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1 Abstract

2 Chronic infection by gram-negative bacteria such as Pseudomonas aeruginosa is a leading cause 

3 of morbidity and mortality in cystic fibrosis patients in whom overabundant mucus and the 

4 formation of bacterial biofilms pose barriers to drug delivery and effectiveness. Accurate 

5 pharmacokinetic-pharmacodynamic (PK-PD) models of biofilm treatment could be used to guide 

6 formulation and administration strategies to better control bacterial lung infections. To this end, 

7 we have developed a detailed pharmacodynamic model of P. aeruginosa treatment with the front-

8 line antibiotics, tobramycin and colistin, and validated it on a detailed dataset of killing dynamics. 

9 A compartmental model structure was developed in which the key features are diffusion of drug 

10 through a boundary layer to the bacteria, concentration dependent interactions with bacteria, and 

11 passage of the bacteria through successive transit states before death. The number of transit states 

12 employed was greater for tobramycin, which is a ribosomal inhibitor, than for colistin, which 

13 disrupts bacterial membranes. For both drugs, the experimentally observed delay in killing of 

14 bacteria following drug exposure was replicated and was consistent with the diffusion time, though 

15 for tobramycin, there was an additional delay reflected in the model by passage through the transit 

16 states. For each drug, the PD model with a single set of parameters described data across a ten-

17 fold range of concentrations and for both continuous and transient exposure protocols. 

18 Furthermore, the parameters fit for each drug individually were used to model the response of 

19 biofilms to combined treatment with tobramycin and colistin. The ability to predict drug response 

20 over a range of administration protocols allows this PD model to be integrated with PK 

21 descriptions to describe in vivo antibiotic response dynamics and to predict drug delivery strategies 

22 for improved control of bacterial lung infections.

23 Author Summary

24 Biofilms are self-assembling bacterial communities that adhere to a surface and encase themselves 

25 in a protective coating. Biofilm infections are notoriously difficult to treat with conventional 

26 antibiotic administrations. To understand better the dynamics of bacterial biofilm killing in 

27 response to antibiotic treatment, we developed a mathematical model that integrates several 

28 features: drug diffusion through a boundary layer that includes the biofilm casing, concentration 
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29 dependent cell damage, and passage of the cell through damaged states to eventual death. We 

30 validated the model by comparison with an extensive published dataset of biofilm response to 

31 treatment with the antibiotics, tobramycin and colistin. The model fits to these datasets were able 

32 to capture the observed trends for several antibiotic administration protocols, with model 

33 parameters reflecting the differences in mechanism of action between the two drugs. This validated 

34 model can be integrated with pharmacokinetic descriptions of drug distribution in the body over 

35 time to predict dosing and administration protocols for preclinical and clinical studies.

36 Introduction

37 Bacterial biofilms contain cells that adhere to each other to produce a colony of microorganisms, 

38 which is additionally adherent to a surface that may be living or nonliving [1]. The cells within the 

39 biofilm secrete an extracellular polymeric substance (EPS) that encases and protects this colony 

40 from host responses and potential drug treatments [2]. Biofilms occur on a wide range of artificial 

41 and natural surfaces. Biofilm formation has been found in a variety of anatomic settings including 

42 wounds, the ear, and lungs; it accounts for greater than 80% of human microbial infections [3].

43 In some cases, altered pathophysiology may provide a favorable setting for biofilm formation, 

44 such as the altered mucus composition in patients with cystic fibrosis (CF). Mucin, the 

45 glycoprotein responsible for viscoelastic properties of mucus, is overproduced, and abnormal 

46 glycosylation patterns are observed within CF patients [4]. The mucus-filled environment gives 

47 rise to a breeding ground of bacterial development. Chronic infection by Pseudomonas 

48 aeruginosa, a gram-negative bacterium notorious for its antibiotic resistance due to biofilm 

49 formation, is common within 80% of CF patients [3]. Medical devices and instruments may also 

50 be contaminated with P. aeruginosa; thus, hospital-acquired infections are not uncommon [5]. 

51 Patients infected with P. aeruginosa are given antibiotic treatments, such as tobramycin and 

52 colistin, that are only effective in high doses to treat biofilms. These high dosages, in turn, induce 

53 systemic toxicities [6], and their prolonged use can lead to antibiotic resistance [7]. 

