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Abstract 38 
The hippocampus is classically divided into mesoscopic subfields which contain varying 39 
microstructure that contribute to their unique functional roles. It has been challenging to 40 
characterize this microstructure with current MR based neuroimaging techniques. In this work, 41 
we used diffusion MRI and a novel surface-based approach in the hippocampus which revealed 42 
distinct microstructural distributions of neurite density and dispersion, T1w/T2w ratio as a proxy 43 
for myelin content, fractional anisotropy, and mean diffusivity. We used the Neurite Orientation 44 
Dispersion and Density Imaging (NODDI) model optimized for gray matter diffusivity to 45 
characterize neurite density and dispersion. We found that neurite dispersion was highest in the 46 
Cornu Ammonis (CA) 1 and subiculum subfields which likely captures the large heterogeneity 47 
of tangential and radial fibers, such as the Schaffer collaterals, perforant path, and pyramidal 48 
neurons. Neurite density and T1w/T2w were highest in the subiculum and CA3 and lowest in 49 
CA1, which may reflect known myeloarchitecture differences between these subfields. Using a 50 
simple logistic regression model, we showed that neurite density, dispersion, and T1w/T2w 51 
measures provided good separability across the subfields, suggesting that they may be sensitive 52 
to the known variability in subfield cyto- and myeloarchitecture. We report macrostructural 53 
measures of gyrification, thickness, and curvature that were in line with ex vivo descriptions of 54 
hippocampal anatomy. We employed a multivariate orthogonal projective non-negative matrix 55 
factorization (OPNNMF) approach to capture co-varying regions of macro- and microstructure 56 
across the hippocampus. The clusters were highly variable along the medial-lateral (proximal-57 
distal) direction, likely reflecting known differences in morphology, cytoarchitectonic profiles, 58 
and connectivity. Finally, we show that by examining the main direction of diffusion relative to 59 
canonical hippocampal axes, we could identify regions with stereotyped microstructural 60 
orientations that may map onto specific fiber pathways, such as the Schaffer collaterals, 61 
perforant path, fimbria, and alveus. These results highlight the value of combining in vivo 62 
diffusion MRI with computational approaches for capturing hippocampal microstructure, which 63 
may provide useful features for understanding cognition and for diagnosis of disease states. 64 
 65 
Keywords: Hippocampus; Subfields; Microstructure; Neurite Density; Neurite Dispersion; 66 
Diffusion MRI 67 
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1. Introduction 77 

The hippocampus is classically divided into structurally distinct mesoscopic subfields according 78 

to differences in cyto-, myelo-, and chemoarchitecture (Duvernoy et al., 2013; Ding & Van 79 

Hoesen, 2015). The neuronal circuitry that compose the microstructure of the hippocampus exist 80 

within and across these subfields. For example, the pyramidal neurons that exist within the 81 

Cornu Ammonis (CA) and subiculum subfields have apical and basal dendrites which project 82 

across the laminae, while their axons project to the alveus, a white matter bundle adjoining the 83 

hippocampus. The trisynaptic pathway is the major circuitry component which connects the 84 

subfields of the hippocampus. The entorhinal cortex connects to the dentate gyrus (DG) and 85 

other subfields through the myelinated perforant path. The DG then projects to the pyramidal 86 

neurons of CA3 through the mossy fibers, which then project to CA1 through the largely 87 

unmyelinated Schaffer collaterals. Finally, CA1 projects to the subiculum and back to the 88 

entorhinal cortex as a large hippocampal efferent. Hippocampal microstructure is key in 89 

producing unique cognitive functions such as memory formation and storage and spatial 90 

navigation among others (Voss et al., 2017; Goodroe et al., 2018; Horner et al., 2015). 91 

Furthermore, the hippocampus is typically one of the earliest aberrant structures in many disease 92 

states, where specific microstructural properties are differentially afflicted or spared (Moodley & 93 

Chan, 2014; Dhikav & Anand, 2012; Small et al., 2011). While much work has addressed 94 

volumetric characterization of the hippocampus and its subfields, understanding hippocampal 95 

microstructure can provide key insights into its complex cognitive functions as well as its early 96 

deterioration in disease. 97 

Diffusion magnetic resonance imaging (dMRI) is a particular technique which holds 98 

promise in probing the hippocampal circuitry by sensitizing the measured MRI signal to the 99 

movement of water molecules, which diffuse more readily parallel to microstructure. Several 100 

models have been proposed that attribute measures of the dMRI signal to compartments which 101 
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have varying diffusivity environments (Assaf et al., 2008; Assaf & Basser, 2005; Zhang et al., 102 

2012). One of the earliest and most widely used models proposed by Basser et al. (1994) is 103 

diffusion tensor imaging (DTI). DTI estimates quantitative parameters such as fractional 104 

anisotropy (FA - a measure of the anisotropy of diffusion), mean diffusivity (MD – magnitude of 105 

diffusion), and the ellipsoidal orientation of the diffusion process. However, DTI has some 106 

notable limitations. At increasing b-values (approximately greater than 1000-1500 𝑠/𝑚𝑚2) there 107 

is contribution from multiple compartments with varying diffusivities (such as restricted intra-108 

cellular water), which goes beyond the monoexponential signal modelled by DTI (Assaf & 109 

Cohen. 2000). As well, regions of crossing fibers result in planar DTI ellipsoids with understated 110 

FA values (Campbell et al., 2005). Furthermore, DTI measures are sensitive to multiple 111 

microstructural properties at the same time, decreasing their specificity (Pierpaoli et al., 1996). 112 

Other models aim to utilize increasingly complex diffusion acquisitions to relate the diffusion 113 

signal attenuation to varying sets of biophysically motivated compartments. 114 

One popular compartment model is Neurite Orientation Dispersion and 115 

Density Imaging (NODDI), which aims to provide a biophysical interpretation of the diffusion 116 

signal (Zhang et al., 2012). NODDI assumes that three microstructural environments consisting 117 

of an intra-cellular, extra-cellular, and cerebrospinal fluid (CSF) compartment contribute to the 118 

diffusion signal. The intra-cellular compartment is modeled as a set of infinitely anisotropic 119 

sticks (diffusion can only be parallel to the main orientation of the stick), while the extra-cellular 120 

compartment is modeled as a zeppelin (or cylindrically symmetric tensor) with hindered 121 

diffusion perpendicular to its main axis. The CSF compartment is modeled as a sphere with 122 

gaussian isotropic diffusion. Diffusion is assumed to be contained separately within each 123 

compartment, where the resulting signal is the sum from all compartments. NODDI aims to 124 

overcome the limitations of DTI by providing microstructural scalars such as the neurite density 125 

index (NDI) and orientation dispersion index (ODI) which are sensitive to fiber crossings and are 126 
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biophysically grounded (Zhang et al., 2012). NDI is meant to represent the volume fraction of 127 

the intra-cellular compartment, which is believed to correspond to the density of dendrites, 128 

axons, and other “stick” like processes in a voxel. ODI is meant to capture the essence of the 129 

orientation distribution of the diffusion signal, where more complex or disperse microstructural 130 

configurations correspond to a higher ODI value.  131 

Contemporary work has attempted to examine hippocampal microstructure with both DTI 132 

and NODDI. Some such studies have found age-related changes of hippocampal microstructure 133 

by averaging NODDI measures within subfields (Radhakrishnan et al., 2020) while others have 134 

shown regionally specific changes using DTI (Yassa et al., 2010). Recent work has also begun to 135 

use measures derived from structural MRI to interrogate microstructural characteristics, such as 136 

the ratio of T1-weighted over T2-weighted signal as a correlate of myelin (Glasser & Van Essen, 137 

2011; Glasser et al., 2014). These measures may be useful to capture the myelinated intra-138 

hippocampal circuitry like the perforant path. A recent study investigated the variation of DTI 139 

and intra-cortical myelin through the ratio of T1w/T2w images across the hippocampus using 140 

non-negative matrix factorization, however, they did not make quantitative comparisons of 141 

microstructure within and across the subfields (Patel et al., 2020). As well, they note the limited 142 

specificity nature of the DTI and T1w/T2w metrics investigated. A recent study examined the 143 

distribution of NODDI metrics and cortical thickness across the entire cerebral cortex including 144 

the hippocampus by averaging metrics across all subjects within each cortical parcel (Fukutomi 145 

et al., 2018). Thus, they only examined coarse-grained averages across the entire hippocampal 146 

volume. The spatial distributions of NODDI and DTI measures have not been extensively 147 

investigated within the hippocampal subfields and across its longitudinal axis. 148 

