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Abstract 18 

 19 

Predicting what factors promote or protect populations from infectious disease is a 20 

fundamental epidemiological challenge. Social networks, where nodes represent hosts and 21 

edges represent direct or indirect contacts between them, are key to quantifying these aspects 22 

of infectious disease dynamics. However, understanding the complex relationships between 23 

network structure and epidemic parameters in predicting spread has been out of reach. Here 24 

we draw on advances in spectral graph theory and interpretable machine learning, to build 25 

predictive models of pathogen spread on a large collection of empirical networks from across 26 

the animal kingdom. Using a small set of network spectral properties, we were able to predict 27 

pathogen spread with remarkable accuracy for a wide range of transmissibility and recovery 28 

rates. We validate our findings using well studied host-pathogen systems and provide a 29 
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flexible framework for animal health practitioners to assess the vulnerability of a particular 30 

network to pathogen spread. 31 

 32 

Introduction 33 

 34 

Capturing patterns of direct or indirect contacts between hosts is crucial to model pathogen 35 

spread in populations (Newman 2002; Craft 2015; Sah et al. 2018, 2021). Increasingly, 36 

contact network approaches, where hosts are nodes and edges reflect interactions between 37 

hosts, play a central role in epidemiology and disease ecology (e.g., Meyers et al. 2005; 38 

Bansal et al. 2007; Eames et al. 2015; White et al. 2017). Incorporating networks allows 39 

models to capture the heterogeneity of contacts between individuals that can provide more 40 

nuanced and reliable estimates of pathogen spread, including in wildlife populations (e.g., 41 

Meyers et al. 2006; Bansal et al. 2010; Craft et al. 2011). Formulating general rules for how 42 

easy-to-calculate network structure properties may promote or restrict pathogen spread can 43 

reveal important insights into how host behaviour can mediate epidemic outcomes (Sah et al. 44 

2017), and provide practitioners with a proxy for how vulnerable a population is to disease 45 

without extensive simulations (Silk et al. 2017; Sah et al. 2018). Further, network structural 46 

properties can be incorporated into traditional susceptible–infected–recovered (SIR) models 47 

to account for contact heterogeneity when predicting pathogen dynamics across populations 48 

(e.g., Meyers et al. 2005; Bansal et al. 2007).  49 

 50 

However, it remains unclear whether one structural characteristic or a combination of 51 

characteristics can reliably predict pathogen dynamics across systems (Ames et al. 2011; Sah 52 

et al. 2018). For example, species that are more social tend to have more clustered or 53 

“modular” networks, and this modularity has been found to increase (Lentz et al. 2012), 54 

reduce (Salathé & Jones 2010) or have little effect (Sah et al. 2018) on outbreak size across 55 
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different biological systems.  The average number of contacts between hosts can be identical 56 

across networks and yet still result in substantially different outbreak patterns (Ames et al. 57 

2011). Even the apparent size of the network, often constrained by  limitations of sampling, 58 

can impact estimates of pathogen spread, particularly in wildlife populations (McCabe & 59 

Nunn 2018). As network characteristics, such as network size and modularity, are often 60 

correlated (Newman 2006; Silk et al. 2017) and can have complex impacts on spread (Sah et 61 

al. 2017; McCabe & Nunn 2018; Porter 2020), determining network characteristics that 62 

promote large outbreaks, for example, remains a fundamental question in infectious disease 63 

biology (Sah et al. 2018).  64 

 65 

Searching for general relationships between network structure and pathogen spread in animal 66 

populations is further challenged, as the relationship is also affected by pathogen traits, such 67 

as infectiousness and recovery rate. For example, modularity appears to make no difference 68 

to disease outcomes for highly infectious pathogens (Sah et al. 2017). Diseases with long 69 

recovery rates can increase outbreak size across networks as well (Shu et al. 2016). Given 70 

that we rarely have reliable estimates of pathogen traits in wild populations (e.g., for different 71 

probabilities of infection per contact, or recovery rates) anyway, any predictive model of the 72 

relationship between spread and network structure would ideally be generalizable across 73 

pathogens. 74 

 75 

Advances in spectral graph theory offer an additional set of measures based on the spectrum 76 

of a network rather than average node or edge level attributes. A graph spectrum is the set of 77 

eigenvalues (often denoted with a Greek lambda λ) of a matrix representation of a network 78 

(see Text Box 1 for further definitions for terminology in bold). Theoretical studies have 79 

shown relationships between particular eigenvalues and connectivity across networks are 80 
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independent of pathogen propagation models (Prakash et al. 2010).  For example, networks 81 

with a high Fiedler value (the second smallest eigenvalue of the network’s Laplacian 82 

matrix) are “more connected” than those with low values. It has been found that, in 83 

ecological networks for example, if the Fiedler value is sufficiently large, removing edges 84 

will have little effect on overall network connectivity (Kumar et al. 2019), but whether this 85 

lack of effect is mirrored by pathogen dynamics is not yet clear.  Another quantity of interest 86 

is spectral radius – the largest absolute value of the eigenvalues of its adjacency matrix. 87 

