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Abstract— The maximum-tolerated dose principle, the high-
est possible drug dose in the shortest possible time period, has
been the standard care for cancer treatment. Although it is
appealing in a homogeneous tumor settings, tumor heterogene-
ity and adaptation play a significant role in driving treatment
failure. They are still major obstacles in cancer treatments
despite great advances in modeling and cancer therapy using
optimal control theory. To address this, we first generalize
two population models and examine the long-term effects of
differential selective treatment strategies. Second, we take into
account different drug-imposed selective pressure into designing
optimal treatment strategies. Numerical examples demonstrate
that the proposed treatment strategy decreases long-term tumor
burden by decreasing the rate of tumor adaptation.

I. INTRODUCTION

In general, the application of optimal control theory in
cancer treatment is proposing a mathematical model and
optimization to find the best treatment method for preventing
tumor growth by satisfying some desirable conditions [1]–
[6]. Despite all these efforts to find the optimal regime of
cancer treatment, drug treatment may lead to new mutations
through both genetic and non-genetic mechanisms as the
tumor gains drug resistance and this drug resistance is an
impediment to treating cancer. Therefore, tumor heterogene-
ity and adaptation continue to be a major barrier to the
successful treatment of cancer [7].

The maximum-tolerated dose (MTD) principle has been
the standard care for cancer treatment for several decades
and is the basis for clinical evaluation [8]. Although MTD
therapy is appealing in a homogeneous tumor setting, it
may not be the optimal control strategy for heterogeneous
tumors or competition between sensitive and resistant cells.
In [9], the authors also reported that MTD is not a good
treatment strategy as it may lead to an increased resistant
cell population. Since recent biological studies demonstrated
the evidence of tumor heterogeneity and assessed potential
biological and clinical implications [7], [10], [11], finding
new strategies is still an open area of research to overcome
tumor heterogeneity and adaptation.

To address tumor heterogeneity, recent studies proposed
mathematical models to consider different cell population
dynamics [8], [9], [12]–[15]. The simplest form of these
models is those which use sensitive and resistant cells as two
cell type species in an ordinary differential equation (ODE)
model [16] and optimal control is designed to avoid the
resistant population becoming dominant. In [8], evolutionary
strategies were proposed with conventional therapies in order
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to control the appearance of drug resistance by considering
spatial heterogeneity. In [17] and [18], the authors modeled
tumor heterogeneity, with the presence of different cancer
cell subpopulations each with a different level of suscepti-
bility to each of the available drugs (and with the possible
presence of metastasis in various body compartments where
the drugs can have different efficacy), and then proposed
optimal treatments in order to reduce the tumor size as
well as possible side effects, also considering immunotherapy
[19].

In [13], the authors modeled the long-term effects of two
different drug treatment methods, symmetric and asymmetric
treatment regimes in which the drug’s effect on the sub-
population is equal and different respectively. Selective treat-
ment pressure is the influence exerted by drugs to promote
one group of sub-population over another that may shift
tumor heterogeneity distribution and generate resistance cells
to the drug. The authors performed simulation studies with
sensitivity analysis by using parameter sweeps to analyze the
effects of each parameter on therapeutic efficacy and interro-
gate the effects of different drug-imposed selective pressures
on long-term therapeutic outcomes. However, it is limited to
drawing a fundamental and principled understanding of the
effect of differential selective pressure.

In this paper, motivated by [13], we first generalize two
population models and understand the effect of differential
selective treatments. We examine different drug-imposed
selective pressure effects and take into account this principle
on optimal control design. Second, we formulate the optimal
control problem to penalize a rate of tumor adaptation
while minimizing tumor burden. We consider two different
scenarios: 1) a single drug profile that has effects on the
entire cell population at the same time and 2) multiple drug
profiles where each drug only affects corresponding sub-
population on its drug cycle. We also consider different drug
duration times for each drug profile in order to consider a
more practical scenario. Finally, numerical simulations are
introduced to demonstrate the proposed approach.