54 Pharmacokinetic-pharmacodynamic (PK-PD) models are frequently used as tools to design dosing 

55 and administration protocols and as frameworks to interpret experimental results in preclinical 

56 studies. For antibiotic treatments of infection, this is often implemented using static parameters, 
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57 such as minimum inhibitory concentration (MIC) for the pharmacodynamics and maximum drug 

58 concentration (Cmax) or drug area under the curve (AUC) for the pharmacokinetics [8]. The 

59 physical barriers posed and community nature of a bacterial biofilm are such that it may be 

60 necessary to incorporate additional factors, such as the dynamics of drug transport and delayed, 

61 cooperative effects of drugs on biofilm bacteria in order to better describe drug response. Better 

62 experimental quantification of the dynamics of biofilm response to various drug treatments and 

63 their incorporation into pharmacodynamic (PD) models are crucial in understanding and 

64 incorporating the concentration dependent and dynamic effects involved in overcoming biofilm 

65 infections. For example, recent developments in the application of confocal laser scanning 

66 microscopy with flow chambers has enabled monitoring of the real-time killing of bacterial 

67 biofilms [9-11].

68 In the present work, a rich data set was used to validate a novel PD model for the killing of P. 

69 aeruginosa in biofilms by tobramycin and colistin. The proposed model incorporates three 

70 essential components: drug diffusion to the biofilm, nonlinear drug concentration effects on 

71 cellular damage, and a passage through multiple transit states by which the cells eventually become 

72 nonviable. This model was applied to various drug administration experiments that reflect the 

73 dynamic nature of biofilm as well as the cellular mechanisms involved in response to the drug. 

74 Specifically, the model was based on experiments in which P. aeruginosa biofilms were exposed 

75 to varying concentrations of drugs. It was validated in its ability to capture the dynamics of killing 

76 in response to transient exposure to one drug and continuous exposure to drug combinations.

77 Methods 

78 Experimental dataset

79 A pharmacodynamic model, which captures the effects of drug concentration, drug diffusion, and 

80 cell transit through several states ultimately leading to cell death, was developed to describe 

81 previously reported data regarding tobramycin and colistin treatment of Pseudomonas aeruginosa 

82 biofilms in a well-defined flow cell[9]. In the experiments, biofilm populations were established 

83 for 48 hours under flow. Subsequently, the biofilms were provided continuous or transient 

84 treatment of drug using the flow cell system, and data were collected continuously for up to 24 
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85 hours. The transit time of the drug within the tube was approximately 90 minutes, which was 

86 accounted for in our model by subtracting 1.5 hours from the raw data. Propidium iodide (PI) dye 

87 was included in the flow solution to stain the nonviable biomass, and the resulting fluorescence 

88 was recorded by automated microscopy and normalized to the maximum fluorescence intensity 

89 recorded. As a result, the experimentally reported quantity to which model predictions were 

90 compared is the “Relative Biovolume,” representing the normalized values of dead biovolume.  

91 Pharmacodynamic model

92 In the proposed pharmacodynamic model (Figure 1), exposure to drug induces healthy biofilm 

93 cells (B) to enter and progress through one or more transit states (D1, D2, …) in which the cell 

94 membrane integrity is maintained (i.e., they do not stain with propidium iodide) but the cells are 

95 no longer able to divide. Progression from the last transit state produces dead cells (X), 

96 corresponding experimentally to nonviable biovolume. Mass balances were used to derive kinetic 

97 equations describing the populations of healthy biofilm cells, the respective transit compartments, 

98 and dead cells. For tobramycin administration, the number of transit compartments was determined 

99 by optimization to be five, leading to the following set of balance equations. Colistin 

100 administration followed the same model structure; however, there was only one transit 

101 compartment as opposed to five. 