The orientation and trajectory of the hippocampal circuitry including the trisynaptic 149 

circuit has been probed previously using tractography and polarized light imaging (PLI). Ex vivo 150 

work has indeed resolved major parts of the hippocampal circuitry using dMRI tractography 151 
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(Beaujoin et al., 2018) and PLI (Zeineh et al., 2017) in a small number of samples. While these 152 

studies serve as a close to ground-truth reference for the orientation of hippocampal circuitry, a 153 

difficult step has been recapitulation of this circuitry in vivo. Some in vivo work has attempted to 154 

use DTI to capture parts of the trisynaptic circuit such as the perforant path (Yassa et al., 2010) 155 

or the whole hippocampal circuitry (Zeineh et al., 2012). However, it is unclear whether the 156 

found trajectories are anatomically valid. Furthermore, at lower resolutions, tracts can be 157 

spurious requiring complex acquisition and correction schemes, and since acquisitions can vary 158 

across studies, tractography practically always requires separate optimization of its parameters 159 

(Zeineh et al., 2012). Thus, understanding hippocampal microstructure in vivo may benefit from 160 

a simpler characterization of the orientation of hippocampal circuitry with reference to metrics 161 

derived from common models like NODDI within and across the subfields. 162 

In the current study, we examined the spatial distribution of NODDI and DTI metrics, 163 

T1w/T2w ratio, and macrostructural features of thickness, gyrification, and curvature across the 164 

hippocampus using high-resolution in vivo human connectome project (HCP) data (Van Essen et 165 

al., 2013), something that has not been extensively investigated. We aimed to examine if the 166 

microstructural metrics systematically vary across the cytoarchitectonic defined subfields. 167 

Furthermore, we used Orthogonal Projective Non-Negative Matrix Factorization (OPNNMF) as 168 

a multivariate approach to capture regions of the hippocampus where these metrics co-vary. We 169 

aimed to consider the current OPNNMF representation of disparate macro- and microstructural 170 

metrics under the framework of previous research which has suggested modes of hippocampal 171 

organization along its medial-lateral (across subfields) and anterior-posterior (longitudinal) axes 172 

(Genon et al., 2021; Robinson et al., 2015; Zhong et al., 2019; Cheng et al., 2020; Plachti et al., 173 

2019; Plachti et al., 2020; Patel et al., 2020, DeKraker et al., 2020). While most hippocampus 174 

representations use voxel-based approaches, we utilized a novel surface-based approach called 175 

HippUnfold (DeKraker et al., 2018; DeKraker et al., 2022). Much like in the neocortex, surface-176 
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based methods are better suited to account for interindividual differences in tissue curvature and 177 

digitation than voxel-based approaches (DeKraker et al., 2022; DeKraker et al., 2021). Aligning 178 

hippocampi on a 2D surface preserves topology and the known contiguity of subfields, allowing 179 

for improved anatomical detail to be captured. Finally, hippocampal gray matter shows a laminar 180 

distribution similar to that of other cortical areas with large radial and tangential neurite 181 

components, although the highly curved structure of the hippocampus is reflected in the 182 

complexity of its neurite orientations. Importantly, these neurite orientations tend to be highly 183 

aligned along one of the axes of the hippocampus that span the anterior-posterior (AP 184 

longitudinal), proximal-distal (PD - across subfields), or inner-outer (across laminae) directions 185 

(Figure 1A and B) (Zeineh et al., 2017; Nieuwenhuys et al., 2008; Duvernoy et al., 2013). Thus, 186 

we also aimed to determine if the known stereotyped orientations of microstructure can be 187 

elucidated by analyzing the primary direction of diffusion along each of the axes in vivo, as 188 

depicted in Figure 1B. 189 
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Figure 1. Depiction of hippocampal structural axes, the stereotyped organization of 190 

microstructure, and diffusion vectors of the hippocampus. (A) A coronal slice depicting the 191 

structural axes of the hippocampus defined as anterior-posterior (AP), proximal-distal (PD), and 192 

inner-outer (IO) provided by HippUnfold. The inner gray area corresponds to the SRLM, while 193 

the rest of the uncoloured regions correspond to the stratum pyramidale and stratum oriens 194 

layers. The white arrow in the top right inset depicts the orientation of the anterior-posterior axis. 195 

The colour of the hippocampal surface is the anterior-posterior Laplace coordinates. Finally, the 196 

black arrow depicts the intended level of the coronal slice for the cartoon depiction. (B) 197 

Simplified cartoon depiction of known microstructural circuits within the hippocampus and their 198 

approximate main orientation relative to the hippocampus, defined by the colour coded legend 199 

on the right (Zeineh et al., 2017; Nieuwenhuys et al., 2008; Duvernoy et al., 2013). (C) Primary 200 

diffusion directions for one subject (μ of the watson distribution from NODDI) overlaid on a 201 

coronal slice approximately through the hippocampal body. Coloured borders represent the 202 

hippocampal subfields provided by HippUnfold. (D) Pictorial example representing the NODDI 203 

and hippocampal axis vectors in a single voxel defined in (C). Cosine similarities are represented 204 

as the angle between the NODDI vector and each hippocampal vector, providing a measure of 205 

orientation coherence along each cardinal axis (see section 2.5). Sub - Subiculum, CA - Cornu 206 

Ammonis, DG - Dentate Gyrus, SRLM - Stratum Radiatum Lacunosum Moleculare, ETC - 207 

Entorhinal Cortex. 208 

2. Methods 209 

2.1 Overview 210 

A subset of 100 unrelated subjects from the publicly available Human Connectome Project 211 

(HCP) 1200 dataset were used for this study (Van Essen et al., 2013). All 100 subjects were run 212 

through HippUnfold (DeKraker et al., 2022), a new automated tool for surface-based subfield 213 

segmentation and hippocampal unfolding (see section 2.3; DeKraker et al., 2018). The Laplacian 214 
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coordinates generated from HippUnfold within each subject were used to calculate gradient 215 

vector fields along each axis of the hippocampus (see section 2.5 & Figure 1A). NODDI and DTI 216 

metrics were calculated in each subject's native space using whole-brain diffusion images (see 217 

2.2 and 2.4). Cosine similarities between the NODDI orientational vector (defined as μ of the 218 

Watson distribution; see section 2.4) and the vectors along each of the 3 axes (AP, PD, and IO) 219 

were calculated at each voxel. Furthermore, the T1w/T2w ratio was calculated as a proxy for 220 

myelin content. Macrostructural measures of curvature, gyrification, and thickness were 221 

calculated along the midthickness surface (middle of the hippocampal gray matter) of the 222 

hippocampus across all subjects. NODDI measures of ODI and NDI, DTI measures of FA and 223 

MD, and the cosine similarities were all sampled along the midthickness surface within each 224 

subject and averaged in unfolded space (DeKraker et al., 2018; DeKraker et al., 2022). Plots of 225 

NODDI and DTI metrics, cosine similarities, and macrostructure metrics across the midthickness 226 

surface were visualized as folded and unfolded surfaces. Logistic regression was performed at 227 

the level of subfield averages using the NODDI and T1w/T2w metrics to elucidate their 228 

variability across the subfields. Logistic regression was chosen due to its simplicity and 229 

interpretability. Finally, Orthogonal Projective Non-Negative Matrix Factorization (OPNNMF) 230 

was used to capture co-varying regions of the hippocampus and to examine the dimensions of 231 

macro- and microstructure hippocampal organization. 232 

2.2 Data acquisition and preprocessing 233 

We used the publicly available HCP young adult dataset (ages 22-35), which consisted of 234 

structural and diffusion MRI data for 1200 subjects (Van Essen et al., 2013). To avoid any biases 235 

caused by family structures, we chose the 100 unrelated subjects subset for analysis (mean age: 236 

27.52 years +/- 3.47 years; F/M: 54/46). Data included T1-weighted (T1w) and T2-weighted 237 

(T2w) structural images at 0.7 mm3 isotropic resolution and diffusion-weighted data at 1.25 mm3 238 

isotropic resolution. Structural images were obtained using a 3D MPRAGE sequence (TR-239 
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2400ms, TE–2.14ms, TI-1000ms, FOV-224x224 mm). Diffusion images were obtained using a 240 

spin-echo echo-planar imgaging sequence (b=0 (18 acquisitions), 1000, 2000, 3000s/mm2, 90 241 

diffusion-encoding directions, TR-5520ms, TE-89.5ms, FOV-210x180mm). Data used in the 242 

preparation of this work were obtained from the Human Connectome Project (HCP) database 243 

(Van Essen et al., 2013). In this work we utilized the preprocessed structural and diffusion 244 

images for the HCP dataset. Preprocessing of structural images included: gradient distortion 245 

correction, coregistration and averaging of repeated T1w and T2w runs using 6-DOF rigid 246 

transformation, initial brain extractions for T1w and T2w, field map distortion correction and 247 

registration of T2w with T1w images, bias field correction, and atlas registration. Preprocessing 248 

of diffusion images included: intensity normalization across runs, EPI distortion correction, eddy 249 

current and motion correction, gradient nonlinearity correction, and registration of the mean b0 250 

image to T1w native space. The full pre-processing pipeline for structural and diffusion images 251 

were published elsewhere (Andersson et al., 2015; Glasser et al., 2013; Jenkinson et al., 2002; 252 

