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One Sentence Summary: Elevated bodyweight is positively associated with DNA damage in 33 

breast epithelium of BRCA mutation carriers  34 

 35 

Abstract:  36 

Obesity is an established risk factor for breast cancer among women in the general 37 

population after menopause. Whether elevated bodyweight is a risk factor for women with a 38 

germline mutation in BRCA1 or BRCA2 is less clear due to inconsistent findings from 39 

epidemiological studies and lack of mechanistic studies in this population. Here, we show that 40 

DNA damage in normal breast epithelium of BRCA mutation carriers is positively correlated 41 

with body mass index and with biomarkers of metabolic dysfunction. Additionally, RNA-42 

sequencing reveals significant obesity-associated alterations to the breast adipose 43 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.29.502090doi: bioRxiv preprint 

mailto:kab2060@med.cornell.edu
https://doi.org/10.1101/2022.07.29.502090


3 

 

microenvironment of BRCA mutation carriers, including activation of estrogen biosynthesis, 44 

which impacts neighboring breast epithelial cells. We found that blockade of estrogen 45 

biosynthesis or estrogen receptor activity decreases DNA damage, whereas treatment with leptin 46 

or insulin increases DNA damage in BRCA heterozygous epithelial cells. Furthermore, we show 47 

that increased adiposity is associated with mammary gland DNA damage and increased 48 

penetrance of mammary tumors in Brca1+/- mice. Overall, our results provide mechanistic 49 

evidence in support of a link between bodyweight and breast cancer development in BRCA 50 

mutation carriers and suggests that maintaining a healthy bodyweight or pharmacologically 51 

targeting estrogen or metabolic dysfunction may reduce the risk of breast cancer in this 52 

population.  53 

 54 

INTRODUCTION 55 

 56 

Inheriting a pathogenic mutation in the DNA repair genes BRCA1 or BRCA2 is causally 57 

linked to the development of breast and ovarian cancer in women (1, 2). Although there is strong 58 

evidence linking obesity to the development of hormone receptor positive breast cancer after 59 

menopause in the general population (3), there are conflicting results in BRCA mutation carriers. 60 

Some studies have found that maintaining a healthy bodyweight or weight loss in young 61 

adulthood is associated with delayed onset of breast cancer (4, 5). Other studies have reported 62 

that adiposity or elevated bodyweight in adulthood is associated with increased cancer risk (5-9). 63 

Conversely, some reports indicate that increased body mass index (BMI) in young adulthood 64 

may have protective effects, and that risk is modified by menopausal status (9-11). The lack of 65 

clarity on the role of bodyweight and risk of breast cancer development in BRCA mutation 66 
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carriers limits the ability of clinicians to provide evidence-based guidance on prevention 67 

strategies beyond prophylactic surgical intervention. 68 

Weight gain and obesity are often coupled with metabolic syndrome, insulin resistance, 69 

and significant changes to adipose tissue, including that of the breast microenvironment (12-15). 70 

Obesity-induced changes to breast adipose tissue includes dysregulation of hormone and 71 

adipokine balance, and increased production of inflammatory mediators (16). For example, 72 

estrogen biosynthesis is increased in obese breast adipose tissue due to overexpression of 73 

aromatase in adipose stromal cells which catalyzes the conversion of androgens to estrogen (17-74 

19). Additionally, excessive expansion of adipocytes leads to hypoxia, lipolysis, and altered 75 

adipokine production including higher leptin to adiponectin ratio (15, 20, 21). These changes to 76 

the breast microenvironment may have important implications for breast carcinogenesis given 77 

that breast epithelial cells are embedded in this milieu and engage in epithelium-adipose 78 

crosstalk (22).  79 

BRCA1 and BRCA2 are critical for their role in homologous recombination-mediated 80 

repair of DNA double strand breaks (23). Mutations in either BRCA1 or BRCA2 cause a defect in 81 

DNA repair which can lead to an accumulation of DNA damage and consequently, 82 

tumorigenesis (24, 25). Studies have linked obesity or metabolic syndrome to DNA damage, 83 

including in leukocytes (26), skeletal muscle (27), peripheral blood mononuclear cells (28), and 84 

in pancreatic β-cells (29), but no studies have examined the relationship between obesity and 85 

DNA damage in normal breast epithelial cells.  86 

We show that BMI and markers of metabolic dysfunction are positively correlated with 87 