𝑑𝐵∗

𝑑𝑡 = 𝐵∗ ∙ [𝜇 ∙ (1 ― 𝐵∗ ― 𝐷∗
1 ― 𝐷∗

2 ― 𝐷∗
3 ― 𝐷∗

4 ― 𝐷∗
5 ― 𝑋∗) ― 𝑘𝑠(𝛼,𝛽)𝐶𝛾

0] (1)

𝑑𝐷∗
1

𝑑𝑡 = 𝑘𝑠(𝛼,𝛽)𝐶𝛾
0 ∙ 𝐵∗ ―  𝑘𝑡 ∙ 𝐷∗

1 (2)

𝑑𝐷∗
2

𝑑𝑡 = 𝑘𝑡 ∙ (𝐷∗
1 ― 𝐷∗

2) (3)

𝑑𝐷∗
3

𝑑𝑡 = 𝑘𝑡 ∙ (𝐷∗
2 ― 𝐷∗

3) (4)

𝑑𝐷∗
4

𝑑𝑡 = 𝑘𝑡 ∙ (𝐷∗
3 ― 𝐷∗

4) (5)
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 𝑑𝐷∗
5

𝑑𝑡 = 𝑘𝑡 ∙ (𝐷∗
4 ― 𝐷∗

5) (6)

𝑑𝑋∗

𝑑𝑡 = 𝑘𝑡 ∙ 𝐷∗
5 (7)

Fig 1. Pharmacodynamic model structure for tobramycin. The pharmacodynamic model for response to 

tobramycin (subscript ‘t’) tracks the transit of biofilm cells going from a viable (B) to nonviable state (Xt) 

following administration of tobramycin at bulk concentration C0t. There is a flux, J(D) of drug from the bulk 

to the biofilm cells, where the local concentration is Ct. For tobramycin, there are five transit compartments 

(D1t, D2t, D3t, D4t and D5t) mediating the cellular response to drug. Growth is governed by a specific growth 

rate, , the coupled diffusion and pharmacodynamic response are subject to parameters , , and , and the 

transit rate to subsequent compartments is given by ktt. 

102 In the above equations, the values for each compartment were normalized, as indicated by the 

103 asterisks, to the maximum biovolume observed in accordance with the experimental data [9]. It is 

104 assumed that all of the cells start in the healthy biofilm state, from which they can proliferate with 

105 a specific growth rate (𝜇) that is modified with a capacity constraint term (Equation 1). The rate 

106 of healthy cell entry into the transit rates is given in terms of a rate constant, ks, and the bulk 

107 concentration, C0, raised to a cooperativity factor,  (Equation 2). The rate constant is proportional 

108 to the diffusive flux (SI Appendix) and can be expressed in terms of two model parameters,  and 

109 , each of which is a grouping of physical constants, to give:
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𝑘𝑠 = 𝛼[1 + 2
∞

𝑛=1
( ―1)𝑛𝑒―𝑛2𝛽𝑡] (8)

110 Biofilm cells affected by tobramycin eventually progress through five compartmental transit states 

111 (Equations 2-6) at a rate of 𝑘𝑡 in which they become progressively less viable than the previous 

112 state. In the final compartment (𝑋∗), the biofilm cells are nonviable (dead). It is this quantity that 

113 can be compared with the measured nonviable biovolume. 

114 The coupled set of ordinary differential equations (1) – (7) was solved using an ode45 solver in 

115 MATLAB where the initial relative density of the biofilm state was set to 0.81 for the tobramycin 

116 treatment and 0.89 for the colistin treatment, and the rest of the compartments started with no 

117 biovolume. For each drug (tobramycin and colistin), five adjustable model parameters (𝜇, 𝑓𝑐, 𝑘𝑡, 𝛼 

118 and 𝛽) were fit to the composite experimental data [9] across varying respective concentrations 

119 and time courses of 24 hours. An error function was first created to evaluate the squared difference 

120 between the output of the model for a given set of parameters and the given data at a specific 

121 timepoint. This function was then minimized using the MATLAB implementation of genetic 

122 algorithm (ga), which produced the desired parameter values. The initial condition was essentially 

123 an extra parameter within the model. To find these values for each respective drug, values ranging 

124 between 0.70 and 0.95 were tested, and the error from the data and model output were compared. 

125 The initial concentration producing the least error was then used.  

126 Results

127 A detailed pharmacodynamic model was proposed to describe the dynamic response of 

128 Pseudomonas aeruginosa to the antibiotics, tobramycin and colistin (Fig 1). The available dataset 

129 used to validate this model consists of the amount of dead biofilm (relative biovolume) as a 

130 function of time for several different biofilm concentrations for two different treatment protocols 

131 (tobramycin and colistin). In the proposed model, the drug first must diffuse through a boundary 

132 layer to get to the biofilm. When the drug reaches the biofilm, the biofilm cells go through a 

133 progression of transit compartments, the number of which is specific to and reflects the mechanism 

134 of action of the drug. Progression through the transit compartments is irreversible; consequently, 
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135 the cells ultimately die after passing through them. The model was fit to continuous-time data for 

136 the killing of P. aeruginosa in a flow-cell chamber [9].