Sotiropoulos et al., 2013) and can be found at the HCP website 253 

(https://www.humanconnectome.org/study/hcp-young-adult). To derive a correlate of myelin, we 254 

divided the T1w image intensity by the T2w image intensity and corrected for the bias field 255 

(Glasser & Van Essen, 2011; Glasser et al., 2014), which is referred to as T1w/T2w for the rest 256 

of the paper.  257 

2.3 HippUnfold - Hippocampal unfolding and surface-based segmentation 258 

The newly developed HippUnfold tool was used in the current study for surface-based 259 

segmentation and unfolding of the hippocampus (DeKraker et al., 2022). HippUnfold is 260 

predicated on the idea that the hippocampal subfields are topologically constrained as they 261 

differentiate from a flat cortical mantle (Duvernoy et al., 2013). Using a ‘U-net’ deep 262 

convolutional neural network (Isensee et al., 2021), HippUnfold provides a detailed subject-263 

specific tissue segmentation of the hippocampal gray matter and its topological boundaries (for 264 
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example, the Hippocampal Amygdala Transition Area and the Indusium Griseum as the most 265 

anterior and posterior topological boundaries, respectively) required for unfolding (DeKraker et 266 

al., 2022). Segmentation is done for each individual hippocampi preserving its topologically 267 

consistent structure, which is critical for inter-individual alignment across variably shaped 268 

hippocampi. See Dekraker et al. (2022) for more detailed information on HippUnfold.  269 

  The outputs of HippUnfold utilized in this study included the provided subfield 270 

segmentation, Laplacian coordinates for gradient field calculation (see section 2.5), 271 

macrostructure measures of curvature, gyrification, and thickness, and the midthickness surface 272 

representation for sampling volumetric space metrics onto the surface (see section 2.4). Due to 273 

the small size of the Dentate Gyrus (DG) and CA4, we combined them into a single DG/CA4 274 

subfield label. As well, portions of the DG were excluded in our surface representation. All 275 

subfield segmentations for both hemispheres were reviewed for gross errors by BK. The 276 

midthickness surface used in this study was composed of 2004 vertices with a spacing of roughly 277 

1mm. Averaging of each metric across subjects was performed at each vertex in unfolded space.  278 

2.4 Characterization of microstructure with NODDI & DTI 279 

NODDI models the diffusion signal as a combination from 3 microstructural environments: 280 

intra-cellular, extra-cellular, and cerebrospinal fluid (CSF) (Zhang et al., 2012). The intra-281 

cellular compartment is considered the space that is bounded by neurites, which is modelled as a 282 

set of sticks. The stick geometry captures the restricted diffusion of water perpendicular to 283 

neurites, and the relatively unhindered diffusion along them. Furthermore, sticks can capture the 284 

wide range of neurite orientations, from highly coherent to highly dispersed tissue. The extra-285 

cellular compartment is the space around the neurites, which consists of glial cells and in gray 286 

matter, the somas. In extra-cellular space, the signal is modeled as Gaussian anisotropic diffusion 287 

to represent the hindered but not restricted movement of water. Finally, the CSF compartment is 288 

modelled as Gaussian isotropic diffusion, representing the free movement of water. NODDI does 289 
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not draw any a priori assumptions about whether a voxel is gray matter, white matter or CSF, 290 

and thus it treats each voxel as a possible combination of different compartments (Zhang et al., 291 

2012). Thus, the normalized dMRI signal can be written as: 292 

            𝐸!"##$ =	𝑓%&'𝐸%&'(𝑑%&') +𝑊(𝜇, κ)[𝑓()𝐸().𝑑*(+*, 𝑑*,+/ +	𝑓%)𝐸%).𝑑*,+/]	        (1)      293 

Where 𝑓!"#𝐸!"# , 𝑓$%𝐸$% 	and 𝑓!%𝐸!&  are the volume and signal fractions of the CSF, extra-cellular, 294 

and intra-cellular (NDI) compartments, respectively. The extra-cellular and intra-cellular 295 

compartments are linked orientationally by the Watson distribution 𝑊(𝜇, κ) , where κ  is the 296 

concentration parameter (ODI =	 '
(
arctan()

*
) ) and 𝜇  is the mean orientation of the Watson 297 

distribution (herein referred to as the NODDI microstructural vector or primary diffusion 298 

direction). The hindered perpendicular diffusion of the extra-cellular compartment 𝑑+$,+ is set via 299 

a tortuosity model. The original NODDI model which was developed mainly for white matter sets 300 

the parallel diffusivity value 𝑑+-, equal to 1.7 × 10./ 00
!

"
 and the isotropic or CSF compartment 301 

diffusion to 3.0 × 10./ 00
!

"
. Previous studies in the gray matter have sought to optimize	𝑑+-,, and 302 

have consistently found that the lowest mean squared error is achieved with 𝑑+-,  equal to 303 

1.1	 ×	10./ 00
!

"
  (Guerrero et al., 2019; Fukutomi et al., 2018).  Thus, in the current study we 304 

used the gray matter optimized 	𝑑+-, value of 1.1 × 10./ 00
!

"
 for fitting the NODDI model. The 305 

Microstructure Diffusion Toolbox (MDT; Harms et al., 2017) was utilized to fit the NODDI model 306 

using whole-brain diffusion images aligned to their respective T1w space with all b-values (b=0, 307 

1000, 2000, 3000 s/mm'). The validity of the assumptions of the NODDI model are discussed in 308 

section 4.6.  309 

 We also used the MDT (Harms et al., 2017) to calculate metrics of FA and MD using DTI. 310 

DTI was performed using only the 𝑏 = 1000	 "
00! volumes to align with typical DTI experiments 311 
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(Behrens & Johansen-Berg, 2014). Both the NODDI and DTI metrics were mapped onto the 312 

hippocampal midthickness surface using the process described below.  313 

We used Connectome Workbench (https://github.com/Washington-314 

University/workbench) to sample values at each surface vertex from volume data. In this study 315 

we used 2004 vertices defined along the midthickness surface of the hippocampus. Sampling 316 

along the midthickness surface helps reduce partial volume effects. To sample voxel data along 317 

the midthickness surface we used a ribbon-constrained mapping algorithm which also requires 318 

the inner and outer surfaces also generated by HippUnfold. The ribbon method constructs a 319 

polyhedron from the vertex’s neighbor on each surface defined, and then estimates the volume of 320 

the polyhedron that falls inside any nearby voxels to use as weights. We further reduced the 321 

weight of any voxel based on its distance from the midthickness surface, where the scaling value 322 

was calculated using a Gaussian with a standard deviation determined by the laminar thickness at 323 

each vertex. This had the effect of more aggressively down-weighting voxels further from the 324 

midthickness surface where the hippocampus is thinner. We then averaged each metric at each 325 

vertex across all subjects to generate the average maps which were plotted in folded and 326 

unfolded space. 327 

2.5 Examining the primary direction of diffusion relative to hippocampal axes 328 

Water molecules diffuse more readily parallel to microstructure, which in the hippocampus tends 329 

to be aligned along the AP, PD, and IO axes (Zeineh et al., 2017; Nieuwenhuys et al., 2008; 330 

Duvernoy et al., 2013). Thus, analyses were performed to examine how the primary direction of 331 

diffusion was oriented relative to these axes, with the goal of elucidating the stereotyped 332 

orientation of hippocampal microstructure (Figure 1). We obtained gradient vector fields along 333 

the AP, PD, and IO axes by taking the first derivative of the respective Laplacian coordinates 334 

provided by HippUnfold (Figure 1A), such that the vectors only pointed along one of the axes. 335 
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That is, we computed the partial derivative of the Laplacian coordinate function along the x, y, 336 

and z spatial dimension: 337 

𝐺12======⃑ = 	 ?
𝜕𝜓12
𝜕𝑥 ,

𝜕𝜓12
𝜕𝑦 ,

𝜕𝜓12
𝜕𝑧 E 338 

𝐺23=======⃑ = 	 ?
𝜕𝜓23
𝜕𝑥 ,

𝜕𝜓23
𝜕𝑦 ,

𝜕𝜓23
𝜕𝑧 E																																																								(2) 339 

𝐺45======⃑ = 	 ?
𝜕𝜓45
𝜕𝑥 ,

𝜕𝜓45
𝜕𝑦 ,

𝜕𝜓45
𝜕𝑧 E 340 

Where the function 𝜓∗ represents the spatial Laplacian coordinates along a particular 341 

hippocampal axis (AP, PD, or IO), which were calculated by solving Laplaces equation along 342 

each axis (∇'(𝜓) = 0) (DeKraker et al., 2022). The result was 3 distinct vector images within a 343 

hemisphere for each subject and axis. With the aligned NODDI microstructural vectors 344 

(representing the primary diffusion direction), we calculated cosine similarities between the 345 

generated vectors along the AP, PD, and IO axes and the NODDI microstructural vector at each 346 

voxel (Figure 1C & D). All vectors were normalized before calculating cosine similarities. The 347 

cosine similarity was defined as the inner product between vectors: 348 

abs! !	# ∙	%#
|!'|	|%#|

"                                                                   (3) 349 

Where 𝑎I was a hippocampal axis vector in a single voxel (AP, PD, or IO), and 𝑢I was the 350 