The link between the spectral radius and epidemiological dynamics is better understood, with 88 

theoretical work showing that this value closely mirrors both epidemic behaviour and 89 

network connectivity (Prakash et al. 2010) and has been used to understand vulnerability of 90 

cattle networks to disease (Darbon et al. 2018). For example, networks with the same number 91 

of edges and nodes but higher spectral radius (λ1) are more vulnerable to outbreaks than 92 

networks with low spectral radius (λ1→1). We hypothesize that spectral measures such as 93 

these have great potential to improve our ability to predict dynamics of pathogen spread on 94 

networks, where previous methods such as modularity have proved inadequate  (Sah et al. 95 

2017).  96 

 97 

We assess the predictive capability of spectral values compared to other structural attributes 98 

such as modularity (Newmans’ Q; Newman 2006)) using advances in machine learning to 99 

construct non-linear models of simulated pathogen spread across a large collection of 100 

empirical animal networks including those from the Animal Social Network Repository 101 

(ASNR) (Sah et al. 2019). The ASNR is a large repository of empirical contact networks that 102 

provides novel opportunities to test the utility of spectral values in predicting spread across a 103 

wide variety of, mostly animal, taxa across a spectrum of social systems -- from eusocial ants 104 

(Arthropoda: Formicidae) to more solitary species such as the desert tortoise (Gopherus 105 
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agassizii). Farmed domestic animals were not included in our analyses. We combined 106 

networks from this resource with other published networks, including badgers (Meles meles) 107 

(Weber et al. 2013), giraffes (Giraffa camelopardalis) (VanderWaal et al. 2014) and 108 

chimpanzees (Pan troglodytes) (Rushmore et al. 2013) to generate a dataset of over 600 109 

unweighted networks from 51 species. We then simulated pathogen spread using a variety of 110 

SIR parameters and harnessed recent advances in multivariate interpretable machine learning 111 

models (MrIML; (Fountain-Jones et al. 2021)) to construct predictive models across SIR 112 

parameter space. As many species were represented by multiple networks, often over 113 

different populations and or timepoints and constructed in different ways (e.g., some edges 114 

reflected spatial proximity rather than direct contact), we included species and network 115 

construction variables in our models to account for these correlations in addition to exploring 116 

the diversity of network structures across the animal kingdom. Our interpretable machine 117 

learning models identify putative threshold values for the vulnerability of a network to 118 

pathogen spread that can be used by practitioners to understand outbreak risk across systems. 119 

 120 

We test how well our network structure estimates of pathogen spread, trained on SIR 121 

simulation results, generalize to more complex pathogen dynamics in the wild  We utilize 122 

two well studied wildlife-pathogen systems to assess how our predictions compare to 123 

empirical estimates of spread; Mycobacterium bovis (the bacterium that causes bovine 124 

tuberculosis (bTB)) in badger populations and devil facial tumour disease (DFTD) in 125 

Tasmanian devil (Sarcophilus harrisii) populations (Hamede et al. 2009). We demonstrate 126 

that using spectral measures of network structure alone can provide a useful proxy for disease 127 

vulnerability with estimates of prevalence comparable to those empirically derived. Further, 128 

we provide a user-friendly app that utilizes our models to provide practitioners with 129 

predictions, for example, of the prevalence of a pathogen across a variety of spread scenarios 130 
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using a user-supplied network without the need for lengthy simulation. The url for this 131 

“Shiny” app is https://spreadpredictr.shinyapps.io/spreadpredictr/. 132 

  133 
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Text Box 1: Terminology used in this paper. 134 

A graph (or “network”) is a collection of nodes and a collection of edges connecting the 135 

nodes in pairs, e.g., nodes x, y joined by edge (x,y). We define the size of the network – 136 

usually n, as the number of nodes (this usage differs from other strict mathematical 137 

definitions, but we feel this is more intuitive).  Two nodes are said to be adjacent if they are 138 

connected by an edge, and the number of vertices adjacent to a given vertex x is called its 139 

degree, deg(x).  Edges may be directed, in which case edge (x,y) is different from edge (y,x), 140 

but in our analyses we treat them as undirected, so (x,y)=(y,x).  Graphs can be represented 141 

naturally by matrices whose rows and columns are indexed by the nodes (1,2,…,n): the 142 

obvious one is the adjacency matrix A, whose (i,j)-th entry Aij is 1 if nodes i and j are 143 

adjacent, and 0 otherwise. A is symmetric and n × n, as are all the matrices in this work. 144 

Another useful matrix is the degree matrix D, in which Dij is the degree of node i if i=j, and 0 145 

otherwise. The Laplacian matrix L is the most complex one we use herein, but is easily 146 

calculated using Lij = Dij – Aij. 147 

The eigenvalues of a matrix are solutions to the matrix equation Mv =  λv, where M is a 148 

matrix and v a vector of the appropriate size. Solving for v yields λ. These eigenvalues, 149 

ordered by their size, form the spectrum of a graph, as derived using any of the matrices just 150 

described.  The Fiedler value of a graph is the second-smallest eigenvalue of L, and the 151 

spectral radius is the largest eigenvalue of A.  152 

Measures of Modularity such as the Newman Q coefficient capture the strength of division 153 

within a network by quantifying the density of edges within and between subgroups. When 154 

there is no division within the network as the density of edges is the same between and within 155 

subgroups Q = 0, whereas higher values of Q indicate stronger divisions (Newman 2006). As 156 

