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Abstract11

Epidemiological and clinical evidence indicates that humans infected with the
1918 pandemic influenza virus and highly pathogenic avian H5N1 influenza
viruses often displayed severe lung pathology. High viral load and exten-
sive infiltration of macrophages are the hallmarks of highly pathogenic (HP)
influenza viral infections. However, it remains unclear what biological mech-
anisms primarily determine the observed difference in the kinetics of viral
load and macrophages between HP and low pathogenic (LP) viral infections,
and how the mechanistic differences are associated with viral pathogenicity.
In this study, we develop a mathematical model of viral dynamics that in-
cludes the dynamics of different macrophage populations and interferon. We
fit the model to in vivo kinetic data of viral load and macrophage level from
BALB/c mice infected with an HP or LP strain of H1N1/H5N1 virus using
Bayesian inference. Our primary finding is that HP viruses has a higher vi-
ral infection rate, a lower interferon production rate and a lower macrophage
recruitment rate compared to LP viruses, which are strongly associated with
more severe tissue damage (quantified by a higher percentage of epithelial
cell loss). We also quantify the relative contribution of macrophages to viral
clearance and find that macrophages do not play a dominant role in direct
clearance of free virus although their role in mediating immune responses
such as interferon production is crucial. Our work provides new insight into
the mechanisms that convey the observed difference in viral and macrophage
kinetics between HP and LP infections and establishes an improved model
fitting framework to enhance the analysis of new data on viral pathogenicity.
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Author Summary12

Infections with highly pathogenic (HP) influenza virus (e.g., the 191813

pandemic virus) often lead to serious morbidity and mortality. HP influenza14

virus infection is characterised by rapid viral growth rate, high viral load15

and excessive infiltration of macrophages to the lungs. Despite extensive16

study, we do not yet fully understand what biological processes leading to17

the observed viral and macrophage dynamics and therefore viral pathogenic-18

ity. Experimental studies have previously suggested that bot viral factors19

(e.g., viral proteins) and host factors (e.g., the host immune response) play a20

role to enhance viral pathogenicity. Here, we utilise in vivo kinetic data of vi-21

ral load and macrophages and fit a viral dynamic model the data. Our model22

allow us to explore the biological mechanisms that contribute to the differ-23

ence viral and macrophage dynamics between HP and LP infections. This24

study improves our understanding of the role of interferon on distinguishing25

immunodynamics between HP and LP infections. Our findings may con-26

tribute to the development of next-generation treatment which rely upon an27

understanding of the host different immunological response to HP influenza28

viruses.29

Introduction30

Influenza is a contagious respiratory disease caused by influenza virus and31

remains a major public concern [1]. Infections associated with the highly32

pathogenic (HP) 1918 pandemic H1N1 virus and highly pathogenic avian33

H5N1 virus often display severe lung pathology, causing fatal infection out-34

comes in humans [2, 3, 4]. Animal models have been used to understand the35

mechanisms of viral pathogenicity [5, 6, 7, 8]. High pathogenicity of viruses36

is often determined by pathogenic outcomes (e.g., the clinical outcomes of37

infection) in humans [2, 3, 9, 10]. The pathogenicity of influenza virus is38

not only associated with viral factors (e.g., viral HA protein), but is also39

influenced by host factors (e.g., the strength of inflammatory response), as40

reviewed in [11]. For example, although macrophages are important to or-41

chestrate the host immune response, they are also implicated to damage cells42

through secreted inflammatory cytokines [12, 13, 14, 15]. Some HP viruses43

can use macrophages as target cells and produce new virus from infected44

macrophages, altering the antiviral role of macrophages and contributing to45

viral infection [12, 16, 17]. Perrone et al. compared the outcome of infections46

with HP and LP strains of two influenza A viruses (i.e., the 1918 pandemic47

H1N1 virus and an H5N1 virus) in mice and showed that high-pathogenic48

viruses exhibited a significant higher viral load as early as one day post-49

infection and a higher number of macrophages in the lungs [18]. However,50

2

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.29.501947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501947
http://creativecommons.org/licenses/by-nc-nd/4.0/


the temporal dynamics of these viral or host factors, and so the major deter-51

minants of the observed differences in viral and macrophage kinetics between52

HP and LP, remain poorly understood.53

Mathematical models have been used to study infection dynamics of in-54

fluenza virus and its interactions with the host immune response (reviewed55

in [19]). To explore the potential mechanism(s) leading to the observed dif-56

ference in viral loads and macrophages between HP and LP infections in the57

study by Perrone et al. [18], Pawelek et al. fitted a mathematical model to58

the viral load and macrophage data and found that a higher activation rate59

of macrophages and an active production of virus by macrophages infected60

by HP viruses are key drivers leading to higher viral loads and more excessive61

number of macrophages [20]. More recently, Ackerman et al. [21] fitted a set62

of mathematical models with different hypothesised mechanisms—leading63

to distinct immunoregulatory behaviours (e.g., macrophage dynamics)—to64

strain specific immunological data from [22]. They identified that different65

interferon production rates are the main causes of variance between infec-66

tion outcomes in mice infected with low-pathogenic H1N1 or high-pathogenic67

H5N1 influenza viruses. The two modelling studies provided useful insights68

into the mechanisms of high pathogenicity and set a framework for assessing69

other potential mechanisms.70

The two modelling studies [20, 21] also left aspects for improvement, both71

biologically and methodologically. Interferon-mediated immune response,72

which has been shown to be important for reducing epithelial loss [23], was73

not considered in [20]. Although the study by Ackerman et al. modelled in-74

terferon, they did not compare HP and LP viruses of the same type (rather75

they compared H5N1 HP vs. H1N1 LP) [21]. Through this study, we aim to76

identify viral and host factors that determine the observed difference in viral77

load and macrophage kinetics between HP and LP viruses from same pheno-78

type. Besides, both modelling studies used least-squares method to provide79

point estimates to model parameters, which may not accurately quantify the80

uncertainty of estimated parameters and therefore limits our ability to draw81

reliable conclusions based on parameter estimates [24]. Recent advances in82

Bayesian statistical inference provides an improved framework for param-83

eter estimation and quantification of uncertainty [25] and can be applied84

to modelling viral dynamics. We would like to address the above limita-85

tions by building an improved framework to study the mechanisms for viral86

pathogenicity.87

In this study, we develop a novel mathematical model which includes88

macrophage dynamics (i.e., resting, M1 and M2 macrophages), interferon-89
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mediated immune response and essential interactions between macrophage90

and virus. Under a Bayesian statistical framework, we fit the model to91

available in vivo kinetic data for both virus and macrophage populations of92

both highly pathogenic and paired low pathogenic strains of H1N1 or H5N193

viruses. We use the data-calibrated model to generate and compare a set94

of metrics that have been used as surrogates for viral pathogenicity [26, 27].95

We identify the important role of interferon on distinguishing immunody-96

namics and the antiviral role of macrophages between HP and LP infections.97

We also demonstrate that our model reliably captures observed pathogenic98

behaviours (e.g., the severity of epithelium loss) and provides quantitative99

estimation of the proportion of damaged cells during HP and LP infections.100

Results101

Severe tissue damage in HP infection102

We fit our model to both viral load and macrophage data of HP and LP103

strains simultaneously under a Bayesian framework (the details of model and104

statistical implementation, and full diagnostics on the statistical procedures105

are provided in the Materials and Methods). Model fitting results for H1N1106

virus are given in Fig 1. Our model successfully captures the trends of107

both viral load (Fig 1A) and macrophage number (Fig 1B) for both the108

HP and LP strains of H1N1 virus and a low level of overlapping of the109

95% prediction interval (PI, shaded area) between HP and LP suggests that110

the quantitative differences in viral load and macrophage are primarily due111

to different parameter values associated with different strains rather than112

measurement error. Similar fitting results are observed for infection with the113