II. BACKGROUND

In this section, we briefly summarize the previous work
[13] as we extend this study by focusing more theoretical
analyses and providing a generalized model (i.e., considering
more than two populations).

In [13], a minimal two-population was modeled as (x1, x2)
with distinctive growth rates (k1, k2) and drug killing
rates (α1, α2) respectively. The kinetics of the two sub-
populations were modeled using a simple ODE for expo-
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Fig. 1. A comparison of total tumor population (i.e., x = x1 + x2)
between symmetric and asymmetric treatment schemes; Although the overall
population is the same at toff1 (the same initial and overall tumor size at
the time of treatment and the same initial efficacy on the overall tumor),
asymmetric treatment results in higher tumor burden in the long term
compared to symmetric treatment. The top figure shows drug treatment
cycle and the bottom figure shows the overall tumor population dynamics.

nential growth as follows:

ẋ1 = k1x1 − dα1x1

ẋ2 = k2x2 − dα2x2 (1)

where drug treatment (d) is a Heaviside step function as
shown in Figure 1. In the problem setting [13], the authors
assumed the same initial overall tumor growth and tumor
reduction for the first treatment (i.e., from ton1 and toff1 where
ton1 and toff1 represent the start time point and the end time
point of the first treatment respectively) of both symmetric
and asymmetric treatment conditions in order to examine
long-term effects of two different treatment regimes.

Thus, during the initial untreated growth phase of the
tumor and after the first treatment, the total tumor size is
equivalent to each other, for instance, the same killing effect
on the different tumor cell types (symmetric) and different
killing effects on the different tumor cell types (asymmetric)
cases as shown in Figure 1. A simulation result showed
that symmetric treatment is more effective than asymmetric
treatment. This result shows that tumor burden decreases
more when symmetric treatment is applied to the system.

III. DIFFERENTIAL-IMPOSED SELECTIVE TREATMENTS
WITH A SINGLE DRUG PROFILE

Motivated by the effects of distinct drug selective pressures
on long-term tumor response [13], we generalize a two-
population model and consider how to use this principled
concept in treatment design that ultimately minimizes tumor
burden. We consider a general case where we have m states
as follows:

Ṅi(t) = (ki − αid)Ni(t), i = {1, · · · ,m} (2)

where Ni represents the population of the i-th cell type and
drug treatment (d) is a Heaviside step function where we

simply assume ∆T , toffk −tonk is equal to drug-off duration
(i.e., tonk+1 − t

off
k ) and constant over k. Then, we define a

population composition rate:

pi(t) ,
Ni(t)∑m
j=1Nj(t)

=
Ni(t)

NT (t)
(3)

where NT (t) ,
∑m
j=1Nj(t) is the total population. The rate

of composition change is as follows:

ṗi(t) =
Ṅi(t)NT (t)−Ni(t)ṄT (t)

NT (t)2

=
Ṅi(t)

NT (t)
− pi(t)

ṄT (t)

NT (t)

= (ki − αid) · pi(t)− pi(t) ·
( m∑
j=1

(kj − αjd)pj(t)
)

= (ki − αid−
m∑
j=1

(kj − αjd)pj(t)) · pi(t)

Lemma 1: For symmetric treatment, sub-population
composition does not change over time.

Proof: For symmetric treatment, we have ki − αid =
kj − αjd where i 6= j. Thus, we have the following:

ṗi(t) =
(
ki − αid− (ki − αid) · (

m∑
j=1

pj(t))
)
· pi(t)

= (ki − αid− (ki − αid) · 1) · pi(t) = 0

In Lemma 1, we showed that symmetric treatment condition
guarantees ṗi(t) = 0 ∀i (i.e., sufficient condition). To show
that it is a necessary condition for ṗi(t) = 0 ∀i, we prove
the following lemma.