Q scales with network size (small networks being generally less modular), relative 157 
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modularity (Qrel) allows for comparison across network sizes by normalizing Q using the 158 

maximum possible modularity for the network (Qmax) (Sah et al. 2017).  159 

  160 
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Results 161 

 162 

 Diversity of network structures 163 

We identified substantial variation in network structure across animal taxa. The static 164 

unweighted animal social networks in our database ranged from nearly completely 165 

unconnected (Spectral radius λ1 ~ 1, Fiedler value ~0, not included in our predictive models) 166 

to highly connected (Spectral radius λ1 ~ 160, Fiedler value ~ 140, Fig. 1). Similarly, the 167 

networks ranged from homogeneous (i.e., not modular, Qrel�=�0, see the Text box for a 168 

definition) to highly modular and subdivided (Qrel�> 0.8,). Our principal component analysis 169 

(PCA) identified key axes of structural variation across empirical networks (Fig. 2). The first 170 

principal component (PC1) distinguished networks that had a large diameter and mean path 171 

length and were highly modular (negative values), from networks with a high mean degree 172 

and transitivity (positive values, Fig. 2, see Table S2). The second principal component (PC2) 173 

separated networks based on network size (number of nodes), maximum degree and the 174 

network duration (i.e., the time period over which the network data was collected, Fig. 2). 175 

The eusocial ant networks (Camponotus fellah, Insecta: Hymenoptera) and mammal 176 

networks tended to cluster separately (Fig. 1), with the other taxonomic classes dispersed 177 

between these groups (Fig. 1) or species (see Fig. S1 for clustering by species). The 178 

networks’ spectral properties (the Fiedler value and spectral radius) explained a unique 179 

portion of structural variance that did not covary with other variables (see Table S1 for vector 180 

loadings and Fig S2 for all pair-wise correlations). We found variables such as mean degree 181 

and transitivity the most correlated with the other variables and were excluded from further 182 

analysis (Tables S2, Fig S2).   183 

 184 
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185 

Fig.1: Examples of networks analysed in this study with a) the lowest spectral radius 186 

(baboons Papio cynocephalus contact network), b) the lowest Fiedler value (voles Microtus 187 

agrestis trap sharing network), c) intermediate spectral radius values but high Fiedler value 188 

(Chimpanzee Pan troglodytes contact network), d) high spectral radius/intermediate Fiedler 189 

value (Camponotus fellah colony contact network) and e) high values of both measures 190 

(another C. fellah colony contact network). The mean values across all networks were 34.80 191 

and 7.31 for the spectral radius and Fiedler value respectively. f) summary of values across 192 

networks (a-e). Silhouettes were sourced from phylopic (http://phylopic.org/). Note that 193 

disconnected nodes were not included in the analysis. 194 

 195 
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 196 

Fig. 2: Principal components analysis (PCA) biplot showing that network structure largely 197 

clusters by taxonomic class. Points are coloured by taxa. Points closer together in Euclidean 198 

space have networks more similar in structure. Points are scaled by network size. The length 199 

and direction of vectors (black arrows) shows how each variable relates to each principal 200 

component with larger vectors having higher loadings on that axis. The PCA was constructed 201 

just using continuous network characteristics. Percentages next to PC scores indicate how 202 

much variability in the data is accounted for by each axis. Cent*: Centralization. See Table 203 

S1 for axis loadings and Fig. S1 for the species-level clustering. See Tables S2 & S3 for 204 

variable definitions. Silhouettes for some of the outlying networks were sourced from 205 

phylopic (http://phylopic.org/). s = scaled. Cent = Centralization. 206 

 207 

Spectral properties predict pathogen spread across epidemic scenarios 208 

 209 

We found that network characteristics alone could predict pathogen transmission dynamics 210 

remarkably well (Figs. 3 & Fig S3). We constructed models in MrIML to predict the 211 

maximum proportion of nodes infected in the network over 100 time steps (hereafter 212 

‘proportion infected’). With these models we could predict the proportion infected in a 213 

network using both spectral measures and species identity alone (Fig. 3a). Network size, 214 

relative modularity and centralization, for example, were less important in predicting 215 

proportion infected across all SIR model parameter combinations tested (Fig. 2a). Nonlinear 216 

relationships were likely important for prediction of proportion infected, as random forests 217 
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(RF) had the highest predictive performance overall (Table S4) and substantially 218 

outperformed linear regression in the MrIML framework (root mean square error (RMSE) 219 

0.13 vs 0.03). Variable importance and predictor conditional effects were consistent between 220 

the machine learning algorithms, so we subsequently analysed the best performing RF model. 221 

Across all SIR parameter combinations, we found a nonlinear relationship between 222 

proportion infected and spectral radius, with the average prediction of proportion infected 223 

increasing by ~30% across the range of spectral radius values (holding all other variables 224 

constant in the model, Fig. 3b). In contrast we found a more modest effect of the Fiedler 225 

value, with the proportion of infected only increasing on average ~3% across the observed 226 

range of values for all SIR parameters (Fig 3c). We did find a sharp increase in the proportion 227 

infected in networks when the Fiedler value was less than about 15 (Fig. 3c). However, there 228 

was variation in the relationship between the proportion infected and these spectral values 229 

across transmission (β) and recovery probabilities (γ, Figs. 3d-e). For example, when the 230 

probability of transmission was relatively high (β = 0.2) and recovery low (γ = 0.04) the 231 

proportion infected across networks was ~80% and spectral radius had a relatively minor 232 

effect (Fig. 3d). A network’s spectral radius had a stronger effect when the probability of 233 

recovery was higher (γ = 0.4) across all values of β. The increase in proportion infected when 234 

the Fiedler value was low (< 15) was not apparent when spread was slower and chances of 235 

recovery higher (e.g., β = 0.025 or 0.01, γ = 0.4; Fig 3e). The spectral radius and Fiedler 236 

value patterns overall were similar, with larger values reducing the time-to-peak prevalence 237 

