrichment 39 
results of the core p53 targets. 40 
  41 
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Supplementary Fig. 3. Correlations between different CES scores. (a-c) Significant inverse correlations between 28 
CES scores calculated from p53-activated and p53-repressed genes for GSVA, ssGSEA, and Z-score. Significant 29 
positive correlations between different CES scores for p53-activated genes (d-f) and between that for p53-repressed 30 
genes (g-h). (i) Significant inverse correlation between PC1 and the GSVA of p53-repressed genes. 31 
 32 
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Supplementary Fig. 4. Comparison of CES score distributions among different TP53 groups. Bar plots show the 19 
Interquartile Range (a), Variance (b), and Standard Deviation (c) of CES scores in NT, WT, MM, and TM groups. 20 
 21 
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Supplementary Fig. 5. Pan-cancer analysis. (a) Heatmap shows the expression profiles of p53-activated genes and 51 
repressed genes across 9 cancer types. (b) Overlaps of p53 targets among pan-cancer cohort and four previously 52 
selected cancer cohorts. (c-d) CES scores calculated from p53 targets by different algorithms in pan-cancer cohort 53 
(similar to Figure 2). (e) ROC curve of the SVM model built from the pan-cancer cohort.  54 
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Supplementary Fig. 6. Distribution of predicted p53 status for TP53WT (WT group) and TP53MM (MM group) 22 
tumor samples across the five cohorts. Most tumor samples in WT (a) and MM (b) groups are predicted as LoF. 23 
 24 
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Supplementary Fig. 7. Comparing progression-free survival (PFS) of TP53MM, TP53TM, TP53WT-pN and TP53WT-31 
pLoF patients of TCGA BRCA cohort. (a) Bar plot shows the breakdown of BRCA patients into five subtypes, 32 
including “Basal/triple negative”, “HER2+”, “Luminal A”, “Luminal B” and “Normal-like”. Each subtype is further 33 
divided into four subgroups based on TP53 status. (b-f) Comparison of PFS for Basal, HER2+, Luminal A, Luminal 34 
B, and Normal-like subtype, respectively.  35 
 36 
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Supplementary Fig. 8. Relationships between p53 status and chemo-and radiation therapy sensitivities after 46 
removing the overlapped genes. (a) Venn diagram shows the overlap between p53 targets used in the LUNG SVM 47 
model, p53 targets used in the BRCA SVM model, the chemotherapy gene signature (recombination proficiency 48 
score, RPS), and the radiation sensitivity signature (RSS). (b-c) Comparison of the RPS scores (represented by -49 
GSVA here, see Methods) amongst NT, TP53WT-pN, TP53WT-pLoF, TP53MM, and TP53TM in the TCGA LUNG 50 
and BRCA cohort, respectively (similar to Figure 4 a-b). (d-e) Comparison of the RSS scores amongst NT, 51 
TP53WT-pN, TP53WT-pLoF, TP53MM-pN, TP53MM-pLoF and TP53TM in the TCGA BRCA cohort (similar to Figure 52 
4 c-d). GSVA was used to calculate the PRS and RSS scores. Genes overlapped with p53 targets of either LUNG or 53 
BRCA were removed when calculating the RPS and RSS scores. 54 
 55 
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Supplementary Fig. 9. Comparison of p53 expression levels between TP53WT-pLoF and TP53WT-pN samples in 28 
LUNG cohort. (a) Comparison of the TP53 RNA expression. (b) Comparison of the p53 abundance. 29 
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Supplementary Fig. 10. Examples of TP53 somatic mutations identified from RNA-seq data but missed by TCGA 36 
WES calls. Mutant allele fraction (MAF) is measured by the ratio between the “number of reads supporting the 37 
mutant allele” and the “total number of reads” covering the mutation site.  38 
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 37 
Supplementary Fig. 11. p53 mutants identified from RNA-seq data (indicated as the RM group) exhibit similar 38 
genomic characteristics as the TP53MM and TP53TM groups. Compared to the TP53WT-pN tumors, tumors of the 39 
RM group show increased tumor mutation burden (a), copy number variation burden (b), aneuploidy score (c), and 40 
Buffa hypoxia score (d). 41 
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Supplementary Fig. 12. Genomics alteration status of TP53 and the other well-known tumor suppressor genes 37 
across different TCGA cancer types. 38 
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Supplementary tables 1 

Supplementary tables are included in file “SupplementaryData1.xlsx” (table s1-s7 and s9) and 2 
“SupplementaryData2.xlsx” (table s8), which contain our main results and numeric data used to generate figures. 3 
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subtypes) cohorts. 9 

Supplementary Table 3 10 
The performance metrics of the SVM model in TCGA lung and breast cohorts. 11 

Supplementary Table 4 12 
Genomic and clinical characteristics of TCGA LUNG, BRCA, COAD, ESCA, and Pan-cancer cohorts. 13 

Supplementary Table 5 14 
Gene signatures reflecting chemo- or radiosensitivity. 15 

Supplementary Table 6 16 
Median survival days and CES values of PDX models treated with placebo and radiation therapy (RT). 17 

Supplementary Table 7 18 
List of lung and breast cancer samples that have TP53 missense mutations detected from RNA-seq. 19 

Supplementary Table 8 20 
List of SVM training samples, prediction samples, TP53 original genetic states, SVM-predicted states and 21 
probabilities of TCGA cancers analyzed in our study. 22 

Supplementary Table 9 23 
Summary of SVM models according to the DOME (Data, Optimization, Model and Evaluation) recommendations. 24 

 25 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 31, 2022. ; https://doi.org/10.1101/2022.07.28.501874doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.28.501874
http://creativecommons.org/licenses/by/4.0/