HP and LP strains of H5N1 virus (Figs 1C and 1D).114

Using the calibrated model, we then calculate the maximal fraction of115

epithelium loss (defined by Eq. 14 in Materials and Methods) and the cumu-116

lative dead cells (Eq. 15 in Materials and Methods) during infection which are117

difficult to measure experimentally but are important indicators of infection118

severity. For H1N1 virus, our model predicts a much larger proportion of ep-119

ithelial cells (median value 18.4%, 95% predict interval (PI): [3.4%, 97.4%])120

are damaged during the HP infection compared to that in the LP infection121

(median value 0.06%, 95% PI: [0.01%, 0.6%]), as shown in Fig 2A. Similarly122

for the cumulative number of dead cells shown in Fig 2B, We observe that123

there is a high cumulation of dead cells (median log10(AUCD) 8.5, 95% PI:124

[7.7, 8.9]) in the HP infection whereas the cumulation of dead cells is low in125

LP infection (median log10(AUCD) 6.2, 95% PI: [5.5, 7.1]).126
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Figure 1: Results of model fitting for virological and macrophage data. Data
are presented by solid circles for HP and solid triangles for LP strains. As mentioned in
the Materials and Methods, the data were adopted from [18]. We performed 6000 model
simulations based on 6000 posterior samples from the posterior distributions of estimated
parameters (see SFigs 1 and 2 in Supporting Information). (A, B) show a 95% prediction
interval (shaded area) of viral load and macrophage for HP (red) and LP (green) strains of
the H1N1 viruses, respectively. Solid lines are illustrative viral and macrophage trajectories
that are computed based on the basic reproduction number from posterior samples (see
Eq. 13 Materials and Methods). (C, D) show the data and model predictions of viral load
and macrophage dynamics for HP and LP strains of the H5N1 viruses, respectively.

A high viral infectivity and a low interferon production contribute to severe127

tissue damage in HP infection128

Given the significant difference in tissue damage between HP and LP129

virus, we now investigate the underlying biological processes responsible for130

the differences. We examine the six biological model parameters that may131

convey the difference between HP and LP virus (i.e., the six parameters132

assumed to be different between HP and LP in model fitting). To make a133

direct comparison, we present the ratio of HP’s estimate to LP’s estimate for134

each parameter in Fig 3 (note that for each parameter there are 6000 ratio135

values calculated by 6000 paired HP and LP posterior values and thus we136
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Figure 2: Prediction of tissue damage for H1N1 viruses. The violin plots (coloured)
and boxplots (white) give the density and the median and extrema of predicted quantity.
(A) model prediction of the maximal epithelium loss for the HP (yellow) and LP (green)
strains. (B) model prediction of the cumulative level of dead cells during the infection for
both strains. ∗ ∗ ∗p < 0.001. Calculation formula see Eqs. 14 and 15 in the Materials and
Methods. All estimations are computed using 6000 posterior samples from model fitting.
The estimations for the H5N1 viruses are given in SFig3 in Supporting Information

show the distribution of the 6000 ratio values in the figure). We observe that137

for H1N1 the HP strain has a significantly higher viral infectivity β (99.7% of138

the ratio samples are greater than 1 as indicated by dark green. Figs 3B and139

3C compare the interferon production rate from infected cells, qFI , and from140

activated macrophages, qFM , respectively. We find that although the HP141

strain has a decreased qFI , such that 98.9% ratio samples are lower than 1142

(indicated by light green), there is no strong evidence to indicate a difference143

in qFM , i.e., approximately half of the posterior estimates for ratios are above144

1 (47%) and half below 1 (53%). The results demonstrate that the HP virus145

is more capable of infecting susceptible cells and reducing interferon response146

from infected cells. The results are supported by a variety of experimental147

studies where enhanced infection and replication rates [28, 29] and attenuated148

interferon production rates [9, 12, 13, 30, 31, 32, 33, 34, 35] are evidenced as149

possible explanations to high viral pathogenic.150

Fig 3D shows that the rate of infection-induced macrophage recruitment151

sV is lower for the HP strain (98.4% of the ratio samples are less than 1),152

suggesting that a high recruitment rate is not the cause for the observed153

high level of macrophages during the HP infection seen in Fig 2. Instead,154

our model result indicates that high level of macrophages is due to a higher155

number of infected cells which activate more macrophages. A similar finding156

was shown by Shoemaker et al. who found that a strong inflammation-157
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Figure 3: Comparison of estimated model parameters between HP and LP
strains of the H1N1 viruses. Histograms show the frequency of the ratios of estimated
HP parameters over paired LP model parameters and are normalised to [0,1]. The ratios
are presented by distributions of 6000 samples because they are generated by 6000 posterior
parameter values. The cumulative density functions (CDFs) are given by the solid lines,
and the dashed lines indicate ratios = 0. All ratios are log10-scaled, such that ratios
> 0 (dark green) suggest greater values of the HP parameters. Figs (A, B, C) show
the ratios of viral infectivity, interferon production rate from infected cells and activated
macrophages, respectively. Figs (D, E, F) show the ratios of infection-induced macrophage
recruitment rate, macrophage-mediated virus clearance rate and antibody neutralisation
rate, respectively. The model parameter comparison for the H5N1 viruses is given in SFig
5 in Supporting Information.