137 The model was first tested on data for P. aeruginosa treated with tobramycin (TOB). The 

138 mechanism of action for tobramycin involves binding to the 30S ribosomal unit, thereby inhibiting 

139 protein synthesis, which gradually incapacitates the bacterium and ultimately induces cell death 

140 [12]. This is a prolonged process, which was modeled using five transit compartments, as described 

141 in the Methods. At the TOB 20 µg/mL concentration, experimentally, there is a delay of 

142 approximately 5.5 hours between drug exposure (with the dead volume of the system already taken 

143 into account) and the emergence of nonviable biovolume, which subsequently increases rapidly 

144 (Fig 2). This behavior is captured by the model following a continuous treatment of tobramycin 

145 for 24 hours. The time required for the drug to diffuse to the biofilm is seen within the flat region 

146 of the graph, and as the cells progress through the transit compartments, they are still viable until 

147 death in the X* compartment. After the composite time for drug diffusion and cellular 

148 compartment transit, there is a rapid increase in the number of dead cells observed experimentally 

149 and predicted by the model. For the other studied concentrations of tobramycin, 5 and 50 µg/mL 

150 (not shown), the proposed model shows the same pattern of delay, progression through the transit 

151 compartments, and increase in the dead biovolume population, all of which are consistent with the 

152 experimental results [9]. 
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Fig 2. Dynamics of Pseudomonas aeruginosa killing in response to tobramycin at 20 µg/mL. The left 

panel shows the model comparison of the dead cells, shown in red, with the experimental data, shown in blue. 

The right panel shows the populations in each of the cellular compartments over the same time course. 

153

154 A useful pharmacodynamic model should be able to capture not only the dynamics, but also the 

155 concentration (dose) dependence of response. To this end, the model’s parameters were fit to the 

156 ensemble data of 5, 20, and 50 µg/mL tobramycin exposure to produce one set of fit parameters 

157 (Table 1). This single set of parameters successfully describes the dynamics of cell killing for the 

158 concentration range of 5 - 50 µg/mL (Fig 3). The dependence of the lag time before onset of dead 

159 biovolume is consistent with the drug diffusion aspect of the model. Delay due to diffusion is seen 

160 for all drug concentrations, and it is amplified for lower concentrations. Because the diffusive flux 

161 of drug to the biofilm cells is directly proportional to the concentration driving force, less delay 

162 and higher dead biovolume concentrations are observed at shorter times for greater drug 
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163 concentrations. Consequently, tobramycin concentrations of 20 and 50 µg/mL yield shorter lag 

164 times as compared to 5 µg/mL (Fig 3). 

165

Table 1. Pharmacodynamic model parameters.

Parameter Description Units TOB Value CST Value
µB Growth rate of biofilm population h-1 0.0321 0.0001

⍺ Rate constant for drug effect on biofilm cells (g/mL)-1 h-1 0.0002 0.0082

β Normalized drug diffusivity h-1 0.2088 0.3986

γ Cooperativity in drug effect on biofilm 3.5330 4.4313

kt Intercompartmental transit rate of drug h-1 0.5424 1.8924

166

Fig 3. Tobramycin model fits across a ten-fold concentration range. The PD model was used to simulate 

the treatment of biofilms treated with tobramycin at drug concentrations of 5, 20, and 50 µg/mL. The model 
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was fit to the ensemble data of all three concentrations. The experimental data are shown in blue, and the 

model is shown in red. 