(hereafter ‘time to peak’, Fig. S3). However, modularity played a greater role in our time to 238 

peak models, with the time to peak being longer for more modular networks above a Qrel 239 

threshold of ~ 0.75 (Fig. S4). 240 

 241 
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242 

Fig. 3: Plots showing the predictive performance, variable importance and the functional 243 

form of relationships for our best-performing MrIML proportion infected model. See Table 244 

S4 for model performance estimates across algorithms.  The colour of the labels indicates 245 

what type of predictor it is (blue = spectral, red = non-spectral network structural variables, 246 

gold = network metadata, see Tables S2 & S3). a) Spectral radius and the Fiedler value 247 

(followed by species) are the most important predictors of proportion of individuals infected 248 

across all simulations (importance threshold >0.1) and overall model performance was high 249 

(average R2 = 0.96 and root mean square error (RMSE) = 0.027). b-c) Average predictive 250 

surface showing the relationship between spectral properties and proportion infected across 251 

all epidemic values (95% confidence intervals in grey). Rug plot on the x axis of the panels 252 

on the right shows the distribution of each characteristic across empirical networks. d-e) The 253 

accumulated local effects (ALE) plot revealed that the strongly non-linear relationships 254 

between both spectral properties and proportion infected were mediated by transmission and 255 

recovery probabilities. We chose these SIR parameter values (β = transmission probability, γ 256 

= recovery probability) to ensure major outbreaks occurred on the empirical networks. Net 257 

construct = Network construction method.  258 

  259 
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Simplifying our models with global surrogates 260 

 261 

When we further interrogated our moderate (β = 0.05) transmission models, we found that the 262 

spectral radius and Fiedler value overall also played a dominant role in our predictions of 263 

spread. To quantify the putative mechanisms that underlie our model predictions –  ‘to 264 

decloak the black box’ − and gain insight into possible interactions between predictors, we 265 

constructed surrogate decision trees as a proxy for our more complex RF model. We trained 266 

our surrogate decision tree on the predictions of the RF model rather than the network 267 

observations directly. In each case, the surrogate decision tree approximated the predictions 268 

of our models (thousands of decision trees) remarkably well (Global R2 > 0.95, see (Molnar 269 

2018) for details). The spectral radius and, to a lesser extent, the Fiedler value and modularity 270 

values dominated surrogate trees for all SIR parameter sets (Fig. 5, Figs. S5 & S6). For 271 

example, for networks with a Fiedler value ≥ 0.86 and a spectral radius ≥ 20 (as was the case 272 

for 51% of our networks, Fig. 4b) the estimated maximum proportion of the network infected 273 

was 0.92 (Fig. 4b). The duration over which the data was collected also was included in the 274 

surrogate model, with networks collected over > 6.5 days having higher estimates of 275 

proportion infected (Fig. 4b).  276 

  277 
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 278 

Fig. 4 Global surrogate decision trees for our moderate transmission (β = 0.05) proportion 279 

infected with a) high and b) low recovery probability (γ = 0.4 and 0.04 respectively). 280 

Threshold values of each variable are included in each tree. The boxes at the tips of the trees 281 

indicate the estimates of average peak time or proportion of the network infected across 282 

simulations (top value) and percentage of networks in our dataset to be assigned to this tip. 283 

For example, 50% of our empirical networks had spectral radius values ≥ 26 and for these 284 

networks we found on average, a maximum of 0.76 of the network infected after 100 time 285 

steps. Tip boxes are coloured light to dark blue based on network vulnerability to pathogen 286 

spread (e.g., longer time to peak = light blue). Global fit = R2 for how well the surrogate 287 

model replicates the predictions of the trained model. See Figs. S5 for the complete list of 288 

global surrogate models and Fig. S6 for ‘time to peak’ surrogates. Colour of the label 289 

indicates what type of predictor it is (blue = spectral, red = non-spectral structural variables, 290 

gold = network metadata, see Tables S2 & S3). 291 

 292 

Do our structural estimates generalize to more complex spread scenarios? 293 

To further validate our predictions, we examined how our models predicted M. bovis spread 294 

across badger networks with empirical estimates using Shapley values (Shapley, 1951). 295 

Shapley values are a game-theoretic approach to explore the relative contribution of each 296 

predictor on individual networks (see Methods). While M. bovis in badgers often has a 297 

prolonged latent period and individuals do not typically recover, generally M. bovis is a slow-298 

spreading infection, with an R0 of between 1.1 and 1.3 (Delahay et al. 2013). Thus, we 299 

interrogated our most similar model (β = 0.05, γ = 0.04, R0 = 1.25). Our model predicted the 300 

proportion of infected badgers in the network to be 0.45, which was much lower than the 301 
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average proportion infected across all networks included in our study (0.71, Fig. 5a). This 302 

difference was largely driven by the badger network’s low Fiedler value (0.096, much lower 303 

than the mean of 7.31 across all networks) and, to a lesser degree, by the small spectral radius 304 