associated gene expression occurs once a threshold virus titer is exceeded,158

demonstrating a strong dependency between the extent of inflammation and159

the level of virus titer [22].160

We further examine how the difference of estimated parameters between161

HP and LP is associated with the different estimated level of tissue dam-162

age shown in Fig 2. We calculate the Partial Rank Correlation Coefficients163

(PRCCs) between the ratio of estimated parameters and the ratio of epithe-164

lium loss between HP and LP strain. We find that the interferon production165
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rate qFI and infection-induced macrophage recruitment rate sV are the two166

leading factors determining the maximum epithelium loss (Fig 4A) and they167

are negatively correlated with the maximum epithelium loss (PRCC = −0.87168

and −0.85 respectively). Analysing the cumulative number of dead cells us-169

ing the same method, We also find that qFI and sV are the two leading170

parameters driving the difference in the cumulative number of dead cells171

(Fig 4B), with again negative correlations (PRCC = −0.61 and −0.86). By172

contrast, the ratio of viral infectivity β has a relatively small effect on the173

ratio of maximum epithelium loss and on the ratio of cumulative number174

of dead cells. Our results suggest a critical role of interferon in protect-175

ing epithelium loss and tissue damage, given qFI directly determines the176

rate of interferon production and sV has an indirect contribution via gen-177

erating more M1 macrophages that directly promotes the rate of interferon178

production (see model equation Eq. 8 in the Materials and Methods). The179

results are consistent with the earlier finding that interferon can retain a180

large healthy epithelial cell pool for viral re-infections [23] and supported by181

Ackerman et al. [21] who found that different interferon production rates182

are the main causes of variance between infection outcomes in mice infected183

with low-pathogenic H1N1 or high-pathogenic H5N1 influenza viruses.184

The role of macrophages on viral clearance185

As described in the introduction, the reduced antiviral effect of macrophages186

may contribute to viral pathogenicity. We here analyse the role of macrophages187

on viral clearance in both HP and LP infections. In our model, viruses are188

cleared through three ways: natural decay, macrophage phagocytosis and189

antibody neutralisation. We use the equation (Eq. 16 in the Materials and190

Methods) to quantify the contribution of macrophage phagocytosis over the191

period of infection by a fractional value (e.g., 0 means no contribution and 0.5192

means 50% of viral clearance rate is due to macrophage phagocytosis). The193

prediction interval (PI) can be used to quantify the uncertainty of the contri-194

bution fraction. As shown in Fig 5, for H1N1 virus, 95% of model predicted195

fractions of the contribution of macrophages to viral clearance (indicated by196

the 90% PI) are below 20% for HP and are below 45% for LP. The upper197

bounds of the contribution fractions drop significantly for high-confidence198

range of model predictions, e.g., 60% of of model predicted fractions (indi-199

cated by the 20% PI) are less than 0.5% for HP and less than 1.1% for LP.200

The results indicate the antiviral effects of macrophages is limited in both201

LP and HP infections, and the relative contribution is even smaller in HP in-202

fection. We also compare the relative contribution of macrophages in the HP203
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Figure 4: Correlations between estimated model parameters and tissue damage.
Partial rank correlation coefficients (PRCC) are calculated with respect to (A) the ratio
of max epithelium loss between HP and LP strains, and (B) the ratio of the cumulative
dead cells between HP and LP strains of H1N1 viruses. Between the two red dashed lines
represents the statistically insignificant values of PRCC. Calculations are based upon 6000
posterior samples from model fitting.

and LP H5N1 viruses and find a similar result as in the H1N1 viruses (SFig 6204

in Supporting Information). The result suggests that although macrophages205

are critical to orchestrate the host immune responses, i.e., initiate and resolve206

pulmonary inflammation, they are unlikely to be the dominant mechanism207

to clear free virus.208

Predicting the effective ways to reduce tissue damage209

We have identified three parameters, β, qFI and sV , that primarily deter-210

mine the difference in tissue damage (quantified by the maximum fraction of211

epithelium loss and the cumulative death cell number). This provides insight212

into the potential targets for the treatment of HP viral infection. Figs 6A, B213

and C show the impact of varying β, qFI and sV on the maximal fraction of214

epithelium loss, respectively. We find that decreasing β prevents epithelium215

loss in both HP and LP infections (Fig 6A). We also observe that increasing216

interferon production rate qFI reduces the epithelium loss for the two strains,217

but the effect is nonlinear (Fig 6B). For example, doubling the production218
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Figure 5: The relative contribution of macrophages on viral clearance in the HP
and LP strains of the H1N1 viruses. The prediction interval (PI) is calculated based
upon the 6000 posterior samples from model fitting. The median trajectory is indicated
by black curve (on the bottom). The predictions for the H5N1 viruses are given in SFig 7
in Supporting Information.

rate halves the epithelium loss, (i.e., epithelium loss is reduced from 30% to219

15% for HP and from 0.12% to 0.06% for LP). Reducing 90% of cell loss,220

however, requires a 10-time increase of qFI . Furthermore, Fig 6C shows that221

an enhanced infection-reduced macrophage recruitment rate sV has almost222

no influence on epithelium loss for the HP virus. In contrast, it reduces223

epithelium loss for the LP virus. Note that although the actual magnitude224

change of epithelium loss is minor for the LP strain, the percentage change is225

comparable between the two strains. Figs 6D, E and F show the dependency226

of cumulative death cell number upon β, qFI and sV , respectively. We find227

the cumulative death cell number is sensitive to all three parameters for both228

HP and LP strains. The results imply that the maximal epithelium loss and229

the cumulative level of dead cells are strongly associated with β and qFI ,230

and reducing viral infectivity or boosting interferon production can prevent231

epithelium loss. The results also suggest enhancing macrophage recruitment232

rate sV during infection can reduce the dead cell accumulation.233
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Figure 6: Parameter driving tissue damage for the H1N1 viruses. Solid lines are
for the HP and dashed lines are for the LP strains. Figs (A, B, C) give the sensitivity
analyses of the impact of β, qFI and sV on maximal epithelium loss. Figs (D, E, F) show
the impact of the same three model parameters on the cumulative dead cells.

Discussion234

In this work, we identified biological mechanisms that are associated with235

high pathogenicity of in vivo H1N1 and H5N1 infections through fitting a236

viral dynamic model to experimental data under a Bayesian framework. Our237

findings support and contribute to the current knowledge that is relevant238

to two frequently studied experimental explanations on the drivers of high239

pathogenicity for influenza viruses (i.e., a higher viral infectivity and a re-240

duced interferon response). Estimated marginal posterior densities of model241

parameters demonstrate that HP viruses have enhanced viral infection rates242

(i.e., higher β) and reduced interferon production rates (i.e., lower qFI) com-243

pared to LP viruses. Our estimation results also explain the difference in244

viral and macrophage kinetics between HP and LP infections. As shown by245

previous studies [23, 36, 37], a higher viral infection rate leads to a faster246

viral growth and an attenuated interferon production leads to a higher peak247

viral loads.248

Our work quantified the difference of tissue damage between HP and LP249

infections. We predicted a larger proportion of epithelium loss and a high250

level of dead cells are caused in HP infections (Fig 2 for H1N1 and SFig 3 for251

