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By abruptly changing the size and composition of a population, bottlenecks can dramatically
alter evolutionary trajectories. In the traditional picture, the faster a population recovers from
a bottleneck, the more rapidly finite-size intrinsic fluctuations are suppressed and therefore the
greater the likelihood of fixation to the attractor within whose basin the bottleneck constrained the
population, initially. We now argue that this intuition is misleading; demonstrating that precisely
the opposite behaviour is also possible. Depending critically on the rate of mutation, increased
population growth can drive fixation to attractors that are different to that from whose basin
it started. These findings are explained in terms of statistically distinct regimes of demographic
behaviour, drawing parallels with the notion of non-equilibrium phase transitions. Such dynamical
demographic phases are delimited by sharp transitions in time, as a population grows, and ultimately
result from a time-dependent antagonism between mutation and the stochastically-induced effects
of frequency-dependent birth.

I. INTRODUCTION

Population bottlenecks are widely accepted as an im-
portant facet in the modern understanding of evolution.
They involve a steep decline in population size due to ex-
ogenous events, including disease, changes to the climate,
or population fracture (often referred-to as a founder
event) [1, 2]. Crucially, bottlenecks typically also alter
a population’s composition, and have been implicated in
the reduction of both genetic and phenotypic variation in
organisms across a range of scales, such as viruses [3, 4],
song sparrows [5, 6], tropical surgeonfish [7], elephant
seals [8] and humans [9].

However, despite such putative importance, the ques-
tion of how a bottleneck influences evolution is still
largely open; there is currently a lack of both represen-
tative models and/or classifying phenomenology. This is
particularly relevant since post-bottleneck recovery is of-
ten characterised by rapid and/or sustained population
growth, which several pioneering theoretical works have
now shown can lead to a variety of counter-intuitive be-
haviours. These include driving novel demographic tran-
sients [10]; facilitating cooperation [11, 12], even when
deterministic selection favours defection [13]; and alter-
ing the success of invading variants [14].

An important factor common to these studies, and in-
deed all growing populations that are well-mixed, is that
the standard deviation of intrinsic fluctuations decreases
in time with the inverse square root of the growing pop-
ulation size, N . In the context of bottlenecks, and their
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evolutionary role, this is naively understood to give rise
to three monotonic effects: faster rates of recovery will
more rapidly suppress fluctuations, increasing the likeli-
hood that a given population will fixate to the attractor
within whose basin it started its recovery; a larger pop-
ulation at the start of recovery will similarly result in an
increased likelihood of such fixation, and; the nearer a
population is, at the start of recovery, to an attractor,
the greater the likelihood of fixation to that attractor.

We now challenge all three aspects of this picture us-
ing a growing variant of the otherwise well-studied evo-
lutionary game— the Iterated Prisoner’s Dilemma (IPD)
under replicator-mutator dynamics [15, 16]. Specifically,
we show that the above phenomena are only true whilst
mutation is greater than a function of the population’s
growth rate. When mutation rates are below this thresh-
old, decreasing intrinsic fluctuations leads to a variety
of novel non-monotonic behaviours, including those that
reverse the aforementioned understanding of how a bot-
tleneck might impact evolutionary outcomes. For exam-
ple, increasing the rate of growth can drive fixation to
an attractor that is different to that from whose basin it
started.

Ultimately, our findings can be traced back to an oth-
erwise overlooked antagonistic relationship between two
generic aspects of biological populations; birth rates that
are frequency-dependent (i.e., they depend on relative
fitness and abundance) and mutation. The former leads
to intrinsic fluctuations that are state-dependent, gener-
ically resulting in stochastically-induced ‘forces’ that
drive the population towards homogeneity. The latter,
by contrast, drives a population towards heterogeneity.
In this sense, despite being typically seen as a source of
stochasticity, mutation can act to suppress the effects of
another source of stochasticity: intrinsic fluctuations due
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to replication.
Importantly, the relative magnitude of these effects

changes in time, since stochastically-induced effects re-
duce as a population grows, whilst the effects of mu-
tation do not. We show that this results in three se-
quential, statistically distinct regimes of demographic
behaviour. These can be explained in terms of effec-
tive non-equilibrium phases of fixed-N systems, which
are reminiscent of the classical study of non-equilibrium
phase transitions [17, 18], previously implicated across a
number of areas, including directed percolation [19], self-
organisation of particle suspensions [20], surface growth
[21], epidemiology [22] and even hard sphere packing [23].
These are shown to be delimited by abrupt transitions at
critical values of a control parameter ∼ logN , implying
sharp transitions in time when populations grow expo-
nentially.

When seen through this lens, the rates of popula-
tion growth and mutation together alter the character
and duration of such regimes. Considering that i) the
stochastically-induced forces demonstrated here are a
general feature of frequency-dependent replication, and
ii) demographic phases of this kind are likely to be char-
acteristic of any well-mixed population with asymmetric
attractors, we believe that our framework may prove an
important paradigm for understanding the coupling be-
tween population growth, mutation and evolution, more
broadly. A pertinent example is the study of quasis-
pecies, such a RNA viruses, which are synonymous with
frequent bottlenecks interspersed with periods of rapid
growth.

II. RESULTS

Our results are organised as follows. In Section II A we
introduce a model for understanding recovery from bot-
tlenecks; a growing variant of the well-studied Iterated
Prisoner’s Dilemma (IPD) under replicator-mutator dy-
namics [15, 16]. We demonstrate that there are only three
possible outcomes in the long-time limit: fixation on one
of the two attractors or extinction. In Section II B we
compute the likelihood of such fixation as a function of
bottleneck (initial conditions), and the rates of growth
and mutation. This shows that growth and mutation
can critically dictate the impact of a given bottleneck
on evolutionary outcomes (long-term fixation probabili-
ties), and illustrates both traditional monotonic fixation,
and novel non-monotonic regimes. To understand this
non-monotonicity, Section II C outlines how dynamical
behaviour can be characterised by one of three effec-
tive non-equilibrium phases, dependent on the popula-
tion size. These are:

1. a stochastically-induced phase, at small population
sizes, where state-dependent fluctuations due to
frequency-dependent births dominate, driving the
system, temporarily, towards homogeneity;

2. an asymmetric phase at intermediate population
sizes, where crossings between the two basins of
attraction are overwhelmingly likely to be in one
direction only, and;

3. a locked-in phase, at large population sizes, where
escape from either basins of attraction is extremely
unlikely.

Section II D then shows how a growing population ex-
hibits these phases sequentially, in a manner controlled
by the rates of growth and mutation. Finally, Section II E
validates this conjecture by satisfactorily reconstructing
the outcome statistics of Section II B using a decompo-
sition of conditional probabilities motivated by the ob-
served dynamical phases.

A. Growing frequency-dependent IPD

The frequency-dependent IPD is a well-established
evolutionary game involving three strategies. It abstracts
the key facets of biological evolution and population dy-
namics (e.g., birth, death, and mutation) into a tractable
framework whereby the fitness of individuals is deter-
mined by their relative successes and/or failures when
playing each other in the repeated game, the IPD.

In the classical formulation, each player of the repeated
IPD assumes one of three strategies: “always cooper-
ate” (AllC), who cooperate in every round; “always de-
fect” (AllD), who defect in every round, or; “tit-for-tat”
(TFT), who default to cooperation for the first round and
then, at a small complexity cost, copy their opponents’
moves thereafter. In a single repeated game, players ac-
cumulate payoff over the rounds according to the stan-
dard Prisoner’s Dilemma rules: if both players cooperate,
they receive a larger pay-off than if they both defect, but
if one player cooperates and the other defects, then the
defector receives the highest possible pay-off whilst the
cooperator gets the lowest payoff. The accumulated pay-
offs for an m-round repeated game are encoded by the
matrix [15]:

AllC AllD TFT( )
AllC Rm Sm Rm
AllD Tm Pm T + P (m− 1)
TFT Rm− c S + P (m− 1)− c Rm− c

where T > R > P > S and R > (T + S)/2. We use
T = 5, R = 3, P = 1, S = 0.1, and c = 0.2.

This game is then set against a backdrop of birth,
death and mutation (Fig. 1). With a rate b, the frac-
tion of players born into a given strategy is proportional
to the fraction of the total pay-off accumulated by that
strategy when all players play each other. This is given
by fiN

i/ϕ, where

fi =

∑3
j=1 aijN

j − aii
N − 1

, (1)
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FIG. 1. The growing frequency-dependent IPD: a toy
model for bottleneck recovery via population growth.
By de-coupling the rates of birth and death in the frequency-
dependent IPD [15], we adopt a model that combines the
notions of frequency-dependence and mutation with that of
population growth (see main text for definitions of rates). We
ask: what is the long-term effect of a population bottleneck?
Specifically, how does it influence evolutionary outcomes, and
how does this change with the rate at which the recovering
population grows?

is the average fitness of a given strategy when played
against the whole population (including individuals of
the same strategy). Here, Latin indices denote the three
different strategies, i.e., AllC→ 1, AllD→ 2 and TFT→ 3
such that the aij are the components of the above payoff
matrix and N i is the number of individuals playing each
strategy. In our analysis, but not in simulations, we use
the simplification that

fi =

∑3
j=1 aijN

j

N
, (2)

which, although including self-interactions, still retains
all the relevant features associated with the IPD [16].