167

168 A key application of a pharmacodynamic model is its use to predict the response to varying drug 

169 administration protocols. Experimental data are available for the response of P. aeruginosa to a 

170 transient exposure to tobramycin, where the drug is administered for the first four hours and then 

171 turned off for the remaining twenty hours. The pharmacodynamic model predicts that drug effects 

172 will continue to be observed after removal of drug from the bulk, due to continued flux of 

173 remaining drug through the boundary layer and continued progression of cells through the transit 

174 compartments. As a result, a sharp increase in dead cell biovolume is predicted by the model and 

175 observed experimentally during the period from 5-20 hours after initial exposure, i.e., after the 

176 drug was turned off (Fig 4). At the higher concentrations of 20 and 50 µg/mL, regrowth was 

177 observed in the experimental model about 12 hours after the drug administration ceased. Only at 

178 the lowest TOB concentration of 5 µg/mL was there a reduction in killing in the transient exposure 

179 experiment as compared to continuous exposure. This behavior is explained by the model as being 

180 due to an insufficient amount of drug having diffused into the boundary layer during the four hours 

181 of drug exposure (Fig 4).  
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Fig 4. Transient exposure of biofilms to tobramycin. The same set of parameters for the continuous data 

was used to simulate the treatment of biofilms using tobramycin transiently for four hours at the same drug 

concentrations of 5, 20, and 50 µg/mL. The experimental data are shown in blue, and the model is shown in 

red.

182

183 Experimental data on the treatment of P. aeruginosa in the same flow system are available for 

184 colistin, whose mechanism of action provides a contrast to that of tobramycin. Colistin is a 

185 lipopeptide which binds to phospholipids found on the membrane of the cells and replaces cations 

186 [13]. This induces cell rupture and leakage of the inner contents of the cell, leading to death. 

187 Because this drug has a more rapid mode of killing than tobramycin, the pharmacodynamic model 

188 was modified to contain only one transit compartment (Fig 5A), such that the progression of cells 

189 from the exposure to the drug to cell death is more rapid than for tobramycin. Analogously to 

190 tobramycin, we fit data for multiple concentrations of colistin (CST) into one set of parameters 
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191 and used these to model various concentrations of colistin administered continuously over a period 

192 of twelve hours. 

Fig 5. The pharmacodynamic model for colistin. (A) Model structure with a single transit compartment. 

The symbols have the same meanings as in Figure 1, with subscripts changed from t (tobramycin) to c 

(colistin). (B) Data and model fit for colistin killing of P. aeruginosa biofilms at 10 µg/mL. The model fit 

uses parameters determined by fitting to the ensemble of colistin continuous response data.

193

194 As seen with tobramycin, a delay is observed in the response to colistin due to the time required 

195 for diffusion through the boundary layer (Fig 5B). However, the delay is shorter due to the 

196 existence of only one transit compartment and more rapid transit throughout. As with 

197 tobramycin, a single set of parameters accurately describes the ensemble of data over the tested 

198 concentration range (Fig 6). These same parameters were used when applying the model to a 

199 transient exposure to colistin, where the drug was administered for the first four hours and shut 

200 off for the remaining time (Fig 7). The same trend was seen as in the continuous treatment, 

201 where at higher concentrations, the diffusive flux of colistin is greater, therefore resulting in less 

202 delay and rapid onset of cell killing. Additionally, at these high concentrations of colistin, all of 

203 the biofilm cells were observed to become nonviable at earlier time points in comparison to 

204 tobramycin, again largely due to drug-treated cells spending less time in transit compartments. 

205
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Fig 6. Colistin model fits across a ten-fold concentration range. The PD model was used to simulate the 

treatment of biofilms using colistin concentrations of 2.5, 10, and 25 µg/mL. The data of all three 

concentrations were used to fit one set of parameters, which was used to model the various concentrations 

shown above. The experimental data are shown in blue, and the model is shown in red.
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Fig 7. Transient exposure of biofilms to colistin. The same set of parameters for the continuous data was 

used to simulate the treatment of biofilms using colistin for four hours at concentrations of 2.5, 10, and 25 

µg/mL. The experimental data are shown in blue, and the model is shown in red.

206

207 Since tobramycin and colistin have different mechanisms of action, they might produce additive 

208 or synergistic effects when used in combination. If there are no strong synergies or antagonisms, 

209 the original model may be able to predict outcomes of combined treatments using only the 

210 parameters determined earlier for each respective drug. The model proposed for this mechanism 

211 involves a combination of both treatments running in parallel (Fig 8A). It proved necessary to add 

212 a path by which the biofilm cells could initially be affected by tobramycin or colistin, and the cells 

213 in transit due to (slower acting) tobramycin exposure could be killed directly by (faster acting) 

214 colistin. It is assumed that cells in a transit compartment due to tobramycin were equally likely as 

215 naïve cells to be affected by colistin; thus, this path does not introduce any additional fitting 

216 parameters into the model. Because of the more rapid killing mechanism of colistin, the response 
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217 to colistin dominates the experimentally observed and model behaviors (Figure 8B), where the 

218 biofilm cell death occurs at earlier times, even with lower concentrations of colistin. 