NODDI microstructural vector (𝜇 of the Watson distribution) at the same voxel. A higher cosine 351 

similarity meant that diffusion is increasingly oriented along that hippocampal axis (cosine 352 

similarities of 0 and 1 correspond to angles of 90 degrees and 0 degrees, respectively). The 353 

cosine similarities were then put into context of the known spatial arrangement of hippocampal 354 

microstructure and their stereotyped orientation (Figure 1A and B) under the assumption that the 355 

primary direction of diffusion modelled the main microstructural orientation at each voxel. There 356 

were a total of 3 cosine similarity images (one for AP, PD, and IO similarity values) within each 357 
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hemisphere for each subject. Each scalar cosine similarity image was sampled along the 358 

midthickness surface and averaged as described above.  359 

2.6 Correlations between all metrics 360 

Spearman correlations were performed at both the subject-level and at the level of the vertex 361 

averaged maps (Figure 2C-J average maps). However, it is difficult to test the significance of the 362 

spatial correspondence between maps. One proposed solution that has been implemented using 363 

the spherical representation of the cortical surface has been to perform spin testing, where the 364 

cortical sphere is randomly permuted to derive a null distribution of association which preserves 365 

the spatial autocorrelation in the data (Alexander-Bloch et al., 2018). Critically, the geometry of 366 

our unfolded hippocampus cannot be well represented by a sphere. We thus developed a similar 367 

method on the unfolded hippocampus. Our developed method uses periodic boundary conditions 368 

on the unfolded plane, which can be thought of as performing spin testing on a torus geometry. 369 

This allows us to perform rotations and translations and thus derive permuted null distributions. 370 

We then used this hippocampal spin test to analyze the significance of the observed associations 371 

between the averaged maps. We performed 2500 permutations between any two averaged maps, 372 

and we then performed false-discovery rate correction on the derived p-values using the 373 

Benjamini-Hochberg method. Technical and practical background on the developed 374 

hippocampal spin test can be found in Supplementary Document 1, and the spin test code can be 375 

found at Karat (2023).  376 

2.7 Orthogonal Projective NNMF (OPNNMF) 377 

Orthogonal Projective NNMF (OPNNMF) was used in this work to attempt to identify co-378 

varying regions in the hippocampus using the metrics described above (Sotiras et al., 2015; Yang 379 

& Oja, 2010). OPNNMF decomposes an input matrix X of dimensions a x b into a component 380 

matrix C (a x k) and a weight matrix W (k x b). The number of components (k) is defined a 381 

priori. The component and weight matrices are derived such that their multiplication best 382 
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reconstructs the input data (X ~ C x W). OPNNMF solves the following minimization problem 383 

to estimate C (Sotiras et al., 2015):  384 

                         ‖𝑋 − 𝐶𝐶-𝑋‖.	subject	to	𝐶 ≥ 0, 𝐶-𝐶 = 𝐼,	and	𝑊 = 𝐶-𝑋																							(4)	385 

Where ||	||	'  represents the squared Frobenius norm and I denotes the identity matrix which 386 

enforces orthogonality among C.  C is first initialized using a non-negative double singular value 387 

decomposition (Boutsidis & Gallopoulos, 2008).  Then, C is updated through an iterative process 388 

until it converges on an optimal solution. The iterative multiplicative update rule is as reported by 389 

Yang and Oja (2010): 390 

                                                      𝐶D%/ = 𝐶%/
(11!2)"#

(22!11!2)"#
                                                               (5) 391 

Where i represents the number of vertices and j represents the number of components. The 392 

component matrix C represents the latent structure in the data and allows for an examination of 393 

the underlying covariance in multivariate data. As done in Patel et al. (2020) the sparse and non-394 

overlapping component matrix allows for each vertex to be assigned an output component using a 395 

winner take all method which improves the interpretability of the spatial output components.  The 396 

weight matrix W represents the subject-metric coefficients, allowing for an examination of subject-397 

specific and metric-specific contributions to each component.  398 

2.8 Implementing OPNNMF 399 

A total of 11 metrics were included in the OPNNMF implementation (ODI, NDI, T1w/T2w, FA, 400 

MD, gyrification, thickness, curvature, AP cosine similarity, PD cosine similarity, IO cosine 401 

similarity) with subsets of these metrics used for more specific analyses (i.e. NODDI only, DTI 402 

only, macrostructure only, and cosine similarity only). The input matrix X was built using all 403 

2004 vertices of the midthickness surface in unfolded space for all 11 metrics across all 100 404 

subjects per hemisphere. That is, each subject contributed 11 unfolded space maps to the input 405 

matrix. Thus, the input matrix had 1100 columns (100 subjects x 11 metrics - defined as subject-406 
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metrics) and 2004 rows (2004 vertices) for a single hemisphere. Normalization was required 407 

since the metrics exist on different scales. First, each metric was z-scored within each 408 

hemisphere. Then, each z-scored metric distribution was shifted by the minimum value from all 409 

the z-scored metrics to ensure all metrics were on the same scale and there were no negative 410 

values. All distributions were manually inspected to ensure the minimum value used was not an 411 

outlier. 412 

OPNNMF was implemented using publicly available and open MATLAB code at 413 

https://github.com/asotiras/brainparts (Sotiras et al., 2015; Yang & Oja, 2010; Boutsidis & 414 

Gallopoulos, 2008; Halko et al., 2011). OPNNMF was run with a max number of iterations = 415 

10000, tolerance = 0.00001, and non-negative double singular value decomposition initialization. 416 

2.9 Stability & Reconstruction Error 417 

The quantification of OPNNMF decomposition stability followed that of Patel et al. (2020). 418 

Stability was assessed by examining the similarity of the spatial component matrix C across 419 

varying splits of data. All 100 subjects were randomly split into two groups of equal sizes. 420 

OPNNMF was then performed on each split independently. A within-split similarity matrix was 421 

then derived by multiplying a particular splits component matrix by the transpose of itself (i.e. a 422 

cosine similarity). The result is a 2004x2004 (number of vertices x number of vertices) matrix 423 

where each row contains the cosine similarity of component scores between a vertex and all 424 

other vertices. Finally, a Pearson’s correlation coefficient was calculated across the rows of the 425 

cosine similarity matrix between splits to quantify if the decomposition maintained the 426 

relationships between vertices. The above process was repeated 6 times, each with a new random 427 

split of the data. The mean and standard deviation of the correlation coefficient was taken across 428 

all vertices and splits for a given component solution. A correlation of 1 represented perfect 429 

stability (i.e. each split of the data had perfect correspondence between vertex relationships), 430 

whereas -1 represented instability. The above process was then repeated for different component 431 
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decompositions, from k=2 to k=12. Reconstruction error was calculated through 3-steps. First, 432 

the component matrix C and the weight matrix W were estimated and then multiplied together to 433 

return the reconstructed input matrix. The original and reconstructed input matrix were then 434 

subtracted to obtain a reconstruction error matrix. The Frobenius norm of the reconstruction 435 

error matrix was then taken to get the reconstruction error. The gradient in the reconstruction 436 

error was taken across solutions with varying component numbers to assess the magnitude of the 437 

improvement in reconstruction error when adding more components. 438 

2.10 Interpreting OPNNMF 439 

The output component matrix C contains a component value for each vertex while the weight 440 

matrix W describes how each subject-metric is projected onto each component. A large value in 441 

the component matrix can be interpreted as a particular vertex being identified as a part of the 442 

variance pattern. The weight matrix can be used to elucidate which metrics contributed to each 443 

component as well as inter-subject variance within metrics. In the current study these 2 matrices 444 

were used to explore spatial patterns and the contributions of particular metrics to each 445 

component. A winner-take-all method was used where a vertex was assigned the integer of the 446 

component with the highest component weighting value from the matrix C. The matrix W was z-447 

scored within each component row and then plotted to examine metric-specific trends. 448 

3. Results 449 

The results begin with qualitative descriptions of average macro- and microstructural measures 450 

and their correlations on the midthickness hippocampal surface (middle of the hippocampal gray 451 

matter). We also show the significance of these correlations using the developed hippocampal 452 

spin test. We then present results from a logistic regression model used to examine the 453 

separability of the subfields using microstructural features. We then show the cosine similarities 454 

between NODDI microstructural vectors and the hippocampal axis vectors. Finally, we present 455 

the OPNNMF results including a stability analysis and a 6-component solution.  456 
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3.1 Distributions of Hippocampal Metrics 457 

Figure 2 presents Spearman’s rho correlations, mean macro- and microstructural metrics, along 458 

with subfield segmentations shown on an averaged hippocampal midthickness surface in folded 459 

and unfolded space. The standard deviation of these metrics is shown in supplementary Figure 1. 460 