In either case, the mean fitness is ϕ =
∑3
i=1 fiN

i/N .
As a result, the higher the relative fitness associated
with a strategy, the more likely that individuals are born
with that strategy. A small fraction µ of births further
undergo mutation and are assigned a different strategy.

Death also occurs at random, with a rate d.
Choosing a population birth rate b that is greater than

the death rate d gives rise to unbounded exponential (i.e.,
Malthusian) population growth (Fig. 2a). This rapidly

suppresses O(1/
√
N) fluctuations and converges to well-

studied deterministic behaviour (represented on the unit
simplex in Fig. 2a, inset). In particular, for values of mu-
tation rate µ in the interval 10−7.5≤µ≤ 10−2.5, there are
two stable deterministic attractors [15]: a stable ‘AllD’
fixed point, where a small fraction of TFT players (who
mutually cooperate) are exploited by a large population
of AllD defectors, and; a stable limit cycle around an
unstable ‘mixed-strategy’ fixed point (Fig. 2b & Supple-
mentary Information, Sec. 2). The latter is characterised
by a three-phase cycle whose handedness is anti-clockwise
in the traditional presentation of the state-space simplex;
players of TFT can out-compete those playing AllD due
to their capacity for mutual cooperation, however: they
are then susceptible to invasion by players of AllC due
to the complexity cost, whereby; AllC players can be ex-
ploited by those playing AllD, completing the cycle.

As a consequence, only three outcomes are possible as
t→∞. Either i) the population goes extinct in the early
stages due to finite size fluctuations (Figs. 2a-black &
c) or, its demographic mix converges on ii) the mixed-
strategy limit cycle (Figs. 2a-blue & d) or iii) the AllD
fixed point (Figs. 2a-red & e). This justifies our choice
of the growing IPD as representative model: it exhibits
both a fixed point and a limit cycle— two of the most
common features of any model of population dynamics—
and an asymmetric simplex, which is arguably a feature
of any real world setting.

B. Statistics of evolutionary outcomes

Like most models of population dynamics, the grow-
ing IPD is both non-linear and time-inhomogeneous,
and thus resists most standard approaches to probabilis-
tic analysis. Computing the statistics of the aforemen-
tioned t→∞ outcomes—i.e., the fixation probabilities—
therefore involves using a high performance computing
facility [24] to perform stochastic simulations.

Specifically, we employ a hybrid Gillespie-Itô approach
(see Supplementary Information, Sec. 1) to approximate
the following fixation probability:

pAllD = lim
t→∞

Pr
{
nt = AllD-fp |N0, Nt′ > 0 ∀ t′ ≤ t

}
,

(3)
where ntNt = N t = {NAllC

t , NAllD
t , NTFT

t }. This is the
limiting probability, after long times, that the system
converges to the AllD fixed point, given specified post-
bottleneck initial conditions, and conditioned on popula-
tions that do not become extinct.

The results demonstrate several interesting features.
For instance, choosing n0 to be the unstable mixed-
strategy fixed point, we see that pAllD depends on both
the rate of population growth and the rate of muta-
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FIG. 2. Barring extinction, recovering populations fixate on one of two deterministic attractors. Projecting the
dynamics of the growing IPD (panel a) onto the unit simplex (panel a, inset) demonstrates O(1/

√
N) intrinsic fluctuations that

decrease as the population grows in time. Since overall population growth is exponential (with rate b−d) the system converges
on canonical deterministic dynamics as t→∞ (panel b, colours represent the direction of deterministic flows). This results
in only three different evolutionary outcomes. Either, the population goes extinct (panel a in black, panel c), or the system
fixates on one of the two deterministic attractors: the mixed-strategy limit cycle (panels a in blue, panel d) or the AllD fixed
point (panels a in red, panel e). The statistics of these two latter outcomes are dictated not only by the founding population,
but by fluctuations. These determine the likelihood of crossing the separatrix that marks the boundary between the two basins
of the stable attractors (dashed, panel b). Lower-case font represents population fractions, e.g., nAllD = NAllD/N .

tion (Fig. 3a). Similarly, fixing the rates of population
growth and mutation reveals sensitivity to initial condi-
tions, where pAllD depends on both initial demographic
mix, n0, and initial population size, N0 (Figs. 3b-g).

The parameter space of mutation and growth rates can
moreover be divided into two qualitative regions (panel
a, red dashed line).

In the upper region, behaviour agrees with the
monotonic expectation that faster growth rates reduce
O(1/

√
N) intrinsic fluctuations more rapidly and there-

fore increase the likelihood of fixation within the same
basin of attraction that the system started (panel a).
Similarly, as the initial population size, N0, increases,
the system experiences fewer large fluctuations at early
times and hence this also increases the likelihood of fixa-
tion within the starting basin of attraction (Figs. 3b-d).

In the lower region, however, behaviour is more
complex. There are high likelihoods of an AllD
outcome at both low (b− d. 0.01) and intermediate
(0.03. b− d. 0.07) rates of growth (panel a). This re-
sults in a non-monotonic dependence of pAllD as a func-
tion of population growth. That is, despite more rapidly
reducing the fluctuations that are ostensibly required to
cross the separatrix between mixed-strategy and AllD
basins, growth can actually increase the likelihood of fix-
ating on the AllD fixed point. Similarly, rather than
decreasing the likelihood of crossing the separatrix and

fixating there, increasing N0 can actually increase this
likelihood for certain initial states, confounding expec-
tations regarding the role of fluctuations at early times
when populations remain small (Figs. 3e-g).

In the context of population bottlenecks, this demon-
strates that the long-term ramifications of reducing a
population to a particular size and demographic mix can
depend, critically, on the rates of post-bottleneck growth
and mutation.

C. Effective non-equilibrium phases

To understand the non-trivial behaviour in Fig. 3, we
repeatedly simulate the fixed population size IPD (Sup-
plementary Information, Secs. 1 & 7), computing a so-
called empirical distribution [25]. Specifically, we calcu-
late the mean fraction of time spent in the AllD basin,

F =

〈
1

T

∫ T

0

1nt∈AllD-b dt

〉
N

, (4)

where 1 is the indicator function, N denotes the size of
the ensemble over which the average is taken, and the
integration is understood in the Itô sense. The time
T > (logNmax) /(b − d) exceeds the entire duration of
our growing simulations (which we stop at Nmax = 1010)
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FIG. 3. Rates of growth and mutation critically alter how a given bottleneck translates into fixation probabilities.
For a range of initial conditions, growth and mutation rates, we use repeated Gillespie-Itô simulations to compute pAllD, the
probability that a growing population will fixate on the AllD fixed point. Choosing the initial demographic mix as the mixed-
strategy fixed point, we see that pAllD depends on both the rate of population growth and the rate of mutation (panel a).
Conversely, fixing the rates of growth and mutation, pAllD also depends on both the initial demographic mix n0 (panels b, c,
e & f) and the initial population size, N0 (panel d & g). Behaviour can be qualitatively classified into two regions separated
by the red dashed line (panel a). In the upper region, behaviour agrees with expectations: higher rates of growth more rapidly

suppress O(1/
√
N) intrinsic fluctuations and therefore increase the likelihood of fixation within the basin of attraction that

the system started (panel a). Increasing the initial population size reduces the likelihood of large fluctuations at early times,
therefore exacerbating this effect (panels b-d). In the lower region, behaviour is more complex: there are high likelihoods of
an AllD outcome at both low (b− d. 0.01) and intermediate (0.03. b− d. 0.07) rates of growth (panel a). This results in
a non-monotonic dependence of pAllD on b − d, which implies that population growth can actually increase the likelihood of
crossing the separatrix between the two basins of attraction, despite more rapidly suppressing O(1/

√
N) fluctuations. There

is a similarly non-trivial structure to the effects of initial demographic mix on pAllD where, for certain n0, an increase in N0

actually causes pAllD to increase rather than decrease (representative initial states s′′ and s′, respectively, panels e-g).

and represents an effective cutoff, so that the statistics
of fixed-size simulations are not skewed by events that
are highly unlikely to occur in the growing simulations
(i.e., with characteristic rates � 1/T ). Such a large but
finite T therefore aims to capture the average transient
behaviour of a growing population at a particular N .