(8.10 compared to a mean of 34.8 across all networks, Fig. 5a). This is comparable to 305 

contemporaneous estimates of M. bovis prevalence in this population, e.g., 41% of badgers 306 

tested in the network study tested positive (Weber et al. 2013). 307 

 308 

We further validated our approach using two Tasmanian devil contact networks (calibrated to 309 

reflect potential DFTD transmission) not included in our training data (Fig. 5) and compared 310 

to model estimate of spread to empirical observations in similar populations. Based on our 311 

model that most closely mirrored devil facial tumour disease DFTD dynamics (β = 0.2, γ = 312 

0.04, R0 = 5, see Hamede et al. (2012)) we estimated the proportion infected to be 0.85-0.88 313 

for mating and non-mating seasons respectively. Inputting the devil networks’ Fiedler value 314 

and spectral radius into the corresponding global surrogate model provides an estimate of 315 

0.89 of individuals in the network infected (Fig. 5b). The spectral values were the most 316 

important predictors in this model (Fig. 5c). Even though our simulations were not 317 

formulated to model DFTD (e.g., devils rarely recover from DFTD), our machine-learning 318 

estimates closely predicted the empirical findings for this disease. In comparable populations 319 

across the island where the disease was monitored before the onset of the disease, maximum 320 

prevalence estimates ranged from 0.7-1.0 in for sexually matured devils (≥ 2 y.o.) ~100 321 

weeks after disease arrival (McCallum et al. 2009). Our predictions of proportion infected 322 

were not particularly sensitive to transmissibility estimates as in our model. For example, 323 

with a 50% reduction in the probability of transmission (β = 0.1) our estimate of proportion 324 

infected was still similar to empirical estimates (0.83, Fig. S5a). Taken together, our findings 325 
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show how the spectral values of contact networks offer a valuable and informative 326 

“shorthand” for how vulnerable different animal networks are to outbreaks. 327 

  328 
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 329 

Fig. 5: The spectral radius and the Fiedler underpinned our in-sample prediction of the 330 

proportion infected estimates in our a) badger and b/c) out-of-sample Tasmanian devil 331 

contact networks. a) Shapley values (φ) that quantify how each variable shaped simulated 332 

proportion infected (β = 0.05, γ = 0.04) in an empirical badger network. Negative Shapley 333 

values indicate that the variable reduced the proportion infection relative to other variables 334 

included in the model. See Fig S7 for other Shapley value analyses of other contrasting 335 

networks. b) Surrogate decision tree for the model that best approximated Tasmanian devil 336 

facial tumour disease (DFTD, β = 0.2, γ = 0.04). Red lines indicate the branches of the tree 337 
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corresponding to the spectral values from the left panels. The red outlined box is the 338 

estimated proportion infected for both networks. c) Corresponding variable importance plot 339 

showing the spectral radius and Fiedler value followed by data duration were the most 340 

important predictors in the model. Colour of the labels indicates what type of predictor it is 341 

(blue = spectral, red = non-spectral structural variables, gold = network metadata, see Tables 342 

S2/S3). Panels on the left are the corresponding networks. Net construct = Network 343 

construction method. *: for sexually mature individuals in comparable populations over 344 

similar time scales to the simulations (McCallum et al. 2009).  345 

 346 

Discussion 347 

 348 

Here, we show that the spectral radius and Fiedler value of a network can be a remarkably 349 

strong predictor for population vulnerability to diverse epidemics varying in key 350 

epidemiological parameters. We demonstrate how a powerful machine learning and 351 

simulation approach can effectively predict pathogen outbreak dynamics on a large collection 352 

of empirical animal contact networks. We not only demonstrate the high predictive power of 353 

a network’s spectral properties but also show that our predictions can be a useful tool for 354 

estimating spread in systems with complex disease dynamics. Our findings offer insights into 355 

how nuances in social organisation translate into differences in pathogen spread across the 356 

animal kingdom. Furthermore, our global surrogate models provide animal health 357 

practitioners with an intuitive framework to gain rapid insights into the vulnerability of 358 

populations to the spread of emerging infectious diseases. 359 

 360 

Across real-world contact networks, we found that the networks’ spectral properties (Fiedler 361 

distance and spectral radius) were powerful proxies for pathogen spread. The strong 362 

relationship between spectral radius and epidemic threshold has been demonstrated for 363 

theoretical networks (Prakash et al. 2010) and has been used to assess vulnerability of cattle 364 

movement networks to spread of bovine brucellosis (Darbon et al. 2018). We expand these 365 

findings to show that the spectral radius is the most important predictor in our models of 366 

epidemic behaviour across diverse animal social systems. While we examined only SIR 367 
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propagation through our networks, theoretical results suggest that our findings will extend to 368 

other propagation mechanics such as SIS, (susceptible-infected-susceptible) and SEIR 369 

(susceptible, exposed, infected, recovered) (Prakash et al. 2010). Given that both the badger 370 

M. bovis and DFTD systems have more complex propagation mechanics compared to SIR, 371 

our models could still predict disease dynamics of both disease systems reasonably well. We 372 

that note that for DFTD, disease simulation models that assume homogeneous mixing of 373 

hosts provide similar estimates of disease dynamics to network-based simulations (Hamede et 374 

al. 2012). However, Hamede et al. (2012) found the outcome of simulated DFTD epidemics 375 

sensitive to estimates of latent period and transmissibility parameters, whereas our network 376 

structure approach provided realistic estimates of prevalence with minimal reliance on 377 

parameter values.  378 

 379 

For some networks and epidemiological parameters, spectral radius alone was not sufficient 380 

to predict spread, and the Fiedler value and modularity still played an important role. The 381 