The orientation dispersion (ODI - Figure 2C) is highest in the anterior and body of CA1 and the 461 

distal parts of the subiculum, while dispersion is lowest in the body and posterior of DG/CA4, 462 

CA3 and CA2 and at the most proximal edge of the subiculum. Neurite density (NDI - Figure 463 

2D) is highest in the body and tail of the subiculum, while there is lower neurite density in CA1 464 

and the DG/CA4. The T1w/T2w ratio has a strikingly similar distribution to that of NDI, as 465 

found in previous cortical studies (Figure 2E; Fukutomi et al., 2018). T1w/T2w, ODI, and NDI 466 

maps appear to vary across the subfields. 467 

Macrostructure features of thickness, gyrification, and curvature are shown in Figure 2H-468 

J. Gyrification is largest in anterior CA1 and the DG/CA4. The thickest regions are the anterior 469 

and posterior of the subiculum and CA1, as well as throughout the DG/CA4, while CA3 and 470 

CA2 are thin. Curvature tends to be highest in the anterior part of the subiculum, along the spine 471 

of the hippocampus (red arrows in Figure 2J), and in CA3. These findings are largely in line with 472 

previous work (DeKraker et al., 2020). 473 

Spearman’s rho correlations between averaged maps of these metrics can be seen in the 474 

lower triangle of Figure 2A while the false-discovery rate (FDR) corrected p-values derived from 475 

the hippocampal spin test can be seen in the upper triangle. Similar correlations between all maps 476 

at the subject level can be seen in supplementary Figure 2. The null distributions given by the 477 

spin test using the averaged maps can be seen in supplementary Figure 3. 478 

3.2 Correlations between NODDI metrics & T1w/T2w 479 

In Figure 2D and E, strong qualitative similarities can be seen between NDI and T1w/T2w. Both 480 

are high in the subiculum and CA3/CA2 regions, while hypointensities are noted in CA1. A 481 
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significant spatial overlap is seen between the positively correlated NDI and T1w/T2w maps (𝜌 482 

= 0.86, FDR corrected p-value < 0.05). ODI (Figure 2C) and T1w/T2w (Figure 2D) are also 483 

significantly overlapping and are negatively correlated (𝜌 = -0.61, FDR corrected p-value < 484 

0.05). A similar correlation has also been noted across the entire cortex (Fukutomi et al., 2018). 485 

3.3 Correlations between NODDI & DTI metrics 486 

Qualitatively, the map of FA (Figure 2F) resembles the NDI map (Figure 2D) and the inverse of 487 

the ODI map (Figure 2C). Particularly, the distinct pattern of high dispersion equates to low FA, 488 

while high neurite density equates to high FA. Furthermore, the region of low neurite density 489 

(Figure 2D) in the body of CA1 and CA2 corresponds to a region of high MD (Figure 2G). ODI 490 

and FA have a significant spatial overlap and are negatively correlated (𝜌 = -0.88, FDR corrected 491 

p-value < 0.05). Furthermore, NDI and FA are significantly overlapping and are positively 492 

correlated (𝜌 = 0.75, FDR corrected p-value < 0.05) and NDI and MD are significantly 493 

overlapping and negatively correlated (𝜌 = -0.46, FDR corrected p-value < 0.05).  494 

A disentangling of FA as determined by ODI and NDI has been reported previously in 495 

cortical gray matter (Zhang et al., 2012). Two voxels with different neurite densities can have the 496 

same FA if the one with the larger neurite density also has the larger dispersion (Zhang et al., 497 

2012). That is, anisotropy as measured with FA conflates neurite density and orientation 498 

dispersion. We report a similar level of disentangling within the hippocampus in supplementary 499 

Figure 4, where within any bin of FA there is a range of potential ODI and NDI values. 500 

3.4 Correlations between macrostructure and NODDI metrics 501 

The only significant overlap between a macrostructural and microstructural map is gyrification 502 

and T1w/T2w, which are negatively correlated (𝜌 = -0.46, FDR corrected p-value < 0.05). 503 

Regions of high gyrification in CA1 spatially correspond to regions of low T1w/T2w content. 504 

While there are some other notable correlations, such as a moderate positive correlation between 505 

gyrification and ODI (𝜌 = 0.45) and a moderate negative correlation between gyrification and 506 
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FA (𝜌 = -0.49), none were significantly overlapping. Correlations between NODDI and 507 

macrostructural measures at the subfield-averaged level can be seen in supplementary Figure 5. 508 
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Figure 2. Correlations and plots of mean macro- and microstructure metrics on averaged 509 

hippocampal midthickness surfaces in folded and unfolded space for left and right hemispheres. 510 

(A) Lower triangle of the heatmap shows the Spearman’s rho correlations of the average maps 511 

after combining both left and right hemispheres. The upper triangle represents the false-512 

discovery rate corrected p-values derived from the hippocampus spin testing using 2500 513 

permutations. Note that the colour bar is inverted such that any brighter component of the 514 

heatmap corresponds to a significant p-value. (B) Left and right hippocampal subfields from a 515 

manual segmentation of a histological reference (Ammunts et al., 2013; DeKraker et al., 2020). 516 

Unfolded space is shown in the same orientation for left and right hemispheres. DG - Dentate 517 

Gyrus, CA - Cornu Ammonis. (C,D) Orientation Dispersion Index (ODI) and Neurite Density 518 

Index (NDI) from NODDI. White lines represent subfield borders shown in (B). (E) T1w/T2w 519 

ratio. (F,G) Diffusion Tensor Imaging metrics of Fractional Anisotropy (FA) and Mean 520 

Diffusivity (MD - 𝑚2/𝑠). (H-J) Macrostructure measures of thickness, gyrification, and 521 

curvature. (J) Red arrows highlight the highly curved “spine” of the hippocampus. 522 

3.5 Evaluating the variability of the microstructural metrics across the subfields 523 

To examine if the microstructural metrics used here could provide differentiability to the 524 

subfields, we trained a simple logistic regression classifier with L2 regularization on subfield 525 

averaged microstructural measures using the scikit-learn (version 1.1.2) package in python 526 

(Pedregosa et al., 2011). 70 subjects were included in the training set, while 30 subjects were 527 

included in the testing set (both hemispheres were combined). ODI, NDI, and T1w/T2w 528 

averages across the midthickness surface within each of the 5 subfields per hemisphere were 529 

obtained within each subject in both the training and testing set. A logistic regression model was 530 

then trained to predict the subfield label given the subfield averaged microstructural metrics. 531 

This model was then tested on the unseen data from the testing set to quantify if the 532 

microstructural metrics are differentiable across the subfields. Examining all the data points for 533 
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ODI, NDI, and T1w/T2w, colour coded by subfield class, it appears that the subfields present as 534 

relatively separable clusters apart from CA2 which appears to have lots of microstructural 535 

overlap with the other subfields (Figure 3A). The same clustering can be seen in the test set 536 

(Figure 3B) left out to evaluate the performance of the logistic regression classifier (Figure 3C). 537 

Using a confusion matrix and F1-scores defined as (2*precision*recall) / (precision+recall), it 538 

can be seen that the simple logistic regression classifier was able to perform well in delineating 539 

the subiculum (F1-score = 0.87), CA1 (F1-score = 0.85), CA3 (F1-score = 0.69), and the 540 

DG/CA4 (F1-score = 0.83) using microstructural measures of ODI, NDI, and T1w/T2w (Figure 541 

3D). However, CA2 was not as differentiable from the rest of the subfields using these metrics, 542 

with an F1-score of 0.53. Furthermore, we found that ODI and NDI generally had higher F1-543 

scores and greater separability across the subfields then the DTI metrics of FA and MD 544 

(supplementary Figure 6).  545 
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Figure 3. The performance of a logistic regression classifier to capture microstructural 546 

variability across the subfields. (A) Subfield averaged ODI, NDI, and T1w/T2w from all subjects 547 

and hemispheres combined coloured by subfield label. (B) Test set data from 30 subjects 548 

coloured by subfield. (C) Logistic regression classified labels on the test set seen in (B). (D) 549 

Confusion matrix and subfield-specific F1-scores to evaluate logistic regression performance on 550 

classifying the subfields using the microstructural measures of the test set.  551 

3.6 Examination of the primary direction of diffusion relative to hippocampal axes 552 

This section qualitatively analyzes the mean of the cosine similarities (Figure 1D; Figure 4) 553 

between the hippocampal vectors along the anterior-posterior (AP), proximal-distal (PD), and 554 

inner-outer (IO) (Figure 1A) axes and the NODDI microstructural vectors along the 555 

midthickness surface (Figure 1C).  556 

High AP alignment can be seen in the body of the DG to CA3, as well as in the 557 

subiculum. Furthermore, there is relatively little AP oriented diffusion in CA1.  558 

High PD oriented diffusion can be seen in the head of CA3, CA2, CA1, and in the body 559 

of CA1. There was little PD oriented diffusion in the body of DG/CA4, CA3, CA2, and the 560 

subiculum. 561 

 High IO alignment can be seen in the tail of the subiculum and CA1, as well as 562 

throughout the body of CA1, while low IO oriented diffusion can be seen in the body of the 563 