Our results (Fig. 4a) are suggestive of a large deviation
principle, such that p(F | N ) � exp [−N Iµ (FN )], where
Iµ is a convex rate function. Although determining the
precise functional form of Iµ is considered out-of-scope
for this article, our data suggests that it has only three
zeros, despite varying N over ten orders of magnitude:

arg min Iµ (F ) ≈


0.5, ∀ N ≤ 102.7

0, ∀ 102.7 < N < 1/µ

1, ∀ N > 1/µ

. (5)

This means that, depending on the population size, there
are three statistically distinct types of characteristic de-
mographic behaviour. Due to the finite size of T , we call
these effective non-equilibrium phases. The three effec-
tive phases are characterised as follows:

1. Stochastically-induced phase— Demographic tra-
jectories at small population sizes are characterised

by large intrinsic fluctuations and an intermedi-
ate value of F (Fig. 4a in magenta, Figs. 4b &
c). Fluctuations are both correlated and state-
dependent; features that are captured by the sym-

metric 3 × 3 correlation matrix, B†ij , that can be
obtained by performing a Van Kampen system-size
expansion [26] and projecting the results onto the
unit simplex using Itô’s lemma (Fig. 4b & c, orange
crosses, and Supplementary Information, Sec. 5).
The frequency-dependent nature of births means
that fluctuations at the centre of the simplex are
large and isotropic, whilst the components normal
to the boundaries decrease rapidly as the edges
and corners are approached. This gives rise to
stochastically-induced effects [27, 28], where fluctu-
ation gradients bias stochastic trajectories, driving
them towards the simplex edges and corners, on av-
erage (Fig. 4b & c and Supplementary Information

Secs. 3- 5). Despite such overall behaviour, B†ij is

not symmetric under the interchange of nAllC, nAllD

and nTFT, and stochastic trajectories retain char-
acteristics encoded by the payoff matrix; including
a bias for anti-clockwise motion, and a compara-
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FIG. 4. Effective non-equilibrium phases. When characterised by the fraction F (of a large but finite time) that trajectories
spend in the basin of the AllD fixed point, repeated simulations of the IPD at fixed population sizes demonstrate three distinct
regimes of demographic behaviour (panel a). When population sizes are small, fluctuations are dominant, and the separatrix

can be crossed in both directions (circles, panels b & c). Eigenvalues of the projected correlation matrix, B†ij indicate that the
magnitude and bias of the fluctuations depend on demographic mix (orange crosses, panels b & c). Generally, this gives rise
to fluctuation gradients that drive the system towards the simplex edges and corners. Although, due to the structure of the
payoff matrix there is also an anti-clockwise bias and a lower probability of finding the AllC corner. At the simplex boundaries,
normal fluctuations are proportional to

√
µ (panels b & c, magnified inset). Characteristic trajectories (beige) are therefore

increasingly confined to the boundaries and corners as µ decreases. Since the residence times associated with the corners are
O(1/µ), trajectories spend a disproportionate fraction of their time in the AllD and TFT corners (bars, panels b & c). Beyond
this regime, behaviour becomes increasingly deterministic (green half-arrows, panels e-d). For intermediate population sizes,
behaviour is asymmetric: demographic trajectories can cross the separatrix from the mixed-strategy limit cycle, but not from
the AllD fixed point (panel d). The upper critical population size of this regime scales as ∼ 1/µ (white, panel a). For large
enough N , behaviour becomes increasingly deterministic, and trajectories remain locked-in to the mixed-strategy limit cycle
(beige, panel e). At low µ, the separatrix is typically crossed where it intersects either the TFT or AllD edges, which is
where the magnitude of stochastic effects, ‖B†‖F , are largest relative to deterministic flows, |Ai|, with ‖ · ‖F and | · | denoting
Frobenius- and `2-norms, respectively (panels c, d & f). Representative trajectories and population fractions (bars) only show
a fraction of the total time simulated (see bar legend) in order to aid visualisation. Crossing statistics (circles) are taken from
single simulations lasting 106 s.

tively low likelihood of reaching the AllC corner
(when compared to AllD and TFT corners). These
behaviours are crucial to understanding the precise
µ-dependent mechanisms that underpin the value
F ≈ 0.5.

2. Asymmetric phase— Increasing N , the magnitude
of fluctuations decreases, and the relative geome-
try of the underlying attractors becomes increas-
ingly important. In particular, the system en-
ters an asymmetric regime at populations above

N ≈ 102.7, for which F ≈ 1 (Fig. 4a, yellow).
Here, state-dependent fluctuations permit the sys-
tem to cross from the mixed-strategy limit cycle to
the AllD basin, but not from the AllD fixed point
to the basin of the limit cycle (Fig. 4d). In other
words, once the separatrix has been crossed, trajec-
tories are extremely unlikely to come back within
the time T .

3. Locked-in phase— Once N is sufficiently large, fluc-
tuations are small and demographic trajectories are
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FIG. 5. Understanding the mutation-dependent transition between asymmetric and locked-in phases. At finite
population sizes (and for times t < T ) demographic trajectories in the locked-in regime repeatedly circumnavigate the limit
cycle, leading to a well-defined ‘footprint’ of visited points due to the state-dependence of the noise correlations. We compare
such footprints via the convex hull, Hull (nt<T ), of all points sampled by a trajectory nt<T within a specified (large) time,
T (panel a). The area of this convex hull is written as a fraction of the area A of the mixed-strategy basin of attraction,
H = Area [Hull (nt<T )] /A. For a given µ, the fraction H converges exponentially to the value associated with the deterministic
limit cycle, as N increases (panels a & b). As a result, there are approximate equivalences between the footprint of trajectories
with a large µ and small N and those with a correspondingly smaller µ and larger N (panels a, c & d). This leads to a
family of scaling relations in the locked-in regime (panel a). The critical scaling, at which the footprint occupies the entire
mixed-strategy basin, is N ∼ 1/µ, which agrees with ensemble statistics (panel e). Since this corresponds to onset of the
locked-in phase, the corollary is that the asymmetric phase has a duration that is µ-dependent (cf. Fig. 4).

effectively locked into the mixed-strategy basin for
times < T , implying F ≈ 0 (Fig. 4e, dark gray).

The aforementioned effective phases moreover couple
to mutation, which alters both the character of the
stochastically-induced phase (Figs. 4b & c), and the pop-
ulation size at which the system transitions from asym-
metric to locked-in phases (Fig. 4a, white dashed line).

The origin of the former is that the standard devia-
tion of fluctuations normal to the boundaries isO(

√
µ/N)

(Supplementary Information, Sec. 6). Evolutionary tra-
jectories therefore become increasingly confined to the
boundaries as µ decreases (Figs. 4b & c). This not
only exacerbates stochastically-induced effects, but also
increases the mean residence times associated with the
corners. In particular, at comparatively high levels of
mutation, residence times are less than T , which results
in a stochastic cycling between TFT and AllD corners
(recall that there is a lower likelihood of finding the AllC
corner) (Fig. 4b). Since these two corners have com-
parable mean rates of escape to the opposite basin of
attraction (Supplementary Information, Sec. 8), F takes
a value of approximately 0.5. By contrast, lower rates of
mutation imply dwell times greater than T (Fig. 4c). On
average, therefore, the system will find either the AllD
or TFT corner and then remain there. Here, the value

of ≈ 0.5 results from the position of the mixed strategy
fixed point, and the correspondingly equal probability
that trajectories are expelled to either the AllD or TFT
corners (typically, via the AllC-TFT edge, see Fig. 4f).

For the latter, the ∼ 1/µ dependence of the asymmet-
ric to locked-in transition can be understood in terms of
the stochastic ‘footprint’ of evolutionary trajectories in
the locked-in regime— i.e., those that repeatedly (and
stochastically) navigate the limit cycle (Fig. 5). In par-
ticular, due to the finite nature of T , the convex hull of
this footprint is well-defined, reflecting the shape of the
limit cycle at a different value of µ (Fig. 5a-d). The re-
sult is a family of scaling relations, where the footprint
of small populations with high levels of mutation (i.e.,
high noise, small limit cycle, Fig. 5c) is approximately
equivalent to that of large populations with low levels of
mutation (i.e., low noise, large limit cycle, Fig. 5d). The
critical scaling that defines the onset of the regime oc-
curs when the stochastic footprint fills the mixed-strategy
basin (Figs. 5a & e), therefore facilitating the crossing of

the separatrix. Here, O(
√
µ/N) fluctuations must be

equivalent to the O(µ) deterministic repulsion in the di-
rection normal to the AllC-TFT edge (Supplementary
Information, Sec. 6), implying N ∼ 1/µ, which agrees
with both ensemble statistics and convex hull analysis
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FIG. 6. Growth and mutation control the relative du-
ration of dynamical regimes. The three effective non-
equilibrium phases in fixed-size systems are associated with a
control parameter, logN (Fig. 4). In an exponentially grow-
ing system, this is directly proportional to time. As such, a
growing population exhibits three distinct dynamical regimes
in sequence. Changing the overall rate of growth therefore
re-scales the duration of the stochastically-induced and asym-
metric phases. Changing the rate of mutation, by contrast,
alters only the asymmetric phase. The duration of the asym-
metric phases is important to overall fixation probabilities,
since a longer duration implies a higher likelihood of crossing
the separatrix, from which there is no return.

(cf. Figs. 4a & 5e).
This behaviour can be recast as a size-dependent an-

tagonistic relationship between mutation and intrinsic
noise, where the former favours population heterogene-
ity (attracting towards the centre of the simplex) and
the latter homogeneity (expelling towards the simplex
boundaries). This is particularly important in growing
populations, since the balance between the two factors
changes over time.

D. Dynamical regimes in growing populations

Since the control parameter of the effective non-
equilibrium phases is logN , an exponentially growing
population exhibits the three phases in sequence, with
transitions occurring abruptly in time (Fig. 6).

Seen through this lens, it is clear that changing the
rate of growth changes the duration of the stochastically-
induced and asymmetric phases by an overall factor (the
locked-in phase is, in principle, open-ended). By con-
trast, the rate of mutation changes only the duration
of the asymmetric phase (by virtue of the µ-dependent
transition to the locked-in phase).

The asymmetric phase is especially important for de-
termining fixation probabilities. If the separatrix is

crossed from the mixed-strategy basin during this phase,
then the system remains in the basin of the AllD fixed
point until the onset of the locked-in phase, where it re-
mains for all until the population reaches Nmax = 1010.
Therefore, the longer the duration of the asymmetric
phase, the greater the likelihood of crossing the sepa-
ratrix.