Lemma 2: If ki − αid−
∑m
j=1(kj − αjd) · pj(t) = 0 ∀i

(i.e., ṗi(t) = 0), then ki − αid = kj − αjd where i 6= j.
Proof: (by induction)

Assuming that it is true for m, i.e., ∀i = {1, · · ·m}, ki −
αid−

∑m
j=1(kj−αjd)·pj(t) = 0 implies ki−αid = kj−αjd

where i 6= j. Then, we prove that it is true for m+ 1:

ki − αid−
m+1∑
j=1

(kj − αjd) · pj(t) = 0

Rearranging this equation:

(ki − αid)(
m+1∑

j=1,j 6=i

pj(t)) =
m+1∑

j=1,j 6=i

(kj − αjd)pj(t)

Using the assumption that (ki − αid) · (
∑m
j=1,j 6=i pj(t)) =∑m

j=1,j 6=i(kj − αjd) · pj(t) implies ki − αid = kj − αjd
where i 6= j and i = {1, · · · ,m}. Then, we have

(ki − αid) · pm+1(t) = (km+1 − αm+1d) · pm+1(t) (4)

where i 6= m+ 1 and thus ki − αid = km+1 − αm+1d
To measure long-term effects of treatment regimes, we

define a tumor reduction rate as follows.
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Definition 1: A Tumor Reduction (TR) rate after each
round can be defined as follows [13]:

TRk ,
NT (tonk )−NT (toffk )

NT (tonk )
(5)

where TRk represents a tumor reduction rate of the k-th
drug cycle, NT (tonk ) and NT (toffk ) represent total tumor
population at time step tonk and toffk respectively as shown
in Figure 1.

Lemma 3: For symmetric treatment, a tumor reduction
rate after each round is constant over time, i.e., TRk =
TRk+1.

Proof: For a symmetric treatment, we have ki − αi =
kj − αj = ks − αs and ∆T , toffk − tonk is assumed to be
constant over k.

NT (toffk ) =
m∑
i=1

Ni(t
off
k ) =

m∑
i=1

Ni(t
on
k ) exp((ki − αi)∆T )

=
( m∑
i=1

Ni(t
on
k )
)

exp((ks − αs)∆T )

= NT (tonk ) exp((ks − αs)∆T )

Therefore, for symmetric treatment, a tumor reduction rate
is constant as follows:

TRsymk = 1−
NT (toffk )

NT (tonk )
= 1− exp((ks − αs)∆T )

Similarly, we can show TRsymk+1 = 1− exp((ks−αs)∆T ) =
TRsymk .

Lemma 4: For asymmetric case, a tumor reduction rate
decreases over time, i.e., TRk+1 − TRk < 0.

Proof: (suppose not) assume TRk+1 − TRk ≥ 0:

TRk = 1−
NT (toffk )

NT (tonk )
= 1−

∑m
i=1Ni(t

off
k )

NT (tonk )

= 1−
∑m
i=1Ni(t

on
k ) exp((ki − αi)∆T )

NT (tonk )

= 1−
m∑
i=1

pi(t
on
k ) exp((ki − αi)∆T )

where we use Ni(tonk ) = pi(t
on
k )NT (tonk ).

TRk+1 − TRk

=

(
1−

m∑
i=1

pi(t
on
k+1) exp((ki − αi)∆T )

)
−
(

1−
m∑
i=1

pi(t
on
k ) exp((ki − αi)∆T )

)
=

m∑
i=1

exp((ki − αi)∆T ) · (pi(tonk )− pi(tonk+1))

Without loss of generality, consider (m = 2):

TRk+1 − TRk
= exp((k1 − α1)∆T ) · (p1(tonk )− p1(tonk+1)) +

exp((k2 − α2)∆T )(1− p1(tonk )− 1 + p1(tonk+1))

= (p1(tonk )− p1(tonk+1)) · (exp((k1 − α1)∆T )

− exp(k2 − α2)∆T ))

For asymmetric case (i.e., k1−α1 6= k2−α2), if k1−α1 >
k2 − α2, p1(t) increases as p2(t) decreases, i.e. p1(tonk ) −
p1(tonk+1) < 0 and thus TRk+1 − TRk < 0 (contradiction).
Similarly, if k1 − α1 < k2 − α2, p1(t) decreases as p2(t)
increases, i.e. p1(tonk ) − p1(tonk+1) > 0 and then TRk+1 −
TRk < 0 (contradiction).