DNA damage in normal breast epithelium of women carrying a BRCA mutation, a finding that is 88 

extended to the fallopian tube of BRCA mutation carriers. RNA-sequencing of whole breast 89 
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tissue and of isolated breast epithelial organoids from BRCA mutation carriers, along with ex 90 

vivo and in vitro studies with BRCA1 and BRCA2 mutant primary tissues and cell lines, suggests 91 

several obesity-associated factors as possible drivers of DNA damage. Additionally, metformin, 92 

fulvestrant, leptin neutralizing antibodies and a PI3K inhibitor reduce damage induced by the 93 

obese breast microenvironment. In vivo studies in Brca1 heterozygous knockout mice 94 

demonstrate that high fat diet-induced obesity leads to glucose intolerance in association with 95 

elevation in epithelial cell DNA damage and greater mammary tumor penetrance relative to mice 96 

fed a low fat diet. The data presented provide mechanistic evidence supporting an increased risk 97 

of breast cancer development in BRCA mutation carriers with elevated bodyweight and 98 

metabolic dysfunction, and importantly, provides clinically relevant strategies for risk reduction.   99 

 100 

RESULTS  101 

 102 

Obesity positively correlates with breast epithelial cell DNA damage in women carrying a 103 

mutation in BRCA1 or BRCA2 104 

 To assess levels of DNA damage in normal breast epithelium in association with 105 

bodyweight in women carrying a BRCA1 or BRCA2 mutation, tissue microarrays were 106 

constructed from non-cancerous breast tissue obtained from 72 women undergoing mastectomy. 107 

The study population included BRCA1 (n=43) and BRCA2 (n=29) mutation carriers who had 108 

documented body mass index (BMI, kg/m2) between 17.7 and 44.9 (median 23.7) at the time of 109 

surgery as shown in Table 1. When grouping the population by BMI category of lean (BMI ≤ 110 

24.9 kg/m2, n=46) or overweight/obese (BMI ≥ 25.0 kg/m2, n=26), median age is significantly 111 

higher in the overweight/obese group compared to the lean group (44.5 vs 38.5, respectively, 112 

P=0.01). Additional clinical features elevated in the overweight/obese group compared to the 113 
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lean group include percent of subjects diagnosed with dyslipidemia (23.1% vs 2.2%, P=0.01) 114 

and with hypertension (23.1% vs 4.3%, P=0.02). The lean group also has a greater representation 115 

of pre-menopausal vs post-menopausal subjects compared to the overweight/obese group 116 

(P=0.04). Diagnosis of diabetes, race, presence of invasive tumor, tumor subtype and BRCA1 vs 117 

BRCA2 mutation were not significantly different between the two BMI groups (Table 1).   118 

Immunofluorescence staining for the DNA double strand break marker γH2AX was 119 

performed with nuclear counterstain Hoechst to visualize the number of foci of DNA damage per 120 

epithelial cell (Fig. 1A). Among BRCA1 and BRCA2 mutation carriers, BMI was positively 121 

associated with breast epithelial cell DNA damage as quantified by # of γH2AX foci/100 cells 122 

(Fig. 1B). Age was also found to be significantly correlated with DNA damage (Fig. 1C). While 123 

this correlation diminished when adjusting for BMI (P=0.11, Table 2), BMI remained positively 124 

associated with DNA damage when adjusting for age (P=0.025, Table 2). Post-menopausal 125 

women were found to exhibit significantly higher levels of DNA damage compared to pre-126 

menopausal women (Fig. 1D). Additionally, circulating levels of sex hormone binding globulin 127 

(SHBG), which binds estrogen to decrease its bioavailability, were negatively correlated with 128 

breast epithelial cell DNA damage (Fig. 1E). This negative association remains significant when 129 

adjusting for both BMI and age (P=0.047 and P=0.026, respectively, Table 2). Elevated BMI is 130 

often coupled to insulin resistance, a hallmark of metabolic dysfunction. Accordingly, fasting 131 

serum levels of insulin and HOMA2 IR were positively correlated with levels of breast epithelial 132 

cell DNA damage while glucose was not (Fig. 1F-H). Insulin and HOMA2 IR retained 133 

significance after adjustments for either BMI or age (P<0.001 for both, Table 2). No correlation 134 

with DNA damage was observed for circulating biomarkers of inflammation including high-135 

sensitivity C-reactive protein (hsCRP) and interleukin-6 (IL-6) or with crown-like structures 136 
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(CLS), a histological marker of local breast adipose inflammation (30) (Fig 1. I-K). These data 137 

indicate that among BRCA mutation carriers, elevated bodyweight is a risk factor for breast 138 

epithelial cell DNA damage. Furthermore, specific obesity-associated factors including insulin 139 

resistance and estrogen balance may be important drivers of this risk.  140 

 141 

 142 

Elevated bodyweight is associated with significant differences in gene expression in breast 143 

adipose tissue and in breast epithelial cells of BRCA mutation carriers 144 

To identify changes associated with obesity in breast epithelial cells and in the breast 145 

adipose microenvironment that may be linked to DNA damage, we conducted RNA-seq studies 146 

on both isolated primary breast epithelial cells and non-cancerous whole breast tissue obtained 147 

from BRCA1 and BRCA2 mutation carriers.  148 

RNA-seq was conducted on breast tissue pieces obtained from lean (BMI ≤ 24.9kg/m2, 149 

n=64) and overweight/obese (BMI ≥25 kg/m2,  n=67) BRCA mutation carriers. An unsupervised 150 

heatmap was constructed which shows general clustering of lean cases and clustering of 151 

overweight/obese cases by gene expression (Fig. 2A). 2329 genes were significantly upregulated 152 

by obesity and 1866 were significantly downregulated. Ingenuity Pathway Analysis (IPA) 153 

identified several pathways that were significantly altered in the overweight/obese cases which 154 

include pathways associated with obesity and metabolic dysfunction, such as “Phagosome 155 