However, despite the appeal of this heuristic, we must
also account for the fact that this likelihood is also con-
ditioned on the state at which the system enters the
asymmetric regime. This is determined by the dura-
tion of preceding stochastically-induced regime, which
is set by the rate of growth. It is also determined by
the character of that regime, which is set by mutation.
Despite the presence of two µ-dependent mechanisms in
the fixed-N ensemble (see previous Section) it should be
stressed that, in a growing system the duration of the
stochastically-induced regime is sufficiently short in com-
parison to corner dwell times that, for all but patholog-
ically slow growth rates or very large µ, the separatrix
is only ever likely to be crossed once. In turn, this puts
greater emphasis on the role of the system’s initial con-
ditions.

To test our understanding of this complex interplay, we
construct an approximation to the full outcome statistics.
This is based on a decomposition in terms of conditional
probabilities associated with each phase, and four ‘equiv-
alence classes’ of states at the start of the asymmetric
phase.

E. Equivalence classes

Consider the conditional probability pasyAllD(s) =

Pr
{
ntlock ∈ AllD-b |ntasy = s

}
, where avoidance of ex-

tinction is now assumed implicitly. That is, the likelihood
of being in the AllD basin at the onset of the locked-in
phase, tlock, given that the system was in a state s at
the onset of the asymmetric phase, tasy. Computing this
probability via stochastic simulation demonstrates the
existence of three approximate equivalence classes, Si,
such that pasyAllD(si) is agnostic to the demographic mix
si ∈ Si, at the onset of the asymmetric phase (Fig. 7a and
Supplementary Information, Fig. 11). These are: those
states in the AllD basin, S1; those along the AllD-TFT
edge that stretch from the separatrix to the TFT cor-
ner, S2, and; those along the TFT-AllC edge (excluding
the TFT corner) on the mixed-strategy side of the sep-
aratrix, S3. The remaining states of the mixed-strategy
basin are labelled S4. Whilst these do not form an equiv-
alence class, we assume (and later show) that they only
minimally contribute to overall fixation probabilities.

The existence of equivalence classes prompts the
following simplification (Supplementary Information,
Sec. 9):

pAllD ≈
4∑
i=1

pasyAllD(si) p
stoc
Si , (6)
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FIG. 7. The dependence of fixation probabilities on rates of growth and mutation is reproduced by a decomposi-
tion based on effective phases and equivalence classes. Fixation probabilities can be decomposed in terms of conditional
probabilities that are based on equivalence classes of the asymmetric phase (panel a). Within each class Si, i = 1, . . . , 3, the
outcome of the asymmetric phase does not rely on the specific demographic mix at the onset of the phase. Moreover, the
remaining states S4 contribute very little to the overall fixation probabilities (panels e, i & m, and main text). This permits
the approximation in Eq. (6), graphically represented by panels b-n. The resulting reconstruction is in good agreement with
the full stochastic simulations (panels n & o and Fig. 3a). The same decomposition is shown in Supplementary Information,
Sec. 11, for additional initial conditions. The initial population size is N0 = 128, whilst the times tasy and tlock are derived
from the critical population sizes identified in Fig. 4.

where pstocSi = Pr
{
ntasy ∈ Si |N0

}
(again, with avoid-

ance of extinction assumed implicitly), and states si can
be chosen arbitrarily from Si. This approximation al-
lows us to verify our heuristic understanding of how the
rates of growth and mutation impact fixation probabil-
ities by controlling the duration and stochastic charac-
ter of dynamical phases and therefore the likelihood of
(stochastic) behaviours, such as crossing the separatrix,
that are crucial in dictating long-term outcomes. It also
dramatically reduces the computational time needed to
calculate pAllD for a range of different initial conditions,
since we only need to recalculate the four likelihoods that
the stochastically-induced regime finishes in each of the
equivalence classes, respectively. The conditional proba-
bility pasyAllD, by contrast, does not depend on the specific
initial conditions (but rather in which equivalence class
the system is at time tasy).

Growth and mutation

Fixing the mixed-strategy fixed point as the initial de-
mographic mix, we can use Eq. (6) to deconstruct the
dependence of pAllD on the rates of growth and mutation
(Fig. 7).

In the stochastically-induced regime, fluctuation gra-
dients ‘drive’ trajectories from the centre of the mixed-
strategy basin towards the simplex edges and then the
corners. As a result, the growth-dependent (average)
duration of the regime, tasy = log

(
102.7/N0

)
/(b − d),

dictates in which class the trajectories are likely to start
the asymmetric phase: rapid growth rates are required to
confine trajectories that end in the mixed-strategy basin
to the S4 region, whilst intermediate and slow growth
rates suffice for the S3 and S2 regions, respectively
(Figs. 7c-e). Although the average time spent in the
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FIG. 8. The sensitivity to initial conditions can be reproduced by a decomposition based on effective phases
and equivalence classes. For certain rates— i.e., those below the red line, Fig. 3a— fixation probabilities can rely critically
on initial conditions. That is, initial demographic mixes that are ‘close’ (and not necessarily near the separatrix) can give rise
to dramatically different long-term fixation probabilities. This is particularly striking at low levels of mutation (log µ = −6.5)
and comparatively high initial population size (N0 = 250) (cf. Fig. 3f). The reason for this is twofold. First, larger initial
populations reduce the effect of the stochastically-induced phase, which is to expel populations to the simplex boundaries and
the AllD and TFT corners (panels c & d). Second, the duration of the asymmetric phase is significant and cannot be neglected
(middle row). This implies that trajectories finishing the stochastically-induced phase in classes S3 or S4 can still cross the
separatrix and fixate on the AllD fixed point (panels g & h). Whilst this provides a heuristic understanding, the contribution
to pAllD from the S4 region violates one of the assumptions of (6), and therefore the error increases with N0 for the stated
values of µ and b− d (panel j and Supplementary Information, Figs. 19 & 20).

two basins by such trajectories during the stochastically-
induced regime is independent of µ (Fig. 4a), the likeli-
hood that the system is in S1 at time tasy actually in-
creases with decreasing µ (Fig. 7b). The reason is that
decreasing µ changes the shape of the separatrix, there-
fore reducing the the size of the S3 region (Supplementary
Information, Sec. 10).

The asymmetric regime, by contrast, has a duration
that is both growth- and µ-dependent: τµ = tlock−tasy =
− log

(
µ 102.7

)
/(b − d). Here, the probability of crossing

the separatrix hinges, principally, on the likelihood of
avoiding the TFT corner and its associated large con-
finement times (Figs. 7g-i). For example, τasyµ must be
extremely long in order to permit crossings from the S2
region, since populations starting the asymmetric regime
from this region encounter the TFT corner with almost
certainty. Crossings from the S4 region, however, occur
at more modest τasyµ — achieved by either low growth
and high µ, or modest growth and low µ— reflecting the
possibility that trajectories might avoid the TFT corner.
Those from the S3 region can happen at the smallest
τasyµ , since there is a high likelihood that trajectories will
avoid the TFT corner (recall the anti-clockwise dynam-

ics) and the ratio of the magnitude of stochastic effects
to the magnitude of the deterministic flow is large in S3
(see Fig. 4f).

Combining these conditional probabilities using Eq. (6)
satisfactorily reproduces the overall statistics of demo-
graphic outcomes (cf. Fig. 7n and Fig. 3a): the dif-
ference between our approximation and the full simula-
tions have a mean value of 0.027, when averaged over
growth and mutation rates, and a maximum value of
0.099 (Fig. 7o). This also confirms our assertion that the
trajectories that start the asymmetric phase from the S4
region do not impact long-term outcomes. The reason is
that this only happens with significant likelihood when
growth rates are high, which simultaneously ensures that
such trajectories never cross the separatrix (Figs. 7e, i &
m). The same decomposition is shown for initial demo-
graphic mixes other than the mixed-strategy fixed point
in Supplementary, Sec. 11.
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Initial conditions

The approximation in Eq. (6) further provides insight
into the founder-like dependence of fixation probabilities
on initial conditions (Fig. 8 and Supplementary Informa-
tion, Figs. 16-18). At high values of µ, the asymmet-
ric phase has negligible duration and behaviour is trivial
(Figs. 3b & c, Supplementary Information, Figs. 16 &
17). At low values of µ, however, the asymmetric regime
cannot be ignored and has a significant bearing on fixa-
tion probabilities.

In this case, if the initial population size is small
(Fig. 3e, Supplementary Information, Fig. 18), then the
stochastically-induced phase is sufficiently long as to ex-
pel trajectories to the AllD or TFT corners from the AllD
or mixed-strategy basins, respectively. Only the former
trajectories impact fixation probabilities, however, since
for all but the slowest growth rates, trajectories stuck in
the TFT corner have a residence time longer than the
duration of the asymmetric regime.

By contrast, if the initial population size is large
(Fig. 3f and Fig. 8), then the duration of the
stochastically-induced phase is not long enough to expel
trajectories to the boundaries and/or corners, resulting in
a non-zero likelihood of starting the asymmetric regime
from either the S3 or S4 regions. For the former, there is a
high probability of crossing to the AllD basin during the
asymmetric regime, since the deterministic flows direct
demographic trajectories towards the separatrix. For the
latter, this probability is much lower, since trajectories
are more likely to be entrained to the limit cycle. Nev-
ertheless, the small contribution that results from the S4
region breaks one of the assumptions on which Eq. (6) is
based, which also explains why the error in our decompo-
sition increases with N0 for certain values of µ and b− d
(the mean value of the error in Fig. 8j is 0.079, while
the maximum value is 0.285). Of note, the values shown
in Fig. 8 are the worst case of those we have simulated
(Supplementary Information, Sec. 12).