Fiedler value and spectral radius of the networks were correlated, but below our ρ = 0.7 382 

threshold (Fig. S2). One potential reason for this is that the Fiedler value seems to be less 383 

sensitive to nodes with high connectivity compared to the spectral radius (Fig. 1); however, 384 

the mathematical relationship between these two algebraic measures of connectivity is poorly 385 

understood (Tang & Priebe 2016). Combined, our global surrogate models and accumulated 386 

effects plots pointed to networks such as the devil networks with spectral radii > ~8 and 387 

Fiedler values > 1 being more vulnerable to pathogen spread (the effect of the Fiedler value 388 

on spread was much weaker overall). The spectral properties were dominant for the fast-389 

spreading pathogen models (e.g., example system), whereas network size and modularity 390 

played a more important role in our models for more slowly spreading pathogens (e.g., Figs. 391 

S5 & S6). 392 
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 393 

When modular structure played a role in disease spread in our study, we detected similar 394 

patterns to those found by Sah et al. (2017). As in Sah et al. (2017), we found that epidemic 395 

progression was only slowed in highly modular networks (Qrel > ~0.7) when the probability 396 

of transmission between nodes was low (β > 0.025). Such subdivided networks were rare in 397 

our data and are commonly associated with high fragmentation (small groups or sub-groups) 398 

and high subgroup cohesion (Sah et al. 2017). The reduced importance of modularity relative 399 

to spectral radius is due to within-group connections being crucial for epidemic outcomes in 400 

many contexts (Sah et al. 2017). Spectral values may have higher predictive performance, as 401 

they summarize connectivity across the networks including between- and within-group 402 

connections. Interpreting how modularity alone impacted epidemic outcomes was difficult on 403 

these empirical networks, as all modularity measures were strongly correlated with mean 404 

degree, diameter and transitivity (Fig. 2, Fig. S2). The extent of these correlations can vary 405 

wildly based on other aspects of network structure and they all have interacting effects on 406 

disease dynamics (Zhang & Zhang 2009; Ames et al. 2011). However, the spectral radius 407 

captures epidemiologically important aspects of network structure on its own without having 408 

to untangle whether different aspects of network structure are correlated.  409 

 410 

More broadly, our study provides a framework for how interpretable machine learning can 411 

predict spread across networks for a wide variety of epidemic parameters. While our RF 412 

MrIML model had much higher predictive performance compared to the corresponding linear 413 

models, further investigation of these models provided critical insight into how network 414 

structure impacted pathogen spread. This framework could identify general trends of disease 415 

vulnerability, specific thresholds for pathogens with certain characteristics, as well as the 416 

drivers of spread for individual networks.  417 
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 418 

To help practitioners apply our model to different host-pathogen systems, we developed an 419 

R-Shiny app (https://spreadpredictr.shinyapps.io/spreadpredictr/). Our web app allows users 420 

to make predictions of spread for diverse transmission and recovery probabilities on a contact 421 

network of interest without the need for simulation. Even when the underlying mechanism of 422 

spread was mis-specified, as with our case studies, our model could provide reasonable 423 

estimates of the proportion of the population infected that align closely with empirical data. 424 

While currently limited to pathogens with SIR transmission dynamics, future versions of the 425 

app will include, for example, SI and SEIR mechanics. We stress that for practitioners to 426 

make accurate predictions for a particular pathogen, contact definitions and the duration of 427 

data should be calibrated or multiple thresholds for what constitutes a transmission contact 428 

assessed (see Craft 2015).  For example, for the giraffe network we included edges that 429 

represented individuals seen once together over a period of a year, and predictions of 430 

pathogen spread on this network would likely be inflated for pathogens requiring more 431 

sustained contact (VanderWaal et al. 2014). Nonetheless, this study shows the utility of 432 

linking network simulation and interpretable machine learning approaches to tease apart the 433 

drivers of spread across empirical wildlife networks 434 

 435 

As this is a broad, comparative study of simulated pathogen spread on 603 empirical 436 

networks across taxonomic groups, we made important simplifying assumptions. For 437 

example, as there were large differences in how the empirical network edges were weighted 438 

across taxa (e.g., some networks were weighted by contact duration and others by contact 439 

frequency) our approach treated all contacts as equal in unweighted networks, as is done in 440 

similar studies (Ames et al. 2011; Sah et al. 2017). We also simulated spread across static 441 

networks, making the assumptions (i) that aggregated networks are representative or social 442 
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patterns at epidemiologically-relevant timescales and (ii) that network change happens more 443 

slowly than pathogen spread. Including predictions of spread that account for the dynamic 444 

nature of contact structure and pathogen-mediated changes in behaviour is an important 445 

future extension of this work. However, applying dynamic network models such as temporal 446 

exponential random graph models (Krivitsky & Handcock 2014) to estimate spread is 447 

computationally demanding and challenging in a comparative setting due to idiosyncrasies in 448 

the model-fitting process. While of high predictive value, our models did not capture all 449 

aspects of uncertainty. For example, we assumed each network was fully described, with no 450 

missing nodes or edges, which is almost always not the case for wildlife studies. How 451 

sensitive spectral properties are to missing data is an open question. However, promisingly, 452 

removing edges from ecological networks with high Fiedler values does not appear to 453 

strongly impact the stability of the network (Kumar et al. 2019). 454 

 455 

Another limitation of this study is that our models did not account for uncertainty in 456 

predictions. Currently, more probabilistic models such as BART (Bayesian Additive 457 