H5N1 in Supporting Information). Our model predictions—a high fraction252

of epithelium loss and a high level of dead cells in HP infection—are sup-253

ported by clinical evidence. Severe destruction of lung tissue [2] and severe254
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tissue consolidation with unique destruction of the lung architecture [2, 38]255

have been seen in patients infected with HP influenza viruses, leading to lung256

pathology [28, 39, 40, 30, 41]. The severity of tissue damage also resulted257

in different mechanisms of viral resolution. While target cell depletion re-258

mains a mechanism to limit viral replication in HP infections, a timely and259

strong activation of immune response explains viral resolution in LP infec-260

tions (SFig 4 in Supporting Information). As shown by Cao and McCaw, the261

mechanisms for viral control can strongly influence the predicted outcomes262

of antiviral treatments [42]. For example, different viral dynamics (e.g., long-263

last infection or chronic infection) were observed in response to an increasing264

drug efficacy when target cell depletion is a mechanism for viral resolution.265

In contrast, a consistent viral behaviour (i.e., an early clearance and a shorter266

infection) was observed when drug efficacy increased in an immune response267

driven viral resolution model. Therefore, the analysis of the influence of an-268

tiviral treatment on HP and LP infections is a promising future direction269

based on our work.270

Using a Bayesian statistical method, our modelling work demonstrated271

that high virulence of H1N1 and H5N1 viruses, and our estimation pro-272

vided evidence to previous experimental work. Although our work identified273

HP and LP viruses differ in viral infectivity and interferon production rate,274

we cannot (and do not attempt to) rule out other possible mechanisms or275

drivers of high pathogenicity proposed in literature. For example, production276

of virus by infected macrophages could be an important factor influencing277

viral pathogenicity [17], although there is conflicting evidence on whether278

macrophages can be productively infected by influenza virus [15, 16, 43].279

The abortive or productive infection of macrophages may also be strain-280

dependent and/or macrophage-dependent (i.e., resident or monocyte-derived281

macrophages) [17]. Thus, we have not explicitly investigate this mechanism282

in our study.283

Viral dynamical models are particularly useful in the quantification of284

modelled biological processes by fitting to experimental data [19]. In this285

work, we fit our model to both viral load and macrophage data to estimate286

model parameters. Although consistent with earlier studies where both viral287

load and macrophages were used in model fitting, the effect of incorporating288

macrophage data into model fitting remains unclear. Using a simulation-289

estimation method, we showed that macrophage data provides valuable infor-290

mation on parameter estimation, reducing the uncertainty of predicted time291

series of macrophages and estimates of the recruitment rates of macrophages292

(i.e., sM and sV ). By contrast, viral load data alone are insufficient to reli-293
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ably recover macrophage dynamics (see S3 Text in Supporting Information).294

Macrophages have been shown to clear viruses by internalisation and lyso-295

somal degradation [44, 45], but their relative contribution to viral clearance296

compared to other pathways has not been quantified. Our model predicted297

the contribution of macrophages on viral clearance (among all the modelled298

mechanisms for viral clearance) is relatively small in both HP and LP infec-299

tions of H1N1 (Fig 5) and H5N1 (SFig 6 in Supporting Information) viruses,300

suggesting that macrophages may not play a dominant role in direct clear-301

ance of free virions. Our model also suggests that the relative contribution302

of macrophage to viral clearance in HP viral infection is smaller than that in303

LP infection. This is because resident macrophages (MR) do not replenish304

during HP infection while they can quickly replenish in LP infection (SFig305

7 in Supporting Information), which increases the available macrophages to306

participate in viral clearance. Another mechanism [15] related to produc-307

tive replication of HP viruses in macrophages has been to have significant308

consequences for the antiviral functions of macrophages, as reviewed in [17].309

310

Our study has some limitations. Rather than explicitly modelling the311

dynamics of CD8+ T cells and antibodies [36, 46], we used hill functions to312

capture their dynamics. We assumed the adaptive immune response dom-313

inates infected cell or viral clearance at day 5 post infection regardless of314

macrophage dynamics. Macrophages, however, have been shown to act as315

antigen presenting cells and mediate the activation of different arms of adap-316

tive immunity. For example, M1 type macrophages help to activate the cel-317

lular adaptive immune response whereas M2 type macrophages contribute to318

the activation of humoral adaptive immunity [47, 48]. Extension of the model319

to include the interactions between different populations of macrophages and320

adaptive immunity is important but requires additional data on the adaptive321

immune response for both HP and LP, which are not immediately available322

in the literature. Another limitation is that we did not estimate conversion323

rates between different populations of macrophages, such as k1 and k2, due to324

a lack of detailed macrophage kinetic data. As a result, the kinetics for each325

specific macrophage population could not be calibrated against data. The326

interactions among macrophage populations, e.g., the rate of conversion from327

one type to another, could be an important factor to understand influenza328

disease severity. In future work, our model can be used to estimate the rele-329

vant parameters and predict detailed macrophage dynamics given availability330

of data of different macrophage populations.331
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Materials and Methods332

Mathematical Models333

In this study, we incorporated a dynamic model of macrophages into a334

viral dynamic model. The model explicitly considered the conversion among335

different populations of macrophages, essential interactions between virus336

and macrophages, and different arms of immune responses. The model is337

described by a set of ordinary differential equations (ODEs).338

Figure 7: A model diagram of immune response to influenza viral infection.
Detailed model (Eqs. 1–10)) description is given in Materials and Methods. Plus (+)
superscript indicates the promotion of a biological process, and minus (−) superscript
means the inhibition of a process. In brief, influenza virus (V ) turns susceptible epithelium
cells (T ) into eclipse-phase infected cells (L) which in turns, become infected cells (I) that
actively produce new virus. Virus also infects resting macrophages (MR) and turns them
into pro-inflammatory macrophages (M1). Virus is cleared through the MR macrophage
ingestion and antibody neutralisation. Infected cells (I) and M1 macrophages produce
interferons (F ) that turns susceptible cells (T ) into refractory cells (R). The refractory
cells (R) lose protection and turn back to T . Infected cells (I) are killed and become dead
cells (D) through interferons- and CD8+ T cells-mediated clearance. M1 macrophages
clear dead, which facilitates the conversion of MR to anti-inflammatory M2 macrophages.
Both activated M1 and M2 macrophages convert back to MR macrophages at certain
rates. For clarity, flows depicting the natural decay of activated macrophages (M1 and
M2), virus (V ) and interferons (F ), and the replenishment of resting macrophages (MR)
and target cells (T ) are not showed in the diagram.