III. DISCUSSION

Using a growing variant of an iconic model of evolution-
ary game theory, we have demonstrated the existence of
non-trivial fluctuation-mediated effects in growing popu-
lations, whereby the rates of growth and mutation criti-
cally determine how fixation probabilities are conditioned
on initial population size and demographic mix. In par-
ticular, we show that, for low mutation rates and inter-
mediate growth rates, behaviour defies traditional mono-
tonic expectations on the likelihood of fixations. This has
ramifications for the understanding of population bottle-
necks and their long-term impact. The implication being
that the population growth commonly associated with
post-bottleneck recovery can, in fact, be as important
as, if not more than, the effects of the bottleneck on pop-
ulation size and demographic mix.

Our findings apply to populations that are well-mixed,
and as such pertain to systems that combine short-range
interactions with a mechanism for mixing that is fast on
the timescales of the population dynamics, or those that
otherwise have effectively long-range interactions, either
explicitly or via the mutual interaction with public re-
source (although some of these assumptions have recently
been brought into question [29]).

In this context, we follow several pioneering works that
have characterised various effects of growth in well-mixed
populations [10–14]. Although they do not explicitly ex-
amine the role of initial conditions, the behaviours ap-
pearing in two of these works [13, 14] are related to the
those reported here. As are several studies concerning
growing systems of binary ‘spins’ [30–32].

The shared mechanism in all these cases is the pres-
ence of O(1

√
N) intrinsic fluctuations that decrease in

time as the system grows. This has two ramifications:
first, ergodicity is broken, implying that a population
fixates to its deterministic attractors in long times, and;
second, there is a decreasing scale by which fluctuations
can couple dynamically to the underlying geometry of
those attractors (and their basins). At a high level, it
is the combination of these effects that gives rise to our
headline behaviour: fixation probabilities that depend
non-trivially on initial conditions (or otherwise stochas-
tic events at early times), even as t→∞.

Such fluctuation-mediated effects are further charac-
terised by a dependence on the rates of growth and mu-
tation, which we explain by putting forward the notion of
effective non-equilibrium phase transitions, and showing
that these delimit distinct demographic regimes in our
model. The rate of growth controls the overall rate at
which intrinsic fluctuations decrease, and therefore also
the relative duration of such demographic regimes. Mu-
tation, by contrast, has two related effects. First, it
changes the nature of the underlying deterministic at-
tractors (the size of the mixed-strategy limit cycle, in
our case) and hence the structure to which decreasing
fluctuations couple. Second, it also changes the state-
dependence of the fluctuations. Whilst the former im-
pacts the character of the initial stochastically-induced
phase, it is the combination of both of these effects that
sets the ∼ 1/µ dependence of the critical transition be-
tween the intermediate asymmetric and the final locked-
in phases.

The latter behaviour is an example of a potentially
interesting and unexpected antagonistic relationship be-
tween two sources of stochasticity: mutation and the
intrinsic effects of finite-sized populations. In our
model and other studies, mutation promotes hetero-
geneity, whilst the intrinsic fluctuations that arise from
frequency-dependent birth drive the system towards ho-
mogeneity. This is particularly important in the con-
text of population growth, since the effects of muta-
tion do not depend on the population size, whereas the
stochastically-induced forcing due to intrinsic noise de-
creases with increasing population size. As a result, we
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speculate the other growing systems may also exhibit
mutation-dependent critical transitions, where the effects
of intrinsic fluctuations are balanced by those of muta-
tion.

More generally, for growing well-mixed populations
with all but the simplest of deterministic attractors—
i.e., fixed points, limit cycles and stable manifolds etc.—
the implication is that growth may be synonymous with
effective non-equilibrium phase transitions. Understand-
ing whether and how these fit into the existing litera-
ture is an open question. Of potential interest is the
ongoing challenge to classify non-equilibrium phase tran-
sitions by their universality classes [18]. Work has been
undertaken to describe single absorbing state transitions
(of the directed-percolation type) [17, 33, 34] and also
symmetric absorbing state transitions [35], but there ap-
pears to be very little literature on asymmetric absorbing
state transitions.

Theoretical considerations aside, we put forward that
our ideas may be examined within the context of directed
evolution [36, 37]. Here, another, albeit direct, interplay
between growth and mutation has already been demon-
strated: mutations occurring at the genetic loci associ-
ated with growth-control promote so-called genetic in-
stabilities [38]. Our results also appear relevant to state-
of-the-art in silico representations of directed evolution,
where the role of intrinsic fluctuations during growth has
so far been overlooked [39].

A further setting that may prove relevant is that of
RNA viruses, which need to survive many population
bottlenecks involved in host-to-host, as well as intra-host
(e.g., plaque-to-plaque), transmission [3, 4, 40]. Due to
their high mutation rate, these viruses typically consist
of a whole spectra of nucleotide sequences— a so-called
quasispecies [40]. After each transmission, a small num-
ber of viral particles need to be capable of restoring ei-
ther the original mutant spectra, or a different one that
is adapted to a new host or environment. The success
of RNA viruses in overcoming this challenge is hypothe-
sised to be related to their high mutation rate, which is
estimated to be very close for some viruses to the theo-
retical error threshold above which viral identity cannot
be maintained [40]. We speculate that a previously unap-
preciated basis for such high mutation rates could be the

stochastic effects demonstrated in this study, which drive
small replicating populations towards homogeneity. In
particular, during the initial stages of post-bottleneck re-
covery, a viral population will become increasingly dom-
inated by a single sequence chosen mostly by chance. In
this context, high mutation rates are seen more as a ‘cor-
rection’ for the action of finite-size effects, rather than for
the compositional restriction due to the bottleneck itself.
Answering this question and more is left for future work.

Nevertheless, bridging the gap between the abstract
setting of the present work and the aforementioned ap-
plications will undoubtedly involve significant work. The
extent to which this will be possible remains an open
question, and may hinge on features that are not included
in our model, such as spatial structure and/or other phys-
ical constraints [41–44]. So-called “patch” models of in-
teracting locally well-mixed subpopulations is one avenue
that may prove promising. Exploring how the ideas set
out here translate across a wider class of systems is there-
fore an important avenue of future research, and we wel-
come further work in the area.
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[29] Herreŕıas-Azcué, F., Pérez-Muñuzuri, V. & Galla, T.

Stirring does not make populations well mixed. Scien-
tific Reports 8, 4068 (2018). URL http://www.nature.

com/articles/s41598-018-22062-w.
[30] Morris, R. G. & Rogers, T. Growth-induced break-

ing and unbreaking of ergodicity in fully-connected
spin systems. Journal of Physics A: Mathemati-
cal and Theoretical 47, 342003 (2014). URL http:

//stacks.iop.org/1751-8121/47/i=34/a=342003?key=

crossref.80b743c6ffee60b17655974228dcf8f9.
[31] Klymko, K., Garrahan, J. P. & Whitelam, S. Simi-

larity of ensembles of trajectories of reversible and ir-
reversible growth processes. Physical Review E 96,
042126 (2017). URL https://link.aps.org/doi/10.

1103/PhysRevE.96.042126.
[32] Jack, R. L. Large deviations in models of growing clusters

with symmetry-breaking transitions. Physical Review E
100, 012140 (2019). URL https://link.aps.org/doi/

10.1103/PhysRevE.100.012140.
[33] Janssen, H.-K. On the nonequilibrium phase transition in

reaction-diffusion systems with an absorbing stationary
state. Zeitschrift für Physik B Condensed Matter 42,
151–154 (1981).

[34] Grassberger, P. On Phase Transitions in Schlögl’s Second
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SUPPLEMENTARY INFORMATION

1. Gillespie-Itô simulations

The Gillespie algorithm [45, 46] allows the exact simulation of the stochastic dynamics of the growing IPD when
N is small, i.e., when such dynamics cannot be approximated by simply integrating the SDEs (see Secs. 3 & 4).
The downside of this algorithm is that its computational time scales linearly with N , becoming impractical as the
population grows. We therefore adopt a hybrid approach: when N is smaller than a chosen threshold the system’s
dynamics are simulated with the Gillespie algorithm, and when the threshold is exceeded they are simulated by
numerically integrating the SDEs (Euler-Maruyama). Since the latter method results in values of N i along the real
line, rounding is required if stochastic fluctuations trigger a switch back to the Gillespie algorithm.

Our choice for the algorithm switch threshold is N = µ−1. This is motivated by the existence of the locked-in phase,
which begins when N ≈ µ−1 (see Fig. 4). During this phase, the risk that the SDE approximation would lead to an
‘accidental’ crossing of the separatrix is extremely small. A minimum threshold of N = 10,000 is used for simulations
with large µ.