219

Fig 8. Treatment with drug combinations. (A) A schematic model for the combination treatment with two 

drugs. Transit compartments resulting from exposure to tobramycin and colistin are considered as parallel 

death pathways, with the possibility for crossover from the slow-acting tobramycin to fast-acting colistin 

pathway. The same parameters that were derived earlier for each respective drug were used to predict 

outcomes of combination treatments. (B) Combination treatments were tested using various dose 

combinations of tobramycin and colistin over the course of 24 hours. The mathematical model is shown in 

red, and the experimental data are shown in blue. 

220

221 Discussion
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222 Bacterial biofilms are a significant problem in human infections because they form communities 

223 that both pose physical barriers to drug transport and allow metabolic adaptations that can alter the 

224 pharmacology of antibiotic treatment [14, 15]. An improved understanding of the response of 

225 biofilm-associated bacteria to antibiotic treatment is needed to optimize the administration route 

226 and timing of existing drugs and to focus efforts on novel antibiotic development. Experimental 

227 datasets wherein the response of a biofilm to treatment is monitored continuously over time 

228 provide a signature of the pharmacologic response. The development of a mathematical model that 

229 captures this response serves as a complementary tool that enables the interpretation of these data 

230 in terms of physicochemical mechanisms. 

231 Conventional pharmacologic expressions based on receptor theory are used to describe the 

232 pharmacodynamics (PD) of bacterial response to antibiotics [16, 17]. These in turn are 

233 incorporated into pharmacokinetic-pharmacodynamic (PK-PD) models, which are an important 

234 tool in understanding the dose and time dependence of outcomes in preclinical studies and serve 

235 as the basis for early phase clinical dose and administration scheduling [18, 19]. Traditionally, the 

236 dynamics in PK-PD models of anti-infectives are dictated by the distribution of the drug, and the 

237 concentration dependence is reflected in the pharmacodynamic expression. The simplest such 

238 expression, which is commonly employed in practice, treats the encounter between drug and target 

239 cell as a first-order reaction resulting in instantaneous cell killing [20]. This approach does not 

240 capture important trends observed in preclinical and human infections including a delay between 

241 drug exposure and drug effect and more complex dose response relationships.

242 More elaborate mathematical models have been proposed to describe the growth and treatment of 

243 biofilms, taking into account physical effects such as diffusion of substrate for growth and of 

244 antibiotic for killing within the biofilm, interfacial detachment of biofilm-associated cells, 

245 advection, and chemotaxis [21-24]. Furthermore, additional cellular states that reflect 

246 heterogeneity of response, e.g. persister states [25], or transitional states due to cell damage[26], 

247 have been incorporated. These models promote our quantitative understanding of the role that 

248 these physical and cell physiologic effects can play in the growth and antibiotic treatment of 

249 biofilms. However, incorporation of mechanisms that depend on both space and time involves 

250 partial differential equation-based continuous or agent-based simulation models that do not 

251 incorporate readily into PK-PD models [27, 28]. We sought to develop a model with sufficient 
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252 mechanistic detail as to describe the dynamics of the biofilm response while still being tractable 

253 for eventual incorporation into a PK-PD framework. 

254 Recent experiments that monitor biofilm response dynamically demonstrate that there is a delay 

255 between the onset of drug exposure and cell killing, and that the magnitude of the delay depends 

256 on the particular drug being used [9, 20]. Thus, while diffusion can play a role in the temporal 

257 response, cell physiology and the therapeutic mechanism of action are also evidently important. 

258 Based on these observations, we developed a pharmacodynamic model whose response has two 

259 critical aspects: diffusion of drug through a boundary layer to the cells, and a cell physiological 

260 response in which a cascade of events is initiated whose number and rates can be modified 

261 depending on the mechanism of action of the drug. Specifically, we introduced “transit 

262 compartments” to account for cell states that are affected by drug: non-proliferative, but not yet 

263 dead (Fig 1). Incorporating these elements, the model has five adjustable parameters with distinct 

264 mechanistic interpretations. 