We also define the rate of tumor adaptation (or the rate
of change in tumor sensitivity) by taking the slope of the
percent tumor reduction values for successive doses.

Definition 2: A rate of tumor adaption (TA) is defined as
follows [13]:

TAk ,
|TRk+1 − TRk|

∆T

where TRk and TRk+1 represent tumor reduction at the kth

and (k + 1)th round of treatment respectively.
A rate of tumor adaptation refers to how quickly the tumor
reduction changes by taking the difference between the
absolute value of successive tumor reductions over time [13].
If the tumor adaptation rate increases, the effectiveness of the
drug decreases by definition.

Lemma 5: For symmetric treatment (i.e., equal selective
pressure on treatment), a rate of tumor adaptation is zero
(i.e., TAk = 0, ∀k).

Proof: By Lemma 3 and Definition 2.
Theorem 1: With the same initial overall tumor size at

the time of treatment and the same initial efficacy on the
overall tumor, differential-imposed selective pressures on the
individual sub-populations (i.e., asymmetric treatment) result
in a higher tumor burden in the long term compared to
symmetric treatment.

Proof: TRsym1 = TRasym1 by assumption (i.e., the
same initial efficacy on the overall tumor) and Lemma 4
and 5 (i.e., a tumor reduction rate is constant in symmetric
treatment but decreases over time in asymmetric treatment).

Therefore, symmetric treatment minimizes the rate of tumor
adaptation and thus maximizes the effectiveness of the drug
over time.

As we cannot have control over subpopulation during the
drug-off time period, now we consider drug on- and off-
period as one treatment cycle (i.e., 2∆T ) and simply extend
the condition to conserve sub-population in each drug cycle
as follows:

Lemma 6: In order to conserve subpopulation composi-
tion after one treatment cycle, i.e., pi(0)−pi(2∆T )

2∆T = 0, we
need to satisfy 2ki − αi = 2kj − αj where i 6= j.

Proof:

pi(2∆T ) =
Ni(2∆T )∑m
j=1Nj(2∆T )

=
Ni(0) exp ((2ki − αi)∆T )∑m
j=1Nj(0) exp ((2kj − αj)∆T )

Thus, if 2ki − αi = 2kj − αj where i 6= j,

pi(2∆T ) =
Ni(0)∑m
j=1Nj(0)

= pi(0)
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By considering one treatment cycle (i.e., drug-on and off),
we could conserve sub-population especially when we have
different growth rates for each cell population (i.e., ki 6= kj).
For example, when the drug is off (i.e., d = 0), different
growth rates will change the composition rate as we do not
have control but by considering the drug on/off cycle, we
could compensate for composition change during the drug-
off period and thus conserve subpopulation composition.

Now we define the objective function in the following
form:

J(α) = rN(T ) +

∫ T

0

{qN(t) + sα(t)}dt

=
m∑
i=1

riNi(T ) +

∫ T

0

{
m∑
i=1

qiNi(t) +
m∑
i=1

siαi(t)}dt

where r, q and s are constant parameters. Then the optimiza-
tion problem can be described with these constraints to avoid
increasing the rate of tumor adaptation and thus ultimately
minimize tumor burden in the long term:

min J(α, u)

s.t. Ṅi(t) = (ki − αid)Ni(t)

2ki − αi = u, ∀i when d = 1

0 ≤ αi ≤ αmax (6)

where we introduce another variable u as optimization vari-
able to satisfy ∀i, 2ki − αi = 2kj − αj (i 6= j). Note
that we also consider the maximum drug effect (αmax) as
inequality conditions. By solving the optimization problem
(6), we minimize the overall tumor burden while maintaining
sub-population composition in order to minimize tumor
adaptation.