All results were obtained using the High Performance Computing facility Katana [24]. The results in Fig. 3a
(and Figs. 13-15, panel p), were obtained with 10,000 repetitions of the hybrid Gillespie-Itô simulations for each
combination of b and µ (fixing d = 1). Each repetition was carried out until N > 1010. The results in Fig. 3b-g were
similarly obtained with 1000 repetitions for each initial condition. The results in Fig. 7b-i (and Figs. 13-15, panels
b-i) were obtained with 1000 repetitions for each combination of µ and b. 1000 repetitions were also used to obtain
the results in Figs. 8a-d and Sec. 12.

The fixed-size dynamics were also simulated using the hybrid Gillespie-Itô approach. The Gillespie algorithm was
modified by setting d = 0 and ‘killing’ a randomly selected player at every birth. The Itô part of the algorithm
involved replacing the noise correlation matrix (see details in Sec. 7). The results in Fig. 4 were obtained by running
the fixed-size Gillespie-Itô algorithm 1000 times for 20,000 seconds for each combination of µ and N .

2. The deterministic limit

In the N → ∞ limit, the behaviour of the growing Iterated Prisoner Dilemma described in the main text is
equivalent to that of the following continuous, deterministic system:

dni

dt
=
bµ

ϕ

∑
j 6=i

(fjn
j − fini) +

(
bfi
ϕ
− d
)
ni, (7)

a b c d
log10μ=-6.9 log10μ=-5.1 log10μ=-3.9 log10μ=-2.7

e f g h
log10μ=-6.9 log10μ=-5.1 log10μ=-3.9 log10μ=-2.7

FIG. 9. Population dynamics in the deterministic limit of the growing IPD at different values of µ. The top row
(panels a-d) show the direction of the determinist flow, while the bottom row (panels e-h) show the magnitude (speed). For
all panels, the growth rate is b− d = 0.05.
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where ni = N i/N . These equations can be easily derived from Fig. 1.
As shown in Fig. 9 (see also [15]), the mutation rate has a clear effect on the dynamics of the continuous system. For

10−7.5≤µ≤ 10−2.5, the system exhibits two stable attractors: a fixed point characterised by a population of almost
entirely AllD players and a stable mixed-strategy limit cycle. The most notable effect of varying µ within this range
is the resizing of the limit cycle: the smaller the mutation rate, the larger the limit cycle (panels a-c and e-g). For
large values of µ (approximately 10−3.1 ≤ µ ≤ 10−2.5), the limit cycle collapses into a point, although the separatrix
still exists (panels d and h). Varying µ also slightly changes the shape of the separatrix, especially in the proximity
of the AllC-TFT edge of the simplex.

3. System-Size Expansion

Following [26, 47], we derive a set of coupled SDEs that approximate the dynamics of the underlying protocol when
N � 1. In terms of step-operators, the Master-equation has the form:

dP ( ~N ; t)

dt
=
∑
i

(
E−1Ni − 1

) bfiN i

ϕ
P ( ~N ; t)

+
∑
i

(
E+1
Ni − 1

)
dN iP ( ~N ; t)

+
∑
i

∑
j 6=i

(
E+1
Ni E−1Nj − 1

) bµfiN i

ϕ
P ( ~N ; t).

(8)

Expanding the step-operators in the usual fashion, and retaining only the leading and next-to-leading order terms,
gives

ErNi = 1 + r
∂

∂N i
+
r2

2

∂2

∂(N i)2
+O (1) , (9)

where r = ±1. Substituting Eq. (9) into Eq. (8) results in an equation of the Fokker-Planck type [47]:

∂P ( ~N ; t)

∂t
= −

∑
i

∂

∂N i

[
Ai( ~N)P ( ~N ; t)

]
+

1

2

∑
i

∑
j

∂2

∂N i∂N j

[
Bij

(
~N
)
P ( ~N ; t)

]
.

(10)

After some manipulation, it can be shown that

Ai =
b (1− 2µ) fiN

i

ϕ
+
∑
j 6=i

b µfjN
j

ϕ
− dN i, (11)

and

Bij =

{
b(1+2µ)fiN

i

ϕ +
∑
k 6=i

b µfkN
k

ϕ + dN i if i = j

− bµϕ
(
fiN

i + fjN
j
)

if i 6= j
. (12)

Equation (10) implies an SDE for the variables N i:

dN i

dt
= Ai + ξi. (13)

The deterministic part of Eq. (13) is equivalent to Eq. (7). The noise sources that appear in Eq. (13) have zero mean
(i.e., 〈ξi〉 = 0) and are correlated according to:

〈ξi(t)ξj(t′)〉 = Bijδ(t− t′). (14)

Summing over index i in Eq. (13), we have

dN

dt
= (b− d)N +

√
(b+ d)Nξ, (15)

where ξ is a single source of zero-mean Gaussian white noise.
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4. Multiplicative delta-correlated noise

Eqn. (13) can be re-written in terms of delta-correlated noise and multiplicative pre-factors. To do this we must
choose a matrix b that satisfies B = bT · b. For b to be square, this requires a Cholesky decompostion, and ensures
no more independent noise sources than there are variables in the system. However, a more natural approach is to
decompose B according to the rules set out in Gillespie’s CLE approach [46]. This results is SDEs of the following
form:

dN i

dt
= Ai +

∑
α

bαiηα, (16)

where the index α runs from 1 . . . 12 and correspond to the reactions in Fig. 1. The twelve independent noise sources
each have mean zero, and are delta-correlated— i.e., 〈ηα〉 = 0 and 〈ηα(t)ηβ(t′)〉 = δαβδ(t − t′). The matrix bT is
given by

bαi =



√
bf1N1

ϕ 0 0

0
√

bf2N2

ϕ 0

0 0
√

bf3N3

ϕ

−
√
dN1 0 0

0 −
√
dN2 0

0 0 −
√
dN3

−
√

bµf1N1

ϕ

√
bµf1N1

ϕ 0√
bµf2N2

ϕ −
√

bµf2N2

ϕ 0

0 −
√

bµf2N2

ϕ

√
bµf2N2

ϕ

0
√

bµf3N3

ϕ −
√

bµf3N3

ϕ

−
√

bµf1N1

ϕ 0
√

bµf1N1

ϕ√
bµf3N3

ϕ 0 −
√

bµf3N3

ϕ



. (17)

5. Projected dynamics

We wish to project the dynamics onto the unit simplex— i.e., in terms of variables ni = N i/
∑
iN

i. For this, we
require the multivariate form of Itô’s lemma [47]. For finite N , we have

dni

dt
=
∑
k

Ak ∂kn
i +

1

2

∑
k,j

Bkj∂k∂jn
i +
∑
j

∑
α

bjα
(
∂jn

i
)
ηα, (18)

where the shorthand ∂i = ∂/∂N i has been used. First, we deal with the deterministic parts. Using

∂ni

∂N j
=

{
1−ni

N if i = j

−n
i

N if i 6= j
, (19)

alongside (11), it can be shown that

∑
k

Ak∂kn
i =

bµ

ϕ

∑
j 6=i

fjn
j − 2fin

i

+ b

(
fi
ϕ
− 1

)
ni. (20)

Similarly, using

∂2ni

∂N j∂Nk
=


2(ni−1)
N2 if i = j = k

2ni−1
N2 if j = i 6= k or k = i 6= j
2ni

N2 if j 6= i and k 6= i

, (21)
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gives

1

2

∑
k,j

Bkj∂k∂jn
i = −b

(
fi
ϕ
− 1

)
ni

N
. (22)

Notice that, when summed over i, both (20) and (22) are zero by virtue of the fact that
∑
i fin

i/ϕ = 1. Also,
trivially, (22) goes to zero in the deterministic N → ∞ limit. For the stochastic part of (18), define a new matrix

b†αi =
∑
j bαj

(
∂jn

i
)

such that (18) can be re-cast in terms of correlated noise sources— i.e.,

dni

dt
=
bµ

ϕ

∑
j 6=i

fjn
j − 2fin

i

+ b

(
fi
ϕ
− 1

)
ni
(

1− 1

N

)
+ ζi, (23)

with 〈ζi〉 = 0 and 〈ζi(t)ζj(t′)〉 = B†ijδ (t− t′), where

B†ij =
∑
α

b†αib
†
αj =


b ni

N

[
ni + fi

ϕ

(
1− 2ni

)]
+ b µ

N

(
1 + fin

i

ϕ

)
+ dni

N

(
1− ni

)
if i = j

− b n
i nj

N

(
fi
ϕ +

fj
ϕ − 1

)
− b µ

N ϕ

(
fin

i + fjn
j
)
− dni nj

N if i 6= j
, (24)

To understand the impact of these correlations, (24) can be computationally decomposed into an eigenbasis for
different values of ni. This always results in one zero-eigenvalue eigenvector pointing perpendicular to the simplex.
The remaining in-simplex eigenvalues reveal that populations towards the centre of the simplex experience large
uncorrelated fluctuations whilst, closer to the simplex boundary, correlations suppress fluctuations in the direction
normal to the boundary (Fig. 4b-c, orange crosses). Moreover, the magnitude of along-boundary fluctuations decrease
as a corner is approached.

6. Boundary effects

Equation (23) can be evaluated at the simplex edges, where we are particularly interested in the both determin-
istic drift and fluctuations in the direction of the bulk, which is captured by the dynamics of the strategy who’s
concentration is zero along a given edge.