Regression Trees) (Carlson 2020) are not available in the MrIML framework, but future 458 

extensions may allow for methods such as BART to be incorporated (Fountain-Jones et al. 459 

2021). However, one advantage of our approach is that for the RF model (proportion 460 

infected), host species (and the other categorical variables, see Table S3) could be added as a 461 

categorical predictor rather than hot-encoded set of 43 predictors (one binary predictor for 462 

each species (-1)). This simplified interpretations about how host species affect pathogen 463 

spread differently, while accounting for nonindependence of intra-species networks (e.g., 464 

networks for host species A from different populations of that species or from different 465 

timepoints) (Sah et al. 2019). A large proportion of the networks (~150) came from one taxon 466 

(C. fellah); removing this one taxon did not qualitatively change our findings. While this 467 
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study demonstrates the power of repositories such as the ASNR, there are large biases in the 468 

taxa covered that must be accounted for in model structure. Starting to fill in these taxonomic 469 

gaps in a systematic way will increase the utility of comparative approaches such as ours and 470 

make them generalizable across taxa and populations. 471 

 472 

This paper provides a significant step towards a spectral understanding of pathogen spread in 473 

animal networks. In particular, we show that the spectral radius of an animal network is a 474 

powerful predictor of spread for diverse hosts and pathogens that can be a valuable shortcut 475 

for stakeholders to understand the vulnerability of animal networks to disease. We also 476 

demonstrate how multivariate interpretable machine learning models can provide novel 477 

insights into spread across scales. Moreover, this study identified the key axes of network 478 

structural variation across the animal kingdom that can inform future comparative network 479 

research. As rapid advances in location-based tracking and bio-logging (Katzner & Arlettaz 480 

2020) make network data more readily available to wildlife managers, approaches like this 481 

one will be of increasing value.  482 

 483 

Methods 484 

Networks 485 

We downloaded all animal contact networks from the ASNR on 12th January 2022 (Sah et al. 486 

2019) and combined these with other comparable published animal contact networks 487 

(Rushmore et al. 2013; Weber et al. 2013; VanderWaal et al. 2014). We binarized each 488 

network, extracted the largest connected component, and excluded networks with fewer than 489 

10 individuals. This left us with 603 networks from 43 species. 490 

 491 
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From each network we calculated a variety of network structure variables using the R 492 

package igraph (Csárdi & Nepusz 2006) (see Table S2). As these networks were constructed 493 

using a wide variety of techniques, we also extracted metadata from the ASNR or the 494 

publication associated with the network (Table S3). These variables were also added to the 495 

models. We used Principal Components Analysis (PCA) biplots to examine the drivers of 496 

variation in network structure and visualise how networks clustered by taxonomic class. We 497 

removed networks with missing metadata (8 networks) and screened for correlations between 498 

variables. As many of the machine learning variables are less sensitive to collinearity 499 

(Fountain-Jones et al. 2019) we used a pairwise correlation threshold of 0.7 and removed 500 

variables from the pair with the highest overall correlation (Table S2). 501 

Simulations 502 

 503 

To simulate the spread of infection on each network we used our R package “EpicR” 504 

(Epidemics by computers in R; available on GitHub at https://github.com/mcharleston/epicr). 505 

The simulations use a standard discretisation of the SIR model, in which time proceeds in 506 

“ticks,” for example representing days. Initially one individual was chosen at uniform random 507 

to be infected (I) and all others were susceptible (S). At each time step, one of two changes of 508 

state can happen to each individual (represented by a node), depending on its current state.  509 

An ‘S’ individual will become infected (I) with a probability (1 − (1 −  β)k), where k is the 510 

number of currently infected neighbours it has, or otherwise stay as S; an ‘I’ individual will 511 

recover (R) with probability γ or remain as I. Recovered (R) individuals stay as R. 512 

In classical deterministic SIR models as a set of differential equations, β and γ are 513 

instantaneous rates; here, they are probabilities per time step, so at a coarse level, they are 514 

comparable. 515 
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On each network, we performed 1000 simulations using different combinations of 516 

transmission (β = 0.01, 0.025, 0.05, 0.1, 0.2) and recovery probabilities (γ = 0.04, 0.4). We 517 

chose these values to broadly reflect a range of scenarios from high to low transmissibility 518 

and slow to fast recovery (Leung 2021) and ensure large outbreaks (>10% on individuals 519 

infected, see Fig S8 for the analysis with a wider variety of recovery rates) (Sah et al. 2017). 520 

For each simulation we recorded two complementary epidemic measures to capture disease 521 

burden and speed of spread: a) the maximum prevalence reached, or the maximum proportion 522 

of individuals infected in the network after 100 time steps and b) time to outbreak peak (i.e., 523 

which time step had the maximum number of infections). We chose 100 time steps to ensure 524 

that the epidemic ended and there were no remaining infected nodes. One randomly chosen 525 

individual was infected at the beginning of the simulation. The average maximum proportion 526 

infected and time to outbreak across all simulations for each parameter combination were 527 

used as the response variables in the machine learning models, 528 

 529 

Machine learning pipeline 530 

 531 

We used a recently developed multi-response interpretable machine learning approach (Mr 532 