DG/CA4, CA3, CA2, and the subiculum. 564 

The cosine similarities varied the greatest in CA1 and the subiculum across AP, PD, and 565 

IO directions (supplementary Figure 7). Noticeable differences in the orientation of diffusion 566 

across the subfields can be seen in supplementary Figure 8.  567 
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Figure 4. Mean of the cosine similarities between hippocampal axis vectors and NODDI 568 

microstructural vectors in the left and right hemisphere along the midthickness surface. High 569 

cosine similarities correspond to a high alignment of the NODDI microstructural vector along 570 

that particular hippocampal axis. (A) Distribution of cosine similarities along the anterior-571 

posterior direction. (B) Distribution of cosine similarities along the proximal-distal (tangential) 572 

direction. (C) Distribution of cosine similarities along the inner-outer (laminar) direction. 573 

3.7 Stability Analysis 574 

The results of the stability analysis can be seen in Figure 5. Figure 5A presents the stability and 575 

the gradient in the reconstruction error using all the metrics combined that are shown in Figure 576 

5B-E. The goal of the stability analysis was to elucidate the largest component value that was 577 

still stable and provided a relative gain in reconstruction error. In Figure 5A it can be seen that a 578 

component solution of k=6 has good stability with relatively low standard deviation. 579 

Comparatively, decomposing into a larger number of components decreases the stability of the 580 

OPNNMF solution. As well, k=6 does provide a relative gain in reconstruction error, although 581 

the largest gain in reconstruction error occurs when moving from a k=2 to a k=3 solution. The 582 
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stability analysis suggests that k=6 is the highest component value that is largely stable, thus we 583 

use this for the decomposition results using all metrics. 584 

Figure 5. Stability coefficient and the gradient in reconstruction error based on the number of 585 

components used for the OPNNMF solution. Filled in circles plus solid lines are the left 586 

hemisphere and filled in squares plus dotted lines are the right hemisphere. Error lines show +/- 587 

1 SD. (A) Stability coefficient (blue) and the gradient in reconstruction error (red) as a function 588 

of the number of components using all metrics for NMF in B-E. (B) Stability coefficient for 589 

NODDI metrics (ODI and NDI) plus T1w/T2w. (C) Stability coefficient for DTI metrics (FA 590 

and MD) plus T1w/T2w. (D) Stability coefficient for macrostructure metrics (gyrification, 591 

thickness, curvature). (E) Stability coefficient for cosine similarities (AP, PD, and IO). Points 592 

between hemispheres are slightly offset along the x-axis so that error bars are visible. 593 
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Another goal of the stability analysis was to compare the stability of the decomposition 594 

using all metrics versus using smaller groupings of metrics, such as NODDI (ODI and NDI) plus 595 

T1w/T2w. Comparing Figure 5A with Figure 5B-E, it can be seen that for almost all component 596 

values the all metric solution tends to be more stable than any of the smaller metric groupings. 597 

This is especially true for the larger component values above k=6. These results suggest that the 598 

use of multiple metrics results in more stable parcellations, as found in Patel et al. (2020). 599 

The 6-component solution using all metrics is presented in Figure 6 for both the left and 600 

right hippocampus. 4, 5, 6, and 7-component solutions using all the metrics can be found in 601 

supplementary Figure 9. 4-component solutions for all smaller metric combinations shown in 602 

Figure 5B-E can be found in supplementary Figure 10. 603 

3.8 Description of the 6-component Solution 604 

Figure 6A depicts the winner-take-all method applied at each vertex in folded and unfolded 605 

space for 6-components. Figure 6B shows the z-scored subject-metric weight matrices. In the 606 

following paragraph we describe the first 3 components including their location relative to the 607 

subfields (proximal-distal/medial-lateral axes) as well as along the anterior-posterior 608 

(longitudinal) axis. We then briefly describe components 4-6. We also describe the features 609 

which contribute to each component. The left and right hippocampus do have similar covariance 610 

patterns although the component ordering differs. For example, the vertices of left component 1 611 

correspond to the vertices of right component 2. To simplify our descriptions, we take the 612 

ordering of the left hippocampus for the rest of the paper, and we have made this adjustment 613 

such that the difference in ordering does not need to be considered for Figure 6 (Patel et al., 614 

2020).  615 

Component 1 is characterized by a cluster of vertices through the body and tail of the 616 

most proximal edge of the subiculum and through the body and tail of CA3. This component 617 

spans around the bottom two-thirds of the hippocampus across its anterior-posterior axis. 618 
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Component 1 is characterized by high NDI, T1w/T2w, FA, and AP cosine similarity, with lower 619 

ODI, PD and IO cosine similarity. This may reflect the large anisotropic AP oriented fiber 620 

bundles that are myelinated such as the cingulum bundle for the proximal edge of the subiculum 621 

and the fimbria for CA3. 622 

Component 2 is characterized by vertices that are present only in the body or middle one-623 

third along the anterior-posterior axis of CA1. This component is characterized by high ODI, 624 

gyrification, and PD and IO cosine similarities. This likely reflects a high heterogeneity in fiber 625 

orientation in CA1. 626 

Component 3 is characterized by vertices that cross the subiculum and CA1 in a 627 

proximal-distal fashion in the head of the hippocampus, as well as vertices that span the anterior-628 

posterior body of the hippocampus at the border between the subiculum and CA1. This 629 

component is characterized by high ODI, thickness, and IO cosine similarity. 630 

Component 4 corresponds to a large posterior cluster that stretches into the body of CA1 631 

characterized by a moderate range of metrics with the largest being the PD cosine similarity and 632 

FA. Component 5 corresponds to a cluster of vertices in the body of CA2 and CA1 and is 633 

represented by a large MD, curvature, and AP cosine similarity and low NDI, T1w/T2w, FA, and 634 

thickness. Interestingly, component 6 is characterized by a thin cluster of vertices roughly 635 

corresponding to the anterior and body of the DG/CA4 region. This was represented by high 636 

macrostructural measures of thickness, gyrification, and curvature and low weights for all other 637 

metrics. 638 

A general pattern is noticed when examining the whole 6-components rather than looking 639 

at its parts. Generally, more parcellations exist along the proximal-distal direction than do in the 640 

anterior-posterior direction. 641 
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Figure 6. 6-component NMF solution on the midthickness surface for left and right hippocampi. (A) 642 

Winner-take all output at each vertex shown in folded and unfolded space. White lines denote subfield 643 

borders. (B) Z-scored subject-metric weight matrices across each of the 6 components, denoting the z-644 

scored contribution of each metric to each component. AP, PD, and IO represent the 3 cosine similarity 645 

metrics. 646 
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4. Discussion 647 

In the current study we examined the microstructure of the hippocampus using the in vivo HCP 648 

dMRI and structural data, along with a novel surface-based method for subfield segmentation. We 649 

found that ODI was highest in the CA1 subfield, likely capturing the large heterogeneity of 650 

tangential and radial fibers. NDI and T1w/T2w were found to be strongly correlated and were 651 

highest in the subiculum and lowest in CA1 and the DG/CA4, suggesting that NODDI is likely 652 

sensitive to the myelin content of the hippocampus. Using these microstructural measures, we 653 

found that the cytoarchitectonic defined subfields were largely separable using a simple logistic 654 

regression model. OPNNMF components appeared to capture unique co-varying clusters within 655 

the hippocampus, with high medial-lateral variability. Finally, we showed distinct regions of 656 

similar microstructural orientations by examining the main direction of diffusion relative to the 657 

three hippocampal axes, which may correspond to specific microstructural properties. 658 

4.1 Dispersion of neurites in the hippocampus may reflect heterogeneous radial and tangential 659 

neurite components 660 

The Orientation Dispersion Index (ODI) is meant to characterize the variation in diffusion 661 

orientations around a single dominant direction at every voxel. A previous study using ODI and 662 

patch-wise circular variance measured using histology (measures variability in neurite 663 

orientations) has shown that both measures have lower dispersion in demyelinated lesions in 664 

patients with multiple sclerosis, where there is reduced geometrical complexity of neurites 665 

(Grussu et al., 2017). The hippocampal gray matter has a general distribution of microstructure 666 

that is similar to the neocortex, with tangential (proximal-distal) and radial (inner-outer) 667 

components that follow the curvature of the hippocampus. In the current study we showed that 668 

CA1 had the largest ODI, suggesting that it had the largest heterogeneity in neurite orientations. 669 

CA1 has large tangential neural processes, like the Schaffer collaterals and perforant path, as 670 

well as a large (yet dispersed) radial pyramidal cell layer (Duvernoy et al., 2013). By measuring 671 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2022.07.29.502031doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502031
http://creativecommons.org/licenses/by/4.0/


31 
 

the orientation of the main direction of diffusion relative to the three hippocampal axes in CA1 672 