• AllD-AllC edge: setting n3 = 0 and n2 = 1− n1, gives dn3/dt = bµ+ ζ3, where

〈ζ3ζj〉 =

−
b µn1[n1(R−S)+S]

N{P (n1−1)2+n1[n1(R−S−T )+S+T ]}

− b µ(n1−1)[(n1−1)P−n1T )]
N{P (n1−1)2+n1[n1(R−S−T )+S+T ]}

b µ
N

 . (25)

• AllC-TFT edge: setting n2 = 0 and n1 = 1− n3, gives dn2/dt = bµ+ ζ2, where

〈ζ2ζj〉 =


b µm(n3−1)R
N(mR−c n3)

b µ
N

bµn3(mR−c)
N(c n3−mR)

 . (26)

• TFT-AllD edge: setting n1 = 0 and n3 = 1− n2, gives dn1/dt = bµ+ ζ1, where

〈ζ1ζj〉 =


b µ
N

− b µn2[P (m+n2−1)+T (n2−1)]
N{c(n2−1)−(n2)2[(m−2)P−mR+S+T ]+n2[2(m−1)P−2mR+S+T ]+mR}

b µ(n2−1){−c+n2[(m−1)P−mR+S]+mR}
N{c(n2−1)−(n2)2[(m−2)P−mR+S+T ]+n2[2(m−1)P−2mR+S+T ]+mR}

 . (27)

In all three of the above cases, the deterministic repulsion from the edge is O (µ). The fluctuations (positive and

negative) in the same direction are O(
√
µ/N). The implication, in the context of the convex hull analysis of the

main manuscript, is that, very close to the AllD-TFT edge, fluctuations can overcome the deterministic forces only if
N ∼ 1/µ.
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7. Langevin equation for the fixed-size model

The dynamics of the system were were simulated using the hybrid Gillespie-Itô approach (see Sec. 1). A fixed-size
version of the system was also used in our analysis (see Figs. 4 & 5): The Gillespie algorithm was modified by setting
d = 0 and ‘killing’ a randomly selected player at every birth, while the Itô part of the algorithm involved replacing
the matrix bT in Eq. (17) with

bαi =



(1− n1)
√

bf1N1

ϕ −n1
√

bf2N2

ϕ −n1
√

bf3N3

ϕ

−n2
√

bf1N1

ϕ (1− n2)
√

bf2N2

ϕ −n2
√

bf3N3

ϕ

−n3
√

bf1N1

ϕ −n3
√

bf2N2

ϕ (1− n3)
√

bf3N3

ϕ

0 0 0
0 0 0
0 0 0

−
√

bµf1N1

ϕ

√
bµf1N1

ϕ 0√
bµf2N2

ϕ −
√

bµf2N2

ϕ 0

0 −
√

bµf2N2

ϕ

√
bµf2N2

ϕ

0
√

bµf3N3

ϕ −
√

bµf3N3

ϕ

−
√

bµf1N1

ϕ 0
√

bµf1N1

ϕ√
bµf3N3

ϕ 0 −
√

bµf3N3

ϕ



. (28)

8. Escape time from corners in the stochastically-induced regime

Here we show the statistics of the time t† that is needed by the fixed-size system to cross the separatrix for the
first time (Fig. 10). We compare the cases of the systems starting from the AllD corner (panels a and c) and the
TFT corner (panels b and d). In both cases, t† is proportional to µ: in the order of thousands of seconds when
log10 µ = −3.5 (panels a-b) and in the order of millions of seconds when log10 µ = −6.5 (panels c-d). However, the
influence of the population size N0 on t† is different in the two cases. On the one hand, the crossing time starting from
the AllD corner increases very rapidly when N0 approaches the onset of the asymmetric regime at around N0 = 102.7

(panels a and c), indeed showing that crossing the separatrix from the AllD basin to the mixed-strategy basin becomes
extremely unlikely in the asymmetric regime. On the other hand, the crossing time starting from the TFT corner
decreases with N0.

9. Equivalence classes decomposition

Consider a trajectory of the growing IPD that starts from an arbitrary state in the stochastically-induced phase
(i.e., N0 < 102.7) at time t = 0, enters the asymmetric phase at time t = tasy and the locked-in phase at time t = tlock.
Due to the nature of the locked-in phase, the evolutionary outcome at t→∞ is already known at time tlock, and thus
Eq. (3) can be simplified:

pAllD = Pr{ntlock ∈ AllD-b |N0}, (29)

where avoidance of extinction is implicitly assumed and AllD-b indicates the AllD basin of the simplex.
Moreover, since the growing IPD is a Markovian process, pAllD can be decomposed as follows:

pAllD =
∑
s∈U

Pr{ntlock ∈ AllD-b | ntasy = s} Pr{ntasy = s | N0}, (30)

where U is the set of all possible states of the system at time tasy.
Eq. (30) is impractical, since it requires the numerical estimation of the probabilities Pr{ntlock ∈ AllD-b | ntasy = s}

and Pr{ntasy = s | N0} for all s in the very large set, U . However, the approximation given in Eq. (6) can be made
by inspecting Pr{ntlock ∈ AllD-b | ntasy = s} in Fig. 11a, which was numerically estimated for a subset of all points
s (for illustration purposes we only show the case of b− d = 0.05 and log10 µ = −6.5).
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FIG. 10. Statistics of separatrix crossing time in the stochastically induced regime. The figure shows the statistics
of the time taken by the system to cross the separatrix for the first time using the fixed-size model with n0 = s1, i.e. the
AllD corner (panels a for log10 µ = −3.5 and c for log10 µ = −6.5) and with with n0 = s2, i.e. the TFT corner (panels b for
log10 µ = −3.5 and d for log10 µ = −6.5). The statistics, for each of the four cases, are obtained from 10,000 repetitions. On
each box, the central red mark indicates the median, and the bottom and top edges indicate the 25th and 75th percentiles,
respectively, the whiskers extend to the most extreme data points not considered outliers, and the red dots are the outliers (a
data value is considered an outlier if it is greater than Q3 + 1.5(Q3–Q1) or less than Q1–1.5(Q3–Q1), where Q1 and Q3 are
the 25th and 75th percentiles, respectively). For an easier visualisation of the statistics, all data values exceeding a maximum
threshold are collapsed into the horizontal dashed lines on the top part of each plot. The blue lines represent the average
crossing time over all repetitions.

A first area of the simplex, S1 (outlined in red), corresponding to the AllD basin, can be immediately identified as it
is characterised by a homogenous probability of AllD outcomes of approximately 1. If the system is anywhere within
S1 at time tasy, then it is expected never to move to the mixed-strategy basin, since the crossing of the separatrix
in this direction is extremely unlikely. Any point s1 would be good candidate for representing the entire area S1,
however, we chose the AllD corner (red dot in Fig. 11b) as the system is in the proximity of such point for the vast
majority of the time spent in S1.

A second area can similarly be identified: S2 (orange), corresponding to the mixed-strategy part of the AllD-TFT
edge (including the TFT corner) and characterised by a homogenous probability of AllD outcomes of approximately
0. If the system is in this area at time tasy, then it is very unlikely to cross the separatrix because of the long time
(inversely proportional to µ) spent in the TFT corner while growing (i.e., as the fluctuations become smaller and
smaller). Again, any point s2 can represent the area S2, but we chose the TFT corner (orange dot in Fig. 11b).

A third area, S3 (yellow), corresponding to the mixed-strategy part of the AllC-TFT edge with exclusion of the
TFT corner, also stands out: here we see the probability of AllD outcomes quickly increases with the fraction of
AllC players. Due to the anti-clockwise dynamics, in S3 the system directed towards the point where the separatrix
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FIG. 11. Equivalence classes of the asymmetric regime. pasyAllD = Pr{ntlock ∈ AllD-b | ntasy = s} was numerically
estimated via Gillespi-Itô simulations for a subset of all points s (panel a). The results motivates the decomposition of the
simplex into four equivalence classes, Si, as well as the choice of their representative point si (panel b). The parameters used
for this illustration are b− d = 0.05 and log10 µ = −6.5.

meets the AllC-TFT edge, which is where a move from the mixed-strategy basin to the AllD basin is most likely (see
Fig. 4f). Since the probability of AllD outcomes is less homogeneous, an approximation must be made for s3. The
dynamics along the AllC-TFT edges are slow, and they get even slower close to the corners. We observe that a good
proxy for the average position of the system over time during a climb of the AllC-TFT edge from the TFT corner to
the separatrix is around nAllC = 0.25 and nTFT = 0.75 (yellow dot in Fig. 11b).

Within the remainder of the simplex, S4 (blue), Pr{ntlock ∈ AllD-b | ntasy = s} can be very heterogeneous, however,
as discussed in the main text, this contributes very little to the outcome statistics for small values of N0. We chose
s4 = MS-fp to represented this area (blue dot in Fig. 11b).

Fig. 11a was obtained with b− d = 0.05 and log10 µ = −6.5. Different values of these parameters produce different
values of Pr{ntlock ∈ AllD-b | ntasy = s}, however, the four areas can always be identified. This decomposition is
validated by the successful reconstruction (see Figs. 7 & 8 as well as Figs 13-20) of the all statistics of the evolutionary
outcomes obtained via full simulations (Fig. 3). The conditional probability decomposition is always very accurate
except for the case of low mutation rate (e.g., log10 µ < −6), growth rates around b − d ≈ 0.05 and large initial
populations (e.g., N0 > 200), for which it begins to produce less accurate results (Fig. 8 panel o).