IV. DIFFERENTIAL-IMPOSED SELECTIVE TREATMENTS
WITH MULTIPLE DRUG PROFILES

In the previous section, we simply consider a single
drug profile that can affect all sub-population together with
different drug killing rates (αi). However, this is not feasible
in a practical scenario and thus we consider multiple drug
profiles where each drug profile has a single effect on the
specific sub-population as shown in Figure 2. Similar to the
previous section, we consider one full drug treatment cycle
to conserve sub-population proportion.

Lemma 7: Consider n drug profiles where the time inter-
val for each drug is equal to the drug-off time interval (∆T ).

Fig. 2. Treatments with multiple drug profiles (m = 3) where each drug
has only effect on the corresponding sub-population.

Sub-population proportion is conserved after one drug cycle
if (n+ 1) · ki − αi = (n+ 1) · kj − αj , i 6= j

Proof: Each sub-population is under the effect of
the corresponding drug during ∆T and it increases with
the growth rate (ki) when the drug is an off cycle (i.e.,
n · ∆T ). So, after the whole drug cycle ((n + 1) · ∆T ),
the population of the i-th cell type can be represented by
Ni((n + 1) · ∆T ) = Ni(0) exp(((n + 1) · ki − αi) · ∆T ).
Thus,

pi((n+ 1) ·∆T ) =
Ni(0)e((n+1)·ki−αi)∆T∑m
j=1Nj(0)e((n+1)·kj−αj)∆T

=
Ni(0)∑n
j=1Nj(0)

=
Ni(0)

NT (0)
= pi(0)

Therefore, after one full treatment cycle, we can conserve
subpopulation composition, i.e., pi((n + 1) · ∆T ) = pi(0)
with multiple drug profiles.

With multiple drug profiles, the optimization problem can
be described with these constraints to avoid increasing the
rate of tumor adaptation in the long term:

min J(α, u)

s.t. Ṅi(t) = (ki − αid)Ni(t)

(n+ 1) · ki − αi = u, ∀i when d = 1

0 ≤ αi ≤ αmax (7)

Thus, we minimize the overall tumor burden while maintain-
ing sub-population composition in order to minimize tumor
adaptation.

So far we simply consider that duration of each drug is
constant (i.e., ∆T ) but we also consider different duration
times for each drug (i.e., ∆Tj denotes the duration of the j-
th drug and ∆T0 represents a duration of the drug-off period)
with a simple extension as follows.

Lemma 8: Consider n drug profiles with different drug
duration (∆Ti 6= ∆Tj). Sub-population proportion is con-
served after one cycle if (

∑n
k=0,k 6=i ∆Tk) · ki − ∆Tiαi =

(
∑n
k=0,k 6=j ∆Tk) · kj −∆Tjαj where i 6= j.

Proof: Consider T =
∑n
i=0 ∆Ti as duration of one

drug cycle of multiple drugs treatment.

pi(T ) =
Ni(0)e(

∑n
k=0,k 6=i ∆Tk)·ki−∆Tiαi∑m

j=1Nj(0)e(
∑n

k=0,k 6=j ∆Tk)·kj−∆Tjαj

=
Ni(0)∑m
j=1Nj(0)

= pi(0)

Finally, for multiple drug profiles and different treatment
intervals, we consider the following optimization:

min J(α, u)

s.t. Ṅi(t) = (ki − αid)Ni(t)

(
n∑

k=0,k 6=i

∆Tk) · ki −∆Ti · αi = u, ∀i

0 ≤ αi ≤ αi,max (8)
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Note that we also consider different maximum drug effects
for individual drug (αi,max).