Formation”, “LXR/RXR Activation”, “Tumor Microenvironment Pathway Activation”, and 156 

“Estrogen Biosynthesis” (Fig. 2B). A heatmap of genes involved in estrogen regulation shows a 157 

significant increase in many genes involved in the bioactivity, biosynthesis and activation of 158 

estrogens, including steroid sulfatase, 3HSD1, AKR1C3, AKR1B15, 17HSD1 and aromatase 159 
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(CYP19A1) (Fig. 2C). Conversely, gene expression of 17HSD8, involved in estrogen 160 

inactivation, was significantly lower in overweight/obese relative to lean cases. Moreover, there 161 

were mixed effects of obesity on the expression of genes involved in estrogen catabolism to 162 

hydroxylated metabolites and neutralization by COMT.  163 

To explore which changes in the breast microenvironment are associated with DNA 164 

damage in breast epithelial cells, we analyzed breast tissue pathway changes in relation to level 165 

of epithelial cell DNA damage quantified by γH2AX immunofluorescence staining (Fig. 2D; 166 

n=61). The level of epithelial cell DNA damage in each case was stratified by quartiles and 167 

breast tissue gene expression was compared in the highest quartile (Q4) relative to the lowest 168 

quartile (Q1), independent of BMI . The top 15 canonical pathways activated in Q4 vs Q1 breast 169 

tissue are shown (Fig. 2D) with several pathways being common to both DNA damage and BMI 170 

analyses (Fig. 2D vs Fig. 2B). Although the estrogen biosynthesis pathway was found to be 171 

activated in tissue from overweight/obese compared to lean cases (Fig. 2B, z-score=0.775, P 172 

value=1.14x10-6), a stronger activation score is found when comparing Q4 vs Q1 (Fig. 2D, z-173 

score=2.646, P value=2.7x10-3), suggesting that tissue estrogen biosynthesis is highly correlated 174 

with level of breast epithelial cell DNA damage, irrespective of BMI.  175 

Breast epithelial organoids were isolated from BRCA mutation carriers who were either 176 

lean (n=10) or overweight/obese (n=9) at the time of surgery. To validate and characterize the 177 

isolated epithelial organoids, immunofluorescence staining was conducted for cytokeratin 8 178 

(CK8) and cytokeratin 14 (CK14), characteristic markers of luminal and basal epithelial cells, 179 

respectively, that are known to comprise the breast epithelium (Fig. 2E). 1144 genes were 180 

significantly upregulated in the setting of overweight/obesity and 537 were significantly 181 

downregulated compared to lean organoids. The top 20 canonical pathways identified by IPA as 182 
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regulated in the overweight/obese organoids are shown (Fig. 2F) and include activation of 183 

pathways known to be associated with obesity, including “HIF1α signaling”, “IL-8 signaling”, 184 

“ERK/MAPK signaling”, and “PI3K/AKT signaling”, among others. 185 

Collectively, these RNA-seq studies show that BRCA1 and BRCA2 mutation carriers who 186 

are overweight or obese have significantly altered breast epithelial cell and breast adipose 187 

microenvironment gene expression compared with lean counterparts. Moreover, our data provide 188 

rationale for further exploring whether estrogen is a driver of DNA damage in the breast. 189 

 190 

 191 

Crosstalk between epithelial cells and the breast adipose microenvironment 192 

Given the significant gene expression changes identified in BRCA heterozygous breast 193 

adipose tissue and in breast epithelial cells in association with overweight/obesity, we next 194 

investigated whether the breast adipose microenvironment drives gene expression in breast 195 

epithelial cells. IPA Upstream Regulator tool was used to identify regulators of gene expression 196 

differences in overweight/obese relative to lean organoids. To highlight endogenous factors that 197 

may be responsible for driving gene expression changes, results were filtered to show the top 20 198 

secreted factors. Among these factors, beta-estradiol (an estrogen) is the top predicted upstream 199 

regulator (Table 3). A number of additional predicated upstream organoid regulators are 200 

significantly upregulated in overweight/obese breast tissue, including several interleukins (IL2, 201 