10. Statistics of the stochastically-induced regime in detail

In this section we describe the effect of the mutation rate on the statistics of the stochastically-induced regime
outcomes more in detail. Fig. 12a shows the same probabilities pstocSi shown in Figs. 7b-e, but for a single value of
b − d = 0.026 (we remind that n0 = MS-fp and N0 = 128). We can see that all probabilities depend on µ for high
mutation rates (i.e., log10 µ > −4), but only pstocS1 and pstocS3 depend on µ for lower mutation rates.

For a more detailed analysis, we decompose pstocS1 into pstocSAllD-c
1

, the probability of ntasy being the AllD corner, pstocSAllC-c
1

,

the probability of ntasy being the AllC corner, pstocSAllC-TFT
1

, the probability of ntasy being in the AllD basin side of the

AllC-TFT edge excluding the AllC corner and pstocSother
1

, the probability of ntasy being anywhere else within the AllD

basin. We can now see that pstocSAllC-TFT
1

decreases with µ, in contrast with pstocS3 , which instead increases with µ. This is

explained by the shape of the separatrix changing with µ: the point where the separatrix meets the AllC-TFT edge
moves towards the TFT corner as µ decreases (see panels c & d).

At the same time, we also see that the probability of the system being in one of the two corners at time tasy, pSAllD-c
1

and pSAllC-c
1

, are independent on the mutation rate for log10 µ < −5. However, for higher mutation rates it becomes

more and more likely for the system to be in the AllD corner rather than in the AllC corner (see also panels c & d).
Finally, for mutation rates log10 µ > −5 the probability of the system being away from the boundaries of the simplex
pstocSother

1
becomes higher (the same of course can be observed for pstocS3 ).
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FIG. 12. Statistics of the stochastically induced regime pstoc
Si

in detail. Panel a shows the probabilities pstocSi over µ

with b − d = 0.026, n0 = MS-fp and N0 = 128. Panel b decomposes pstocS1 into cases of the AllD corner, the AllC corner, the
AllD basin side of the AllC-TFT edge (excluding the AllC corner) and the rest of the AllD basin. Panels c and d show the
location of ntasy within the simplex for the same 1000 stochastic trajectories used for estimating the probabilities in a and b,
for the cases of log10 µ = −6.5 and log10 µ = −3.5 respectively. The size of the circles is proportional to the occurrences of
ntasy in the location and the colours reflect the different equivalence classes Si (see panel a).

11. Outcome statistics over growth/mutation rates: more initial mixes

Here we show that our decomposition of the outcome statistics based on equivalence classes holds not only for
n0 = MS-fp but in general. We consider other three cases that are very different: n0 = centre, i.e., nAllC =
nAllD = nTFT = 1/3 (Fig. 13); n0 = TFT-c, i,e., nAllC = nAllD = 0, nTFT = 1 (Fig. 14); and n0 = AllD-c, i,e.,
nAllC = nTFT = 0, nAllD = 1 (Fig. 15). In all figures, comparing the results obtained via decomposition (panels
n) against those obtained via full simulation (panels p) yields a low error (panels o), demonstrates the validity of
our method. The average error over all the considered values of growth and mutation is approximately 0.029 for the
n0 = centre, 0.003 for n0 = TFT-c, and 0.001 for n0 = AllD-c.
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FIG. 13. Decomposition of outcome statistics based on equivalence classes (n0 = centre). The statistics of evolu-
tionary outcomes can be decomposed in terms of conditional probabilities that are based on four equivalence classes of states
(panels a-i). The landscape of pAllD(centre) for different rates of growth (b − d) and mutation (µ) can be reconstructed with
good agreement (panels j-n and panel o). The initial population size is N0 = 128. tasy and tlock are derived from the critical
population sizes identified in Fig. 4.
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FIG. 14. Decomposition of outcome statistics based on equivalence classes (n0 = TFT-c). The statistics of evolu-
tionary outcomes can be decomposed in terms of conditional probabilities that are based on four equivalence classes of states
(panels a-i). The landscape of pAllD(TFT) for different rates of growth (b − d) and mutation (µ) can be reconstructed with
good agreement (panels j-n and panel o). The initial population size is N0 = 128. tasy and tlock are derived from the critical
population sizes identified in Fig. 4.
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FIG. 15. Decomposition of outcome statistics based on equivalence classes (n0 = AllD-c). The statistics of evolu-
tionary outcomes can be decomposed in terms of conditional probabilities that are based on four equivalence classes of states
(panels a-i). The landscape of pAllD(AllD-c) for different rates of growth (b − d) and mutation (µ) can be reconstructed with
good agreement (panels j-n and panel o). The initial population size is N0 = 128. tasy and tlock are derived from the critical
population sizes identified in Fig. 4.
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12. Outcome statistics over initial population’s size and mix

In this section we illustrate how the outcome statistics in Fig. 3 panels b, c, d, e and g can be reconstructed using
our probability decomposition method.

At high mutation rate (Figs. 3b-c), the asymmetric phase is very short. This is reflected in the probability
decomposition in Figs. 16 and 17, where the probabilities in panels f-h are all zeros, i.e., the statistics of the outcome
are given exclusively by the fixation of the system into one of the two basins during the stochastically induced phase
(panels a). The accuracy of the probability decomposition is very high for both small (Fig. 16) and large (Fig. 17)
initial populations, as illustrated in panels j.

At low mutation rate the asymmetric regime is very long, however, such regime has little effect on the outcome
statistics for small initial populations. This is explained by the probability decomposition in Fig. 18. For some starting
points N0 the system can be in the equivalence class S2 at the end of the stochastically-induced regime (panel b),
however, from this area of the simplex it is extremely unlikely for the system to cross the separatrix towards the AllD
basin, even if the asymmetric regime is long (panel f). Moreover, it very unlikely for the system to be in S4 at the
of the stochastically induced regime, since with a small initial population such regime is longer and fluctuations are
likely to drive the systems towards the edges and corners (panels d). Thus, even if the system can cross the separatrix
from S4 during the asymmetric regime, the combined probability in panel h is approximately zero for every initial
condition. Finally, we can see that for some initial state s the system has a small chance of being in S3 at the end
of the stochastically-induced regime (panel c). From this area the system is very likely to cross the separatrix during
the asymmetric regime, leading to the small outcome probability contribution in panel g.

Since the probabilities in panel h are very low, the accuracy of the probability decomposition is very high (panel
j) also in this case. The accuracy gets worse only for middle values of growth rate (around b− d = 0.05), very small
mutation rates (e.g., log10 µ < −6) and large initial populations (e.g., N0 > 200). This case is reported in Fig. 8,
which shows that the probability of AllD outcomes is underestimated for some initial starts around the mixed-strategy
unstable fixed point.

Fig. 3 panels d and g can be reconstructed in a similar way, as shown in Figs. 19 and 20.
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FIG. 16. Outcome statistics decomposition over n0: log10µ = −3.5, N0 = 50 and b− d = 0.05. Panels a-d show
the probability of the system being in the four equivalence classes Si at the end of the stochastically-induced regime. The
probabilities of AllD outcomes given that the system is in the representative points si at time beginning of the asymmetric
regime are reported in the second row. Panels e-i show how the probabilities are combined to approximate the outcome
probability and panel j shows accuracy of such approximation (cf. Fig. 3b).
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FIG. 17. Outcome statistics decomposition over n0: log10µ = −3.5, N0 = 250 and b− d = 0.05. Panels a-d show
the probability of the system being in the four equivalence classes Si at the end of the stochastically-induced regime. The
probabilities of AllD outcomes given that the system is in the representative points si at time beginning of the asymmetric
regime are reported in the second row. Panels e-i show how the probabilities are combined to approximate the outcome
probability and panel j shows accuracy of such approximation (cf. Fig. 3c).
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FIG. 18. Outcome statistics decomposition over n0: log10µ = −6.5, N0 = 50 and b− d = 0.05. Panels a-d show
the probability of the system being in the four equivalence classes Si at the end of the stochastically-induced regime. The
probabilities of AllD outcomes given that the system is in the representative points si at time beginning of the asymmetric
regime are reported in the second row. Panels e-i show how the probabilities are combined to approximate the outcome
probability and panel j shows accuracy of such approximation (cf. Fig. 3e).
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FIG. 19. Outcome statistics decomposition over N0: log10µ = −3.5 and b− d = 0.05. The results are shown for the
two initial states s′ and s′′ in Fig. 3. Panels a-d show the probability of the system being in the four equivalence classes Si at
the end of the stochastically-induced regime. The probabilities of AllD outcomes given that the system is in the representative
points si at time beginning of the asymmetric regime are reported in the second row. Panels e-i show how the probabilities
are combined to approximate the outcome probability and panel j shows accuracy of such approximation (cf. Fig. 3d).
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FIG. 20. Outcome statistics decomposition over N0: log10µ = −6.5 and b− d = 0.05. The results are shown for the
two initial states s′ and s′′ in Fig. 3. Panels a-d show the probability of the system being in the four equivalence classes Si at
the end of the stochastically-induced regime. The probabilities of AllD outcomes given that the system is in the representative
points si at time beginning of the asymmetric regime are reported in the second row. Panels e-i show how the probabilities
are combined to approximate the outcome probability and panel j shows accuracy of such approximation (cf. Fig. 3g).
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