V. RESULTS AND DISCUSSION

In this section, we demonstrate the effects of drug selective
pressure with numerical simulations by solving the opti-
mization problems (6) and (8). As we extended a minimal
two-population case, we demonstrate three sub-population
(i.e., m = 3) with a single drug profile and multiple drug
profiles. For the first case, we simply consider the duration
of each drug and drug-off duration equal to ∆T and for
the second case, we consider different drug duration times.
For each simulation study, we compare the overall tumor
population and tumor reduction with and without conserving
subpopulation (i.e., the proposed constraint in optimization).

A. Example 1: with a single drug profile

For single drug profile study, we use parameters k1 =
0.1, k2 = 0.12, k3 = 0.14, x1(0) = 0.45, x2(0) =
0.30, x3(0) = 0.25, αmax = 1 and αi where i = {1, 2, 3} are
optimization variables. Figure 3 shows optimization result for
single drug profile. After one drug cycle (i.e., drug-on and
off denoted by a green dash line), the subpopulation ratio is
conserved with the proposed constraint (blue line) and thus
we observe that the proposed approach is more effective than
the case without conserving subpopulation.

We observe that although some subpopulation decreases
faster in the case without conserving subpopulation (red
line), other sub-population (i.e., p3) remains as a resistant
population to the drug and reduce long-term drug effects.
Thus, conserving subpopulation-imposed treatment shows
better long-term effects compared with differential selective
pressure treatment (i.e., without conserving subpopulation).

As we derived tumor reduction for symmetric and asym-
metric treatment in Lemma 3 and 4, the proposed approach
(i.e., conserving subpopulation ratio) guarantees that a rate of
tumor adaptation is zero so that ultimately minimizes tumor
burden in the long term as shown in Figure 4 (right). On the
other hand, without the proposed approach, we observe that
tumor reduction decreases over time due to tumor adaptation
as shown in Figure 4 (left). Note that tumor reduction of the
first drug cycle without conserving subpopulation ratio is
higher than tumor reduction of the first drug cycle with the
proposed approach but it decreases over time while tumor
reduction is conserved with the proposed method.

B. Example 2: with multiple drug profiles and different drug
duration time

We considered different drug duration for each drug (∆Ti)
and drug-off duration (∆T0) where we use ∆T1,∆T2,∆T3

are 0.5, 1 and 2 respectively, ∆T0 = 2.5 and αi,max = 1.
We consider optimization problem (8) and simulation result
is shown as Figure 5. Again the proposed optimization can
handle different drug duration times while conserving the
subpopulation ratio. Thus, similar to the previous cases,
the tumor reduction rate is conserved with the proposed
approach, and tumor adaptation is minimized.

Fig. 3. Simulation results with a single drug profile. By conserving
subpopulation ratio, we maximize tumor reduction and thus have better long-
term effects (blue). On the other hand, p3 population becomes dominant and
shows resistant to therapy (red).

Fig. 4. Tumor reduction after each round of drug treatment with a single
drug profile. (left) Tumor reduction decreases when we have differential
selective pressure on treatment. (right) On the other hand, the proposed
approach guarantees that a rate of tumor adaptation is zero (i.e., tumor
reduction is constant).

VI. CONCLUSION

In this paper, we consider tumor heterogeneity and se-
lective pressure on sub-populations in the treatment design.
Our simulations demonstrate the necessity of matching sub-
population composition in order to minimize tumor adapta-
tion. Our results indicate that different selective pressure on
subpopulations causes the rate of composition change which
can lead to the long-term effect of drug resistance and tumor

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.29.502041doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502041
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 5. Simulation results with multiple drug profiles and different drug
duration time (∆Tj ).

adaptation. By conserving sub-population composition, we
can minimize the rate of tumor adaptation and thus maximize
a tumor reduction rate. We also show that sub-population
composition change can cause decreasing a tumor reduction
rate.

The tumor model presented here is greatly simplified
but we have chosen a simple starting point to understand
how different selective pressures affect tumor adaptation and
subpopulation composition changes. Thus the model needs to
be improved and modified to represent specific cancer types,
resistance mechanisms, and tumor microenvironment factors
in future work.
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