Eqs. 1–3 describe the detailed macrophage dynamics. In the absence of339

viral infection, we assume all macrophages are resting macrophages (MR),340
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and MR is assumed to have a constant supplementary rate and decay rate341

at sM and δMR per day, respectively. Thus, the number of macrophages is342

stable at homeostasis, such as M∗
R = sM/δMR in a disease-free condition. In343

the presence of viral infection, influenza virus acting as a perturbation to344

macrophage dynamics, activates MR macrophages, turning them into pro-345

inflammatory macrophages M1 at a maximal rate k1. The activation is in-346

fluenced by viral load (V/(V +V50)) and regulated by anti-inflammatory M2347

macrophages (1/(1 + αM2)). Activated M1 macrophages convert back to348

the resting macrophages or decay at constant rate k−1 and δMA per day, re-349

spectively. The M2 macrophages regulate the activation of M1 macrophages350

to avoid excessive inflammatory response [49]. M1 macrophages phagocyte351

apoptotic and dead cells, producing regulatory cytokines (not explicitly mod-352

elled), which is represented by M1D/(D + D50). In the presence of these353

cytokines, resting macrophages MR convert to M2 macrophages at a maxi-354

mal rate k2. Activated M2 macrophages decay or convert back to the resting355

state at constant rates δMA and k−2, respectively.356

Eqs. 4–7 describe the interaction between virus and epithelial cells, and357

between virus and the host immune responses. In detail, epithelial cells (T )358

are infected by influenza virus (V ) and become latent-state infected cells (L)359

which do not produce new viruses at an infectivity rate βV per day. The360

susceptible epithelial cells are protected and convert to refractory cells (R)361

in the presence of interferon (F ) at a rate ϕF per day, and refractory cells362

convert back to susceptible cells at a rate ξR. We also assume susceptible363

cells are replenished at a rate gT (T + R)(1 − (T + I + R)/T0), where T0364

is the maximal number of epithelial cells that line the upper respiratory365

tract. Infected cells in eclipse phase convert to infected cells (I) that actively366

produce virus at a rate ℓ per day. Three mechanisms are considered for the367

clearance of infected cells (I), such as natural decay at a constant rate δI368

per day; interferon-mediated clearance at a rate κFF per day, and CD8+ T369

cells mediated infected clearance at a rate κEt
4/(t4 + t4E) per day. Note that370

we do not explicitly model the dynamics of CD8+ T cells. A hill function371

is used to represent the activation of adaptive immunity, we set tE as 5 so372

that CD8+ T cells only play a significant role after day 5 post infection as373

showed in [50]. New virus is produced by I at a rate pII viruses per day.374

The decrease of virus is either due to natural decay, macrophage-mediated375

phagocytosis or antibody neutralisation at a rate deltaV , q
′MR, κAt

4/(t4+t4A)376

per day, respectively.377

Eqs. 8–9 describe the one of the interferon dynamics and the dynamics378

of refractory cells. We assume Interferon (F ) is produced either by infected379
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cells (I) or macrophages (M1) at a rate qFII or qFMM1 unit of interferons380

per day, respectively, and decay rate a rate δF per day. The dynamics of381

dead cells (D) is described by Eq. 10. Cleared infected cells (I) become dead382

cells (D) through δII, κFF and κEt
4/(t4 + t4E), and dead cells is removed383

from the system either due to natural decay at a rate δD per day or killed by384

macrophages κDM1 per day.385

dMR

dt
= sM − δMRMR − k1(V,M2)MR + k−1M1 − k2(D,M1)MR + k−2M2,

(1)

dM1

dt
= sV I + k1(V,M2)MR − k−1M1 − δMAM1, (2)

dM2

dt
= k2(D,M1)MR − k−2M2 − δMAM2, (3)

dT

dt
= gT (T +R)

(
1− T + I +R

T0

)
− βTV − ϕFT + ξRR, (4)

dL

dt
= βTV − ℓL, (5)

dI

dt
= ℓL− δII − κFFI − κE

t4

t4 + t4E
I, (6)

dV

dt
= pII − δV V − q′MRV − κA

t4

t4 + t4A
V, (7)

dF

dt
= qFII + qFMM1 − δFF, (8)

dR

dt
= ϕFT − ξRR, (9)

dD

dt
= δII + κFFI + κE

t4

t4 + t4E
I − κDM1D − δDD, (10)

where k1(V,M2) = k1
V

V+V50

1
1+αM2

and k2(D,M1) = k2
D

D+D50
M1.386

Statistical Inference387

In vivo kinetic data of both virus and macrophage population were ex-388

tracted using WebPlotDigitizer (version 4.4) from [18]. Female BALB/c mice389

were intranasally infected with HP (A/1918 H1N1 and A/Thailand/16/2004390

H5N1) and LP (A/Texas/36/91 and A/Thailand/SP/83/2004) influenza viruses,391

and lungs were harvested for viral load and macrophage measurement at var-392

ious time points post infection. Three mice were measured per time point393

for infection with each viral strain.394
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We applied a Bayesian inference method to fit the dynamic model (de-395

tailed in Mathematical Models) to the log-transformed virological and396

macrophage data. In detail, we use the model to estimate 8 parameters, and397

the parameter space is denoted as Φ = (sV , β, qFI , qFM , sM , κA, q
′, V0). Upon398

model calibration, we fixed all other parameters to previous estimated values399

in the literature. We fixed the parameter values because the experimental400

study [18] does not provide sufficient data for parameter estimation. The401

fixed parameter values are given in S2 Text in Supporting Information.402

We assumed HP and LP viruses differ in sV , β, qFI , qFM , κA, q
′ but have403

same sM and V0. This is a reasonable assumption given inbred mice hav-404

ing similar number macrophages in the absence of infection (i.e., same sM),405

and inoculation size is same for HP and LP infection (i.e., same V0). The406

prior distribution for the estimated model parameters is given in S2 Text in407

Supporting Information. The distribution of the observed log-transformed408

viral load and macrophage data is assumed to be a normal distribution with409

a mean value given by the model simulation results and standard deviation410

(SD) parameter with prior distribution of a normal distribution with a mean411

of 0 and a SD of 1.412

Model fitting was performed in R (version 4.0.2) and Stan (Rstan 2.21.0).413

Samples were drawn from the joint posterior distribution of the model param-414

eters using Hamiltonian Monte Carlo (HMC) optimized by the No-U-Turn415

Sampler (NUTS) (see [25] for details). In particular, we used three chains416

with different starting points and ran 3000 iterations for each chain. The417

first 1000 iterations were discarded as burn-in, and we retained 6000 samples418

in total from the 3 chain (2000 for each). Detailed diagnostics and results419

can be found in S1 Text in Supporting Information.420

Model prediction421

The model prediction for any quantities z and data y given parameter set
θ, we compute

p(z|y) =
∫

p(z|θ)p(θ|y)dθ. (11)

Here, quantities z are viral reproduction number, the maximal epithelium
loss and the cumulation of dead cells. The effective reproduction number of
viral replication (Rt) is given by

Rt =
pIβT (t)

(δI + κEt4/(t4 + t4E) + κFF (t))(δV + κAt4/(t4 + t4A) + q′MR(t))
, (12)
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where T (t), F (t) and MR(t) are the number of susceptible of epithelial cells,
interferons and resting macrophages during infection. The killing effect of
CD8+ T cells and the neutralization effect of antibodies are represented by
κEt