265 The parameter µB represents the specific growth rate of the biofilm. As little cell growth is observed 

266 during the time course of the experiments being modeled, its value is low, and no finer detail needs 

267 to be incorporated. The inclusion of drug diffusion results in two lumped parameters, 𝛼 and 𝛽 

268 (Equation 6 and SI Appendix). The 𝛽 parameter is the value of  
𝜋𝐷
𝐻2 , where D is the diffusion 

269 coefficient, and H is the thickness of the diffusion layer, which is a combination of the 

270 hydrodynamic layer resulting from the experimental setup in a flow cell, as well as the physical 

271 barrier imposed by the biofilm itself. The lumped parameter  results from the scaling of the 

272 diffusion problem and is the inverse of the characteristic time for diffusion. Using the biofilm 

273 thickness ~20 m, the fit values of  would correspond to diffusion coefficients (1.3 - 5.2 x10-5 

274 mm2/h). These values are several orders of magnitude lower than those for water [29], suggesting 

275 that the diffusivity of the drugs is reduced in the biofilm and/or there is also a mass transfer 

276 boundary layer [30]. For this reason,  was retained as a fit, rather than fixed, parameter. Since the 

277 boundary layer thickness should be the same for both drugs, the slightly higher value fit for colistin 

278 than for tobramycin can be interpreted as a higher effective diffusion coefficient for the former 

279 compound. Although colistin has a higher molecular weight than tobramycin, it has biosurfactant 

280 properties that may allow it to diffuse (penetrate) more rapidly in the biofilm barrier [31]. 
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281 The 𝛼 value is a lumping of 𝑘𝐶𝐷
𝐻 , which includes the aforementioned parameters that describe 

282 diffusive flux, as well as a rate constant, 𝑘𝐶 , to denote the rate at which biofilm cells are affected 

283 by the drug and enter into a transit compartment to begin its death cascade. The 𝛾 value is a purely 

284 pharmacodynamic parameter representing cooperativity in terms of the drug binding to and 

285 poisoning of the biofilm cells. The last parameter, kt, corresponds to the intercompartmental transit 

286 rate of the drug. This is not typically found in other PD models that are designed to capture data at 

287 one time point; however, it is critical in capturing the overall dynamic behavior of the drug and its 

288 effect on biofilm killing. 

Fig 9. Impact of model simplifications on performance. The TOB continuous treatment was used to 

analyze the parameters within the model. Each TOB concentration was fit to the data without one indicated 

parameter. The ‘Full Model’ column shows the fit with the original parameter values found in Table 1.

289  
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290 In order to better understand the influence of model structure and parameter values on the model 

291 output, several analyses were performed. First, each component of the model was removed in turn 

292 and the model re-fit to the experimental data (Fig 9), with the exception of the cell killing 

293 component ( parameter), which would give a trivial result. Removal of either the diffusion term 

294 or the transit compartment terms significantly reduced the ability of the model to capture the 

295 dynamics of the biofilm response across the three different concentration levels of tobramycin. 

296 Likewise, removing cooperativity from the model (i.e., constraining the cooperativity parameter, 

297 , to a value of one) prevented accurate reflection of the concentration dependence. Removal of 

298 bacterial growth, , did not have a major effect on the model output. However, when neglecting 

299 this parameter in the optimization program, the error between the model and data was increased 

300 by 60% in comparison to incorporating growth rate (Table 2). As a result, the growth rate was 

301 retained in the model.

Table 2. Impact of removing model components on total error

Full model Without µB Without β Without γ Without kt

µB 0.0321 - 0.5372 0.0289 0.0000

⍺ 0.0002 0.0012 0.0072 0.0094 0.0351

β 0.2088 0.0815 - 0.2480 0.0200

γ 3.5330 3.2862 1.0705 - 3.4315

kt 0.5424 0.4370 0.4228 0.8053 -

Error 0.0561 0.0971 0.4337 0.7883 1.6449

302 The effect of these five parameters on the model output can be further understood through a 

303 parametric sensitivity analysis in which each parameter’s value is varied while holding all others 

304 constant (Fig 10). It is evident that variation in the value of kt has the greatest impact on the model 

305 overall. Conceptually, this is expected as the intercompartmental transit rate dictates progress 

306 through the “death cascade” as well as the cellular response dynamics to the drug. The value of  

307 dictates the delay due to diffusion between drug administration and cellular effects. It couples with 

308 kt and has a strong influence on the output. The pharmacologic rate constant, , has a modest effect 

309 on the output, while the cooperativity, , exerts a stronger influence. 
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Fig 10. Parametric sensitivity analysis. The TOB 20 µg/mL continuous data were used as the base case. 