IML, Fountain-Jones et al. 2020) to predict outbreak characteristics using network structure 533 

variables. Our MrIML approach had the advantage of allowing us to rapidly construct and 534 

compare models across a variety of machine-learning algorithms for each of our response 535 

variables as well as assess generalized predictive surfaces across epidemic parameters.  536 

 537 

To test the robustness of our results, we compared the performance of four different 538 

underlying supervised regression algorithms in our MrIML models. We compared linear 539 

models (LMs), support vector machines (SVMs), random forests (RF) and gradient boosted 540 
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models (GBMs) as they operate in markedly different ways that can affect predictive 541 

performance (Fountain-Jones et al. 2019; Machado et al. 2019). Categorical predictors such 542 

as ‘species’ were hot-encoded for some models as needed (see Table S4). As both types of 543 

responses in our models were continuous, we compared the performance of each algorithm 544 

using the average R2 and root mean squared error (RMSE) across all responses (hereafter, the 545 

‘global model’). As we included models that were not fit using sums of squares, our R2 546 

estimate depended on the squared correlation between the observed and predicted values 547 

(Kvålseth 1985). As ants (Insecta: Formicinae) were over-represented, we compared model 548 

performance and interpretation with and without these networks. To calculate each 549 

performance metric, we used 10-fold cross validation to prevent overfitting each model. We 550 

tuned hyperparameters for each model (where appropriate) using 100 different hyper-551 

parameter combinations (a 10×10 grid search) and selected the combination with the lowest 552 

RMSE. The underlying algorithm with the highest predictive performance was interrogated 553 

further.  554 

 555 

We interpreted this final model using a variety of model-agnostic techniques within the 556 

MrIML framework. We assessed overall and model-specific variable importance using a 557 

variance-based method (Greenwell et al. 2018). We quantified how each variables alters 558 

epidemic outcomes using accumulated local effects (ALEs) (Apley & Zhu 2016). In brief, 559 

ALEs isolate the effect of each network characteristic on epidemic outcomes using a sliding 560 

window approach calculating the average change in prediction across the values range (while 561 

holding all other variables constant) (Molnar 2018). ALEs are less sensitive to correlations 562 

and straightforward to interpret as points on the ALE curve are the difference from the mean 563 

prediction (Apley & Zhu 2016; Molnar 2018; Fountain-Jones et al. 2021).  564 
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 565 

To further examine the predictive performance of our black-box models (SVM, RF and 566 

GBM) we calculated a global surrogate decision tree (hereafter ‘global surrogate’) to 567 

approximate the predictions of our more complex trained models. Global surrogates are 568 

generated by training a simpler decision tree to the predictions (instead of observations) of 569 

the more complex ‘black box’ models using the network structure data.  How well the 570 

surrogate model performed compared to the complex model is then estimated using R2. See 571 

Molnar (2018) for details. 572 

 573 

Lastly, we gained more insight into model behaviour and how network structure impacted 574 

epidemic outcomes on individual networks, including by calculating Shapley values 575 

(Štrumbelj & Kononenko 2014). Shapley values use a game theoretic approach to play off 576 

variables in the model with each other based on their contribution to the prediction (Shapley 577 

1953). For example, negative Shapley values indicate that the observed value ‘contributed to 578 

the prediction’ by reducing the proportion infected or time to peak in an outbreak for a 579 

particular network. See Molnar (2018) for a more detailed description and (Fountain-Jones et 580 

al. 2019; Worsley-Tonks et al. 2020) for how they can be interpreted in epidemiological 581 

settings.  582 

 583 

We validated our results using networks with well-documented disease dynamics. The 584 

European badger network was included in our training data, and we selected the propagation 585 

model with a slow recovery rate (γ = 0.04) and intermediate transmissibility (β = 0.05) that 586 

provided an equivalent/similar R0 (1.1-1.3) to M. bovis in the studied badger population 587 

(Delahay et al. 2013). It should be noted here that M. bovis infection has SEI(R)(D) 588 
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dynamics, being frequently latent in badgers for long periods with infection only resolving in 589 

some individuals (the most infectious individuals with progressed disease have elevated 590 

mortality (Corner et al. 2011)). We compared the proportion infected returned by our model 591 

to various contemporaneous estimates of M. bovis prevalence (Delahay et al. 2013; Buzdugan 592 

et al. 2017) in the long-term study that contact network data were collected in (McDonald et 593 

al. 2018). 594 

The Tasmanian devil networks were not included in the training data. To compare 595 

predictions, we extracted the predict function from the model that was the most similar to 596 

estimates of DFTD dynamics based on empirical data (β = 0.2, γ = 0.04, R0 = 5) (McCallum 597 

et al. 2009; Hamede et al. 2012). DFTD has SEI(D) dynamics in devil populations, however, 598 

accurately estimating the latent period is impossible, as there is (as of May 2022) no 599 

diagnostic tool to detect DFTD prior to visual detection of the tumours (Hamede et al. 2012). 600 

As we wanted to make predictions on a species not included in our dataset, we reran the 601 

models excluding the species predictor and the model performance, and results were very 602 

similar. See https://github.com/nfj1380/igraphEpi for our complete analytical pipeline. 603 
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