4/(t4+t4E) and κAt
4/(t4+t4A), respectively. At t = 0, T (0) = T0, F (0) = 0

and MR(0) = s/δMR, and R0 is called the basic reproduction number of viral
infection, which simplifies to

R0 =
pIβT0

δI(δV + q′s/δMR)
, (13)

The maximal % of epithelium loss is given by

1−min(T (t) +R(t))/T0 × 100%, (14)

where T (t) and R(t) are the number of susceptible and refractory epithelial
cells during infection, and T0 is the initial number of available susceptible
cells. The area under the dead cell curve (AUCD) is given by

AUCD =

∫ τ

0

D(t)dt, (15)

τ is a cut-off day for calculation, and we set τ = 10 to cover viral and
macrophage dynamics shown in [18]. D(t) is simulated time series of dead
cells. The relative contribution of macrophages on viral clearance is given by

q′MR(t)V (t)/(δV V (t) + q′MR(t)V (t) + κA(t
4/t4 + t4A)), (16)

where MR(t) and V (t) are the number of resting macrophages and viral loads422

during infection. The prediction of tissue damage and the reproduction num-423

ber were computed using 6000 posterior samples by solving the ordinary dif-424

ferential equations (ODEs) solver ode15s in MATLAB R2022a with a relative425

tolerance of 1×10−5 and an absolute tolerance of 1×10−10. The initial values426

were (MR,M1,M2, T, L, I, V, F,R,D) = (s/δMR, 0, 0, T0, 0, 0, V0, 0, 0, 0). All427

visualization was performed in R (version 4.0.2), and codes to produce all428

figures are available at https://github.com/keli5734/virulence.429

A simulation and estimation study430

A simulation and estimation study is conducted prior to implement the431

real dataset. The purpose of the simulation and estimation study is to ex-432

plore if extra macrophage data provides more information to better estimate433

model parameters and reproduce viral and macrophage dynamics. We use434

simulation and mathematical model to show that macrophage data can be435
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used to accurately the recruitment rate of macrophages, inferring the timing436

and strength of the increase of macrophage during influenza viral infection.437

By contrast, viral load data alone cannot be used to reliably recover the438

macrophage dynamics. Hence, the combination of viral load and macrophage439

data in model fitting enhances our ability to replicate macrophage dynamics440

and allows us to explore detailed macrophage-virus interactions, e.g., the con-441

tribution of macrophages (both in timing and strength) on viral clearance.442

Detailed study design and outcome can be found in S3 Text in Supporting443

Information.444

Supporting Information445
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Enhanced infectivity and attenuation of interferon production are 
associated with high pathogenicity for influenza viruses  
 

Ke Li, James M McCaw, Pengxing Cao 
 

S1 Text 

Convergence diagnostics for the MCMC chains 

 
 
Figures A and B show trace plots for the evolution of estimated parameter vector over the 

iterations of 3 Markov chains for implementing H1N1 and H5N1 virus, respectively.  For 

each chain, the iteration number is 3000 with the first 1000 samples as burn-in. We observe 

that all three chains do overlap together, indicating convergence has occurred. Tables A and 

B show the credible intervals, effective sample size and �̂� of each estimated parameters for 

HP and LP strains of H1N1 or H5N1 virus, respectively. We find that the effective sample 

size is sufficient and  �̂� is below 1.1 for every parameter, suggesting convergence.  

 

 
Figure A Trace plots of estimated parameters for the fitting H1N1 viral and macrophage data. Three 
chains were used with 3000 iterations and first 1000 iterations as burn-in (grey area). All parameters are log-
transformed. The Parameter vector for HP 𝛷!" = (𝑠# , 𝛽, 𝑞$% , 𝑞$& , 𝑠& , 𝜅', 𝑞(, 𝑉)), and 𝛷*" =
(𝑠# , 𝛽, 𝑞$% , 𝑞$& , 𝜅', 𝑞() for LP. We assume 𝑠& and 𝑉) are the same for both HP and LP strains. 𝜎+, 𝜎,	are	error	
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structure	for	the	prior	distribution	of	standard	deviation	the	observed	log-transformed	viral	load	and	
macrophage	data.	 

 
 

 
Figure B Trace plots of estimated parameters for the fitting H5N1 viral and macrophage data.  
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Table A Credible intervals, effective sample sizes and  𝒓C for each estimated parameter of HP and LP 
strains for H1N1 virus. The first 1000 iterations are discarded as burn-in, leaving 6000 samples across the 
three chains.  

 
 
 

 
Table B Credible intervals, effective sample sizes and  𝒓C for each estimated parameter of HP and LP 
strains for H5N1 virus.  
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Enhanced infectivity and attenuation of interferon production are associated 
with high pathogenicity for influenza viruses  
 

Ke Li, James M McCaw, Pengxing Cao 
 

S2 Text 

Parameter tables 
 
Fixed Parameter table (Table S1) 
 

Parameter Description Value [refs] Unit 

𝛿!" 
Decay rate of 𝑀" 	macrophages 

1.1e-2 [9] 
/day 

𝑘#$ 
Conversion rate from 𝑀$	to	𝑀" 

0.3 [2] 
/day 

𝑘#% Conversion rate from 𝑀%	to	𝑀" 0.3 [2] /day  

𝛿!$ Decay rate of 𝑀$	macrophages 1.1e-2 [9] /day 

𝛿!% Decay rate of 𝑀%	macrophages 1.1e-2 [9] /day 

𝑘$ Conversion rate from 𝑀" 	to	𝑀$ 0.4 [2] /day 

𝑘% Conversion rate from 𝑀" 	to	𝑀% 4e-5 [2] /day  

𝑉&' Half saturation of viral load to 
activate 𝑀$ macrophages. 1e+7  PFU/ml 

𝛼 Effectiveness of 𝑀% attenuates 
𝑀" to 𝑀$ 1e-4  

/cell  

𝐷&' Half saturation of dead cells 1e+6 cell 

𝑔( Regrowth rate of epithelium  0.8 [6] /day  
𝑇)*+ The maximal epithelium cells 7e+7 [7] cell  
𝛿, Decay rate of infected cells 2 [1,8,10] /day 
𝛿- Decay rate of virus  5 [1,8,10] /day  

𝜅. Clearance rate of infected cells 
by interferons 

3 [7] /(day [𝜇.]) 
 