(Figure 4), we found either high tangential or radial diffusion, supporting the idea that ODI 673 

reflected the heterogeneity of these components. Conversely, ODI was lower in DG/CA4, CA3, 674 

and at the most proximal edge of the subiculum. In these regions the primary diffusion direction 675 

was minimally tangential or radial, and was mainly anterior-posterior or oblique with large 676 

macroscopic diffusion anisotropy (i.e. large NDI and FA). The apparent reduction in 677 

orientational heterogeneity (less radial/tangential components) and a resulting increase in 678 

anisotropy may potentially explain the low ODI in these regions. In the DG/CA4 and CA3 679 

region this could be a result of partial voluming with the nearby fimbria, and in the subiculum it 680 

could be due to partial voluming with the nearby cingulum bundle or the perforant path at its 681 

most proximal edge (supplementary Figure 11). As hypothesized in the rest of the cortex 682 

(Fukutomi et al., 2018), it is likely that ODI in the hippocampal gray matter is largely driven by 683 

the heterogeneity of radial and tangential neurite components. 684 

4.2 Hippocampal neurite density is highly correlated with T1w/T2w 685 

The distribution of the NDI and T1w/T2w across hippocampal gray matter was similar, as seen 686 

in Figure 2D and E and as shown by their strong positive correlation and significant overlap. 687 

While the diffusion signal is generally agnostic to water within myelin, previous work has shown 688 

that myelinated axons restrict diffusion to a greater degree than unmyelinated axons (Behrens & 689 

Johansen-Berg, 2014). This increase in restriction due to myelin would result in an increase in 690 

NDI since there is more “stick” like diffusion occurring (i.e., a monoexponentially decaying 691 

signal with a slope defined by the parallel diffusivity). Furthermore, due to the short exchange 692 

time of water within dendrites and glia to the extra-cellular space, it is likely that any restricted 693 

diffusion would be reflective of myelinated axons (Jespersen et al., 2010). This suggests that 694 

NDI reflected the myelin content of the hippocampus. The T1w/T2w content and NDI were 695 

largest in the body and tail of the subiculum. High myelin content in the subiculum has been 696 
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noted previously with histology (Ding & Van Hoesen, 2015). Furthermore, it is likely that the 697 

white matter of the cingulum bundle or perforant path contribute to the large T1w/T2w content 698 

seen in the subiculum. Conversely, T1w/T2w and NDI were lower in CA1, which is likely a 699 

result of a relatively sparse layer of pyramidal cells along the midthickness surface or the largely 700 

unmyelinated Schaffer collaterals (Jürgen et al., 2011; Szirmai et al., 2012). Overall, the 701 

distribution of T1w/T2w found here agreed with previous studies (DeKraker et al., 2018; 702 

Ábrahám et al., 2012). A strong positive correlation between NDI and T1w/T2w was found 703 

previously across the cortex. However, the hippocampus was found to have high values in NDI 704 

but low values of T1w/T2w when compared to the rest of the cortical areas (Fukutomi et al., 705 

2018). Here we showed that a strong correlation between NDI and T1w/T2w still exists in the 706 

hippocampus when comparing them at a finer spatial scale. This correlation is further 707 

corroborated by another cortical study at high ex vivo resolutions in the rodent brain, in which 708 

cortical NDI was strongly correlated with staining intensity of myelinated axons (Jespersen et al., 709 

2010). Histological work has found similar correlations in white matter, where myelin content 710 

was found to be strongly correlated with axon count (Schmierer et al., 2007). However, a recent 711 

study utilizing a multicomponent relaxometry method for imaging myelin water fraction found 712 

no significant correlation between myelin and NDI measured using NODDI in most white matter 713 

structures (Qian et al., 2020). While NDI and T1w/T2w as a proxy of myelin do appear to be 714 

correlated in gray matter including the hippocampus, further work is needed to examine this 715 

correlation in other white matter structures, including white matter surrounding the hippocampus 716 

such as the fimbria, fornix, and alveus. 717 

4.3 Microstructure metrics systematically vary across the subfields 718 

Microstructural metrics such as intra-cortical myelin and macrostructural cortical thickness have 719 

been shown to be useful in parcellating the neocortex into subregions (Nieuwenhuys, 2013; 720 

Glasser et al., 2014; Glasser & Van Essen, 2011). Furthermore, using non-negative matrix 721 
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factorization of T1w/T2w, MD, and FA it was found that a 4-component solution qualitatively 722 

resembled hippocampal subfield borders (Patel et al., 2020), suggesting that T1w/T2w and 723 

microstructure may provide sufficient separability to parcellate hippocampal subfields. In the 724 

current study, by examining their averaged maps, we found that T1w/T2w, NDI, and ODI 725 

appeared to be separable qualitatively across the subfields (Figure 2). Quantitatively, we showed 726 

that a simple logistic regression model performed well in predicting the subfield label based on 727 

the subfield-averaged metrics of T1w/T2w, NDI, and ODI. This result suggests that these 728 

microstructural measures are potentially sensitive to the known microstructural differences 729 

across the subfields as defined via cytoarchitectonics. Critically, it appeared that NDI and ODI 730 

provided more separability across the subfields then FA and MD, suggesting that NODDI may 731 

be more useful than DTI in capturing known microstructural differences across subfields 732 

(supplementary Figure 6). CA2 appeared to be the exception, with a distinct pattern of MD when 733 

compared to the other subfields, while this separability of CA2 was not captured with NODDI 734 

metrics (supplementary Figure 6).  Myelin content has been demonstrated previously to closely 735 

correspond to averaged subfield borders (DeKraker et al., 2018). To a lesser extent, 736 

macrostructure appeared to also follow the subfield borders, which has been noted previously for 737 

thickness (DeKraker et al., 2018). While thickness is consistently low in CA3 and CA2, and 738 

gyrification is consistently high in CA1, these measures alone may not differentiate all subfield 739 

boundaries. Thus, a combination of NODDI and macrostructural measures may provide 740 

complimentary information needed for subject-specific subfield delineation.  741 

4.4 The orientation of diffusion relative to the hippocampus may be useful in identifying 742 

hippocampal microstructure 743 

We quantified the main direction of diffusion relative to the 3 main hippocampal axes which 744 

microstructure tends to align closely with. Here we provide descriptions of microstructure 745 

(Figure 1B) that likely contribute to the orientation results. The following three paragraphs 746 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2022.07.29.502031doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502031
http://creativecommons.org/licenses/by/4.0/


34 
 

describe the anterior-posterior (AP), proximal-distal (PD), and inner-outer (IO) alignment, 747 

respectively.  748 

The high AP alignment in the body of the DG to CA3 was likely driven by the 749 

neighbouring fimbria, the largest bundle in that region oriented AP. High AP alignment in the 750 

subiculum was likely caused by the cingulum, a large fiber bundle that traverses the 751 

parahippocampal gyrus. Some partial voluming from the outer (where the cingulum exists) to the 752 

midthickness surface was expected, which may drive this alignment. 753 

High PD alignment in the head of CA3 was expected to be either Schaffer collaterals 754 

which curve immediately PD off of the apical dendrites of the pyramidal cells or from perforant 755 

projections coming from the entorhinal cortex and entering CA3 which are also oriented PD. 756 

High PD alignment in CA1 was likely a result of the Schaffer collaterals. The Schaffer 757 

collaterals make synaptic contact at the apical and basal dendrites of CA1 in a PD fashion 758 

(Nieuwenhuys et al., 2008; Swanson et al., 1978). However, the perforant path could have also 759 

contributed to a higher PD alignment as it moves from the entorhinal cortex to the DG synapsing 760 

on CA1 along the way (Nieuwenhuys et al., 2008). Furthermore, a high PD cosine similarity in 761 

the CA3 region could have been a result of partial voluming with the alveus, a highly PD 762 

oriented bundle that sits atop the hippocampal gray matter. 763 

 High IO alignment seen in CA1 was likely a result of the pyramidal neurons. The 764 

pyramidal somas exist in the stratum pyramidale layer of the midthickness surface, and are 765 

generally scattered in CA1 (Nieuwenhuys et al., 2008). Their axons and basal dendrites move IO 766 

towards the alveus/outer surface and their large apical dendrites move IO towards the stratum 767 

radiatum/inner surface. All IO alignment seen in CA1 was expected to be caused by the 768 

pyramidal neurons or other afferent CA1 paths such as the Schaffer collaterals which may curve 769 

IO before making contact with the apical dendrites of the pyramidal neurons. High IO alignment 770 

in the subiculum was also likely caused by pyramidal neurons as in CA1. 771 
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The cosine similarities across subjects varied the greatest in CA1 and the subiculum across AP, 772 

PD, and IO directions (supplementary Figure 7). 773 

Typical hippocampal microstructural analyses average scalar diffusion metrics (such as 774 

FA, MD, NDI, etc.) either across whole hippocampi (van Uden et al., 2015; Salmenpera et al., 775 