The time course of dead biovolume (X*) production was compared for values of each parameter, varied one 

at a time. The black line represents the output when the parameter is at its best fit value (Table 1), the red 

and pink lines show the effect of higher values, and the green and blue lines illustrate the effect of lower 

values of each parameter. 

310

311 The number of transit compartments can be considered as an additional model parameter. We 

312 varied the number systematically, refitting the model each time to determine the value most 

313 consistent with the experimental data (Fig 11). For colistin treatment, it was found that one 

314 compartment produces the most accurate model, whereas for tobramycin five compartments 

315 provides the best fit. For either tobramycin or colistin treatment, as the number of compartments 

316 increases, kt increases in order to mimic the effect of one transit compartment (S1 Table). 
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Fig 11. Optimal number of transit compartments. The TOB 20 µg/mL and CST 10 µg/mL continuous 

data were used to determine the ideal number of compartments for the model. On the left graph, the model 

with three compartments gave the least error between the model and data for tobramycin. The graph on the 

right shows the model with a differing number of compartments for colistin, and as shown, only one 

compartment produced the least error between the model and data. The parameter values for each 

compartment can be found in the tables below.

317

318 The proposed model fit with a single set of parameters for each respective drug was able to 

319 reproduce the response to drug concentrations that vary over an order of magnitude in both 

320 continuous and transient combined exposure (Figs 3, 4, 6, and 7). It is challenging for a model to 

321 capture both concentration (dose) and time effects. The ability of the present model to do so with 

322 a single set of fit parameters is promising.  Furthermore, the effect of combined treatment was 

323 captured accurately using parameters for individual drug treatments (Fig 8B). 

324

325 Areas where agreement was less robust point to limitations in the model and/or in the 

326 experimental dataset. For instance, in the transient exposure experiments (Fig 4), a reduction in 

327 biovolume (adherent, dead cells) occurred around 20 hours after treatment onset. This represents 
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328 detachment, which has been incorporated into some biophysical models of biofilm growth [32]. 

329 However, it was not considered in the present work, as the physical location of dead cells 

330 (adherent versus detached) is not of great interest in pharmacologic applications. In addition, the 

331 model somewhat underpredicts the extent of cell death throughout the transient experiment. This 

332 underprediction is because the model parameters were fit based on the continuous treatment 

333 experiments (Fig 3), and the rate of cell killing was more rapid during transient exposure, a result 

334 that most likely reflects experimental variation rather than a physical or pharmacologic effect. 

335 Another limitation is that, because experimental data were collected for only 24 hours, 

336 pharmacologic effects occurring at longer times might not be captured accurately in the model. 

337 This would include effects such as regrowth of the biofilm and development of drug resistance, 

338 both of which tend to evolve over longer periods of time. 

339

340 In summary, we have shown that a pharmacodynamic model which integrates diffusion of drug 

341 from the bulk to the cells, drug-cell interactions, and a series of transit compartments for affected 

342 cells is able to describe accurately the dynamics of Pseudomonas aeruginosa response to 

343 tobramycin, colistin, and their combinations. The model was fit to an ensemble of data covering 

344 multiple drug concentrations to obtain one set of fit parameters for each drug. Among these, the 

345 specific growth rate proved inconsequential during the time course of the experiments studied, but 

346 each of the other four parameters exerted a distinct influence on the model output and contributed 

347 to its ability to capture experimentally observed dynamics. Overall, the model is robust enough to 

348 show the general behaviors of tobramycin, colistin, and the combination of the two drugs at various 

349 concentrations. This pharmacodynamic model can be paired with a pharmacokinetic description 

350 in vivo to predict the drug’s effect on an infection. This could be of potential interest in tissues 

351 such as lung where both systemic and regional (e.g., pulmonary) delivery are possible [33]. Our 

352 model can be useful in simulating effects of different strategies in drug administration and 

353 scheduling to promote better eradication of challenging biofilm infections.

354
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