*[𝜇!] is the unit for interferon 
𝜅/ Clearance rate of infected cells 

by CD8+T cells 
8 [6] /day  

𝜅0 Clearance rate of dead cells by 
𝑀$ macrophages 

8e-7 [11] /(day cell) 

𝛿0 Decay rate of dead cells  2 [11] /day  

𝑝, Viral production rate  210 [6] pfu/(ml cell day) 

𝛿. Decay rate of interferons  2 [6] /day 
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𝜙 Conversion rate from 𝑇 to 𝑅 0.33 [6] /(day [𝜇.]) 
𝜉" Conversion rate from 𝑅 to 𝑇 2.6 [6] /day 
𝑡/ Half saturation term of CD8+ T 

cell response   
5 day 

𝑡1 Half saturation term of 
antibody response 

5 day 

ℓ Eclipse phase  4 [5] /day 

 
 
Estimated Parameter table (Table S2) 
 

Parameter Description                Prior [refs] Unit 

𝑙𝑜𝑔$'(𝑠-) 
Recruitment rate of 𝑀$ 

due to infection Normal(-1,2) [2,4,5,6,9] 
/day  

𝑙𝑜𝑔$'(𝛽) 
Viral infectivity rate 

Normal(-6,3) [1,3,5,7,8,10,11] 
/(pfu/ml day) 

𝑙𝑜𝑔$'(𝑞.,) 
IFN production rate by 

infected cells Normal(-6,3) [7,8] [𝜇.]/(day cell) 

𝑙𝑜𝑔$'(𝑞.!) 
IFN production rate by 
𝑀$ macrophages Normal(-6,3) [12] [𝜇.]/(day cell) 

𝑙𝑜𝑔$'(𝑠!) 
Recruitment rate of 

macrophages in 
homeostasis 

Normal(2,1) [2,4,5,6,9] 
cell/day 

𝑙𝑜𝑔$'(𝜅1) 
Neutralization rate of 
antibodies on viruses Normal(2,1) [7,8,10] /day 

𝑙𝑜𝑔$'(𝑞′) 
Engulfment rate of 

macrophages on 
viruses 

Normal(-6,3) 
/(day cell) 

𝑙𝑜𝑔$'(𝑉') 
Viral inoculation size  Normal(1,1) [13] pfu/ml 
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Enhanced infectivity and attenuation of interferon production are 
associated with high pathogenicity for influenza viruses  
 

Ke Li, James M McCaw, Pengxing Cao 
 

S3 Text 

Simulation and estimation study 

 
The purpose of the simulation and estimation study is to explore if extra macrophage data provides 

more information to better estimate model parameters and reproduce viral and macrophage dynamics. 

We use simulation and mathematical model to show that macrophage data can be used to accurately the 

recruitment rate of macrophages, inferring the timing and strength of the increase of macrophage during 

influenza viral infection. By contrast, viral load data alone cannot be used to reliably recover the 

macrophage dynamics. Hence, the combination of viral load and macrophage data in model fitting 

enhances our ability to replicate macrophage dynamics and allows us to explore detailed macrophage-

virus interactions, e.g., the contribution of macrophages (both in timing and strength) on viral clearance.  

 

Generation of synthetic viral load and macrophage data  
 

We first generate synthetic data for viral loads and macrophages mimicking the experimental procedure. 

We assume “true” parameter values are known (see Table 1). We do model (details in main text) 

simulation using the parameter values to get “true” trajectory of viral load and macrophages dynamics 

across infection period. The “true” parameters are selected such that (1) viral load peaks around day 2 

post infection; (2) viral load is below a detection limit around day 7 post infection; (3) the adaptive 

immune responses (i.e., antibody and CD8+T cells) only activate after day 5 post infection; (4) viral 

infection can be suppressed timely when both arms of adaptive immune responses (i.e., antibody and 

CD8+T cells) are presented; (5) virus can be cleared but clearance delays when there is only an antibody 

response, and (6) a chronic infection occurs when an antibody repones is suppressed (Figure 1C). A 

detailed model dynamics see Figure 1.   

 

Further, we get observation viral load and macrophage data from the “true” trajectory by adding 

lognormal noise and imposing a detection limit. Mathematically, the measured viral load 𝑉!,#  and 

macrophage 𝑀!,# for each mouse 𝑛 = 1, 2, … ,𝑁 and measuring time point 𝜏 = 1, 2, . . . , 𝑇 are given by  

 

𝑉!,# = -𝑉$%&'
(𝜏,Φ)10'!,# ,									if		𝑉$%&'(𝜏,Φ)10'!,# ≥ Θ

0, 											otherwise     and      𝑀!,# = 𝑀$%&'(𝜏,Φ)10'!,# 

 

453

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2022. ; https://doi.org/10.1101/2022.07.29.501947doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.501947
http://creativecommons.org/licenses/by-nc-nd/4.0/


Φ is a vector of “true” parameter values. 𝑒!,# is the measurement error, which follows 𝑁(0, 𝜎), and 

𝜎 = 1 for viral load data and 𝜎 = 0.1 for macrophage data. Θ is detection limit. 𝑉$%&'(𝜏,Φ) is the 

“true” viral load value at each measuring time 𝜏, and 𝑀$%&'(𝜏,Φ) is the “true” macrophage value at 

each measuring time 𝜏. Here, we select 𝑁 = 5 to indicate at each measuring time 5 data points are 

measured, and we set 𝜏 = 7.  As shown in Figures 1A and B, the open circles indicate measured data 

points at each measuring time for viral load and macrophages, respectively. The red cycles indicate 

the mean value of the 5 data point at each time, and we only use the red data points of viral load and 

macrophage populations for the model estimation.  

 
Figure 1 The synthetic data for (A) viral load, (B) macrophages. (C) “true” parameter values are selected such 
that viral loads have different behaviours when different arms of adaptive immune responses are suppressed.  

 
Table 1: “true” parameter values to generate true viral load and macrophages trajectories 

 
Parameter Description Value  Unit 

𝛿() 
Decay rate of 𝑀) 	macrophages 

3.3e+3 
/day 

𝑘*+ 
Conversion rate from 𝑀+ to 𝑀) 

0.3 
/day 

𝑘*, Conversion rate from 𝑀, to 𝑀) 0.3 /day  

𝛿(+ Decay rate of 𝑀+	macrophages 1.1e-2  /day 

𝛿(, Decay rate of 𝑀,	macrophages 1.1e-2  /day 

𝑘+ Conversion rate from 𝑀) to 𝑀+ 0.4 /day 

𝑘, Conversion rate from 𝑀) to 𝑀, 4e-6 /day  

𝑉-. Half saturation of viral load to 
activate 𝑀+ macrophages. 1e+7  PFU/ml 

𝛼 Effectiveness of 𝑀, attenuates 
𝑀) to 𝑀+ 1e-4  

/cell  

𝐷-. Half saturation of dead cells 1e+6 cell 

𝑔/ Regrowth rate of epithelium  0.8  /day  
𝑇012 The maximal epithelium cells 7e+7  cell  
𝛿3 Decay rate of infected cells 2  /day 
𝛿4 Decay rate of virus  20 /day  
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𝜅5 Clearance rate of infected cells 
by interferons 

3 /(day [𝜇5]) 
 