2006) or whole subfields (Radhakrishnan et al., 2020), which are inherently non-specific towards 776 

microstructure that exists within and across subfields and the hippocampal long-axis. However, 777 

tractography analyses which aim to capture the continuous intra-hippocampal circuitry are 778 

difficult to perform, as at lower resolutions, tracts can be spurious requiring complex acquisition 779 

and correction schemes (Zeineh et al., 2012). The orientational analyses described here have the 780 

potential to increase specificity at in vivo resolutions by leveraging the known anatomical 781 

orientations of hippocampal microstructure. Furthermore, capturing the essence of hippocampal 782 

microstructural orientations with vertex-wise scalar values can make qualitative observations and 783 

statistical analyses more tenable than with the complex 3D orientations provided by 784 

tractography. Future studies could relate the hippocampal axis vectors to other dedicated 785 

methods of diffusion orientation representation that have the ability to faithfully represent more 786 

complex fiber configurations.  787 

Applications of the proposed orientational methods may be useful to identify 788 

microstructure deterioration in disease states, where affected microstructure may be less 789 

prominent, and may appear as smaller cosine similarities along a particular axis. For example, 790 

perforant path lesions in rats caused rapid memory loss which was akin to early-stage 791 

Alzheimer’s disease (Kirkby & Higgins, 2001). A 2010 study found deterioration of the 792 

perforant path in aged humans using diffusion tensor imaging (Yassa et al., 2010). Perforant path 793 

degradation should result in less attenuation of the diffusion signal along its length, which may 794 

potentially show up as smaller PD cosine similarities specifically in the subiculum, CA3, and 795 

CA1, as there should be less PD oriented diffusion. This may be possible for other neurological 796 
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diseases where specific microstructure is affected, such as pyramidal neuron degradation which 797 

should result in smaller IO cosine similarities. However, to draw such conclusions, further ex 798 

vivo validation with the ability to measure more ground-truth microstructural orientations will be 799 

essential to evaluate the usefulness of this method. As well, future studies will have to evaluate 800 

the efficacy of this method at clinical resolutions.  801 

4.5 6-component OPNNMF solution displays distinct co-varying regions of macro- and 802 

microstructure 803 

The hippocampus is believed to have two main interacting dimensions of organization along its 804 

medial-lateral/proximal-distal or subfield axis, and across its long or anterior-posterior axis (see 805 

Genon et al., 2021 for review). In the current study with a 6-component OPNNMF solution we 806 

found a gradient in the clusters along the proximal-distal direction, suggesting that regions along 807 

this axis had disparate macro- and microstructural properties. That is, the macro- and 808 

microstructural “axes” of the hippocampus as defined by the metrics used here tended to vary 809 

along the same axis that the subfields were defined. Variability along this axis was expected, as 810 

the subfields show differences in morphology, cytoarchitectonic profiles (Duvernoy et al., 2013; 811 

Ding & Van Hoesen, 2015), and connectivity (Andersen et al., 1971), which likely manifest as 812 

changes in macro- and microstructure. However, it is notable that a wide array of disparate 813 

metrics at in vivo resolutions show such patterns. Recently there has been interest in the long-814 

axis organization of the hippocampus, with evidence coming from anatomical and physiological 815 

recordings in rodents (Chase et al., 2015). In the current study there appeared to be a smaller 816 

gradient in the clusters along the anterior-posterior axis, suggesting that the metrics used here 817 

varied less along the long-axis when compared to the proximal-distal axis. While functional 818 

studies have found stark variability across the long axis, it is unclear to the extent which the 819 

hippocampal microstructure varies across this axis (Genon et al., 2021, Plachti et al., 2019). 820 
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Future work could look to examine the variability of dMRI measures across the long axis at 821 

higher resolutions. 822 

4.6 Limitations 823 

There are some limitations of the current research that largely pertain to the metrics used here. 824 

As noted in the introduction, DTI aims to capture the macroscopic diffusion anisotropy at each 825 

voxel, assuming that the diffusion process can be well characterized by a Gaussian distribution. 826 

Due to its popularity in both clinical and research settings, we sought to examine the distribution 827 

of two common DTI measures (FA and MD) in the hippocampus. However, in most gray matter 828 

regions there tends to be a complex arrangement of fiber orientations that cannot be well 829 

modelled via a single tensor. This can result in drastically understated FA values with generally 830 

spherical or planar DTI ellipsoids which contain minimal information on diffusion orientations 831 

(Campbell et al., 2005). While DTI has been used extensively in the hippocampus, it has 832 

generally been purported to be sensitive but not specific to its microstructure (Coras et al., 2014). 833 

In ex vivo tissue at microscopic resolutions DTI metrics of FA and MD have shown good 834 

contrast to the hippocampal laminae, demonstrating their sensitivity (Coras et al., 2014; 835 

Shepherd et al., 2007; Stolp et al., 2018). However, at lower in vivo resolutions used here a 836 

plethora of microstructure partial voluming within each voxel is inevitable, which leads to a 837 

diffusion signal that may show little macroscopic diffusion anisotropy and thus cannot be 838 

captured by a single tensor. Indeed, here we found that even the largest FA values of the 839 

hippocampus in regions of purportedly high T1w/T2w tended to range around 0.28, a relatively 840 

low amount of macroscopic anisotropy. Furthermore, it is unclear the extent to which extra-841 

hippocampal white matter such as the fimbria and angular bundle might influence our measures 842 

sampled along the middle of the hippocampal gray matter. 843 

The NODDI model has also been used extensively in both healthy and diseased states to 844 

provide metrics that are biologically grounded. Such work involved explicitly modelling the 845 
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diffusion signal as a sum of compartments representing varying tissue geometries (Zhang et al., 846 

2012). However, some assumptions of the NODDI model are likely not valid in practice. The 847 

tortuosity assumption that links the extra-cellular perpendicular diffusivity to the axon volume 848 

fraction does not hold for tight axon packings (Jelescu et al., 2016). The NODDI model also sets 849 

the intra-axonal parallel diffusivity equal to the extra-axonal parallel diffusivity. However, the 850 

intra-axonal parallel diffusivity has been shown to be much higher than the extra-axonal parallel 851 

diffusivity (Jelescu et al., 2016; Novikov et al., 2018). While we altered the fixed NODDI 852 

diffusivity values to reflect what has been found in gray matter, the modelling degeneracies 853 

mentioned here could influence the NODDI metrics, such that they may not correspond to the 854 

biophysical reality of the tissue. To this end, there has been recent work which has sought to re-855 

structure the basic microstructural building blocks used for white matter modelling to improve 856 

characterization of the gray matter. Two primary examples of this include a model which 857 

accounts specifically for the presence of the soma (Palombo et al., 2020) and a model which 858 

considers the water exchange across the cell membranes (i.e., from neurites to extra-cellular 859 

space) (Jelescu et al., 2022). Future work should look to apply gray matter specific models in the 860 

hippocampus.  861 

Finally, the T1w/T2w ratio as a proxy for myelin content was used in the current study 862 

based on previous work that demonstrated good correspondence with cortical patterns of myelin 863 

distribution (Glasser & Van Essen 2011). However, recently it has been suggested that the 864 

T1w/T2w ratio is a suboptimal proxy of myelin in the subcortex (Arshad et al., 2017). At 865 

present, it is unclear whether the T1w/T2w ratio is also a suboptimal marker of myelin for 866 

archicortical areas such as the hippocampus. Future work should look to investigate the use of 867 

other techniques derived from quantitative MRI including magnetization transfer and myelin 868 

water imaging to get an improved measure of myelin content within the hippocampus (Tardif et 869 

al., 2016).  870 
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5. Conclusion 871 

In the current study we show distinct in vivo microstructural distributions and orientations within 872 

and across the hippocampal subfields, something that has not been investigated with comparable 873 

granularity up to this point. Furthermore, we provide context for the use of surface-based 874 

approaches to investigate hippocampal microstructure. 875 

Our findings have several important implications for future work. The hippocampus is 876 

particularly vulnerable to certain neurological diseases such as Alzheimer ’s disease and 877 

epilepsy, in which it is often one of the earliest aberrant structures (Dhikav et al., 2012). 878 

Examining the microstructure of the hippocampus at fine spatial resolutions in the simplified 879 

unfolded space, as done in this study, may provide potentially useful markers of hippocampal 880 

integrity. Furthermore, we noticed relatively large radial and tangential components of diffusion 881 

mainly in CA1 and the subiculum. Future work could attempt to tease apart these two 882 

orientationally distinct populations, providing estimates which may be useful to examine 883 

microstructurally specific deterioration. Furthermore, using the same orientation methods in this 884 

study, future work should focus on capturing multiple microstructure orientations as the 885 

hippocampus contains a complex configuration of fiber orientations. Future work could also 886 

relate all the identified OPNNMF components to demographic and cognitive variables to identify 887 

if there is a relationship between variability in cognitive performance and variability in the 888 

metrics used in this study. Finally, the microstructural metrics observed in this study appear to 889 

show good separability across hippocampal subfields, suggesting they may be sensitive to the 890 

underlying cyto- and myeloarchitectonic differences. 891 
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