*[𝜇!] is the unit for interferon 
𝜅6 Clearance rate of infected cells 

by CD8+T cells 
8 /day  

𝜅7 Clearance rate of dead cells by 
𝑀+ macrophages 

8e-7 /(day cell) 

𝛿7 Decay rate of dead cells  2 /day  

𝑝3 Viral production rate  210 pfu/(ml cell day) 

𝛿5 Decay rate of interferons  2 /day 
𝜙 Conversion rate from 𝑇 to 𝑅 0.33 /(day [𝜇5]) 
𝜉) Conversion rate from 𝑅 to 𝑇 2.6 /day 
ℓ Eclipse phase  4 /day  

𝑡6  Half saturation time of CD8+ T 
cell response  

5 day 

𝑡8 Half saturation time of antibody 
response  

5 day 

Bayesian statistical inference  
 

Two scenarios were considered, one of which is using viral load data only, and the other is using both 

viral load and macrophage data. We applied a Bayesian inference method to fit the dynamic model 

(detailed in the main text) to the log-transformed kinetic data. In detail, we use the model to estimate 8 

parameters, and the parameter space is denoted as Φ = (𝑠4 , 𝛽, 𝑞53 , 𝑞5( , 𝑠( , 𝜅8, 𝑞9, 𝑉.). Upon model 

calibration, we fixed all other parameters their “true” values as shown in Table 1.  

 

The prior distribution for the estimated model parameters is given in Table S2 in Supplementary 

Materials 2. The distribution of the observed log-transformed viral load and/or macrophage data is 

assumed to be a normal distribution with a mean value given by the model simulation results and 

standard deviation (SD) parameter with prior distribution of a normal distribution with a mean of 0 and 

a SD of 1. 

 

Model fitting was performed in R (version 4.0.2) and Stan (Rstan 2.21.0). Samples were drawn from 

the joint posterior distribution of the model parameters using Hamiltonian Monte Carlo (HMC) 

optimized by the No-U-Turn Sampler (NUTS) (details see Chatzilena et al. (2019)). In particular, we 

used 4 chains with different starting points and ran 8000 iterations (first 3000 samples are burn-in) for 

each chain when only viral load data is used. We also tried to run 2000, 4000 and 6000 iterations, 

respectively and effective sample size is small. When viral load data and macrophages are both used, 

we ran 4 chains with 2000 iterations (first 1000 samples are burn-in) for each chain.  
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Predictive check 

 
Figure 2 Results of model fitting for virological and macrophage data. Data are presented by solid circles. (A) 
shows a 95% prediction interval (shaded area) of reproduced viral dynamics by using viral load data only (red) or 
both viral load and macrophage data (green). (B) shows a 95% prediction interval (shaded area) of reproduced 
macrophage kinetics by using viral load data only (red) or both viral load and macrophage data (green). 

 
Posterior comparison  

 
Figure 3 Posterior distributions of estimated parameters. Purple bars show posterior density of parameters 
when only viral load data is used. Green bars show posterior density of parameters when both viral load and 
macrophage data are used. Red lines indicate the “true” parameter values.  
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Diagnostics  
 

 
 
Figure 4 Trace plots of estimated parameters using only viral load data. Four chains were used with 8000 
iterations and first 3000 iterations as burn-in (grey area). All parameters are log-transformed. The parameter 
vector is 𝛷 = (𝑠" , 𝛽, 𝑞!# , 𝑞!$ , 𝑠$ , 𝜅%, 𝑞&, 𝑉').  
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Figure 5 Trace plots of estimated parameters using both viral load and macrophage data. Four chains 
were used with 2000 iterations and first 1000 iterations as burn-in (grey area). All parameters are log-
transformed. The parameter vector is 𝛷 = (𝑠" , 𝛽, 𝑞!# , 𝑞!$ , 𝑠$ , 𝜅%, 𝑞&, 𝑉').  
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SFig 1 Posterior distributions of parameters for H1N1 virus. Green bars indicate the posterior density for HP 
strain and purple bars indicate the posterior density for LP strain. Green and purple dashed lines indicate the 
median estimation of each parameter for HP and LP, respectively. Prior distribution for each parameter is given 
by black curve.  
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SFig 2 Posterior distributions of parameters for H5N1 virus. Green bars indicate the posterior density for HP 
strain and purple bars indicate the posterior density for LP strain. Green and purple dashed lines indicate the 
median estimation of each parameter for HP and LP, respectively. Prior distribution for each parameter is given 
by black curve.  
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SFig 3 Prediction of tissue damage for H5N1 viruses. The violin plots (coloured) and boxplots (white) give the 
density and the median and extrema of predicted quantity. (A) model prediction of the maximal epithelium loss 
for the HP (yellow) and green (LP) strain. (B) model prediction of the cumulative level of dead cells during the 
infection for both strains. ∗∗∗ 𝑝 < 0.001. Calculation formula see Eq. (13) in the main text. All estimations are 
computed using 6000 posterior samples from model fitting.  
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SFig 4 The proportional of epithelium loss during HP and LP H1N1 viral infections. The calculation of epithelium 
loss is given in the main text. All estimations are computed using 6000 posterior samples from model fitting.  
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SFig 5 Comparison of estimated model parameters between HP and LP strains of the H5N1 viruses. Histograms 
show the frequency of the quotient of estimated HP parameters over paired LP model parameters and are 
normalised to [0,1]. The cumulative density functions (CDF) are given by the solid lines. All quotients are log10-
scaled, such that quotient > 0 suggests greater values of the HP parameters. Dark green indicates quotients > 0, 
and light green indicates quotients < 0. First row (from left to right) the quotients of viral infectivity, interferon 
production rate from infected cells and activated macrophages, respectively. Second row (from left to right) the 
quotients of infection-induced macrophage recruitment rate, macrophage-mediated virus clearance rate and 
antibody neutralisation rate, respectively.  
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SFig 6 The relative contribution of macrophages on viral clearance in the HP and LP strains of the H5N1 viruses. 
The relative contribution is given by 𝑞!𝑀"(𝑡)𝑉(𝑡)/	(𝛿#𝑉(𝑡) + 𝑞!𝑀"(𝑡)𝑉(𝑡) + 𝜅$(𝑡%	/	𝑡% + 𝑡&'% )), where 𝑀"(𝑡) 
and 𝑉(𝑡) are the number of resting macrophages and viral loads during infection. The prediction interval (PI) is 
calculated based upon the 6000 posterior samples from model fitting. The median trajectory is indicated by 
black curve. 
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SFig 7 Detailed macrophage dynamics during HP and LP H1N1 viral infections. Y-axis gives the proportion of 
each type of macrophages to overall number of macrophages at each measuring time. Grey lines are 
macrophage trajectories calculated based upon 6000 posterior samples from model fitting, and the median 
trajectory is indicated by red curve. 
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