IL15, and IL5), TGFβ1, CSF1, ANGPT2, and WNT5A. Some factors, such as insulin, are known 202 

to be elevated in obesity, but not produced locally in breast tissue and therefore do not have an 203 

observed tissue gene expression level. These data suggest that some endogenously produced 204 
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factors in the overweight/obese breast microenvironment may interact with neighboring breast 205 

epithelial cells to induce gene expression changes and DNA damage.  206 

 207 

Targeting estrogen in breast tissue from BRCA mutation carriers reduces epithelial cell 208 

DNA damage  209 

 Next, we conducted mechanistic studies to determine whether targeting estrogen 210 

signaling or biosynthesis in breast tissue would lead to decreased levels of breast epithelial cell 211 

DNA damage. We first conducted immunohistochemistry (IHC) staining to verify that normal 212 

epithelium from BRCA1 and BRCA2 mutation carriers express the estrogen receptor (ERα). 213 

Epithelial cells staining positively for ERα were found throughout the epithelium among carriers 214 

of BRCA1 or BRCA2 mutations (representative images shown in Fig. 3A, top row). IF staining 215 

was then conducted to visualize whether γH2AX foci co-localize with ERα positive cells. 216 

Representative images are shown which highlight ERα positive cells frequently staining 217 

positively for γH2AX foci (Fig. 3A, bottom row). Next, we tested whether disrupting estrogen 218 

signaling through use of the drug fulvestrant, which degrades the estrogen receptor, would 219 

impact levels of DNA damage in the breast. Breast tissue was obtained from BRCA mutation 220 

carriers undergoing surgery (n=7) and were plated as explants in the presence of fulvestrant 221 

(100µM) or vehicle for 24 hours (Fig. 3B). Explants were formalin fixed and sectioned for 222 

assessment of breast epithelial cell DNA damage by IF staining. An approximately 32.5% 223 

reduction in DNA damage was observed overall after treatment with fulvestrant (Fig. 3C). 224 

 Next, we hypothesized that targeting estrogen biosynthesis in the breast by 225 

downregulating aromatase expression would lead to less estrogen exposure to the epithelial cells, 226 

and consequently decreased DNA damage. In support of this hypothesis, RNA-seq data from 227 

BRCA1 and BRCA2 mutation carriers showed a positive correlation between breast adipose 228 
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aromatase expression and level of breast epithelial cell DNA damage (Fig. 3D). Importantly, 229 

since aromatase expression is known to be upregulated in association with obesity, we conducted 230 

additional statistical analyses to adjust for BMI and found that aromatase remained 231 

independently positively correlated with DNA damage (P=0.037). To target estrogen 232 

biosynthesis, we utilized metformin, a widely used antidiabetic drug which has also been shown 233 

to decrease aromatase production in the breast via stimulation of AMP-activated protein kinase 234 

(AMPK) in adipose stromal cells (31, 32). Breast tissue obtained from BRCA mutation carriers 235 

(n=3) were plated as explants and treated with metformin (0-100µM) for 24 hours followed by IF 236 

assessment of breast epithelial cell DNA damage. A dose-dependent decrease in DNA damage 237 

was observed with significant differences after 75 and 100µM of metformin treatment (Fig. 3E). 238 

Since metformin is known to decrease aromatase expression in adipose stromal cells surrounding 239 

breast epithelial cells, we digested breast tissue to isolate the epithelial cells from their 240 

microenvironment (Fig. 3B) and treated them with metformin for 24 hours to determine if the 241 

presence of the breast microenvironment is required for the effect of metformin on DNA 242 

damage. Although there was a modest trend for reduction in DNA damage with increasing doses 243 

of metformin, these results were not significant (Fig. 3F). Consistently, tissue levels of estradiol 244 

(E2) were markedly reduced in breast explants after 24-hour metformin treatment in a dose-245 

dependent manner (Fig. 3G). Additionally, testosterone and androstendione, which are converted 246 

to E2 and estrone (E1) by aromatase, respectively, were increased in explants following 247 

treatment with metformin while both E1 and E2 decreased (Fig. 3H). These data show that 248 

metformin treatment leads to decreased estrogen biosynthesis in breast tissue in association with 249 

reduction in epithelial cell DNA damage.  250 

 251 
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Local and systemic factors contribute to DNA damage in BRCA1 and BRCA2 heterozygous 252 

breast epithelial cells 253 

 Our data support a paracrine interaction between adipose tissue and breast epithelial cells. 254 

Having found a direct role for estradiol in mediating DNA damage in primary human tissues, we 255 

next explored the role of additional obesity-associated factors, including those present in breast 256 

adipose tissue conditioned media (CM), as well as recombinant leptin and insulin.  To first 257 

investigate whether factors derived from breast adipose tissue have the ability to directly induce 258 

DNA damage in BRCA mutant breast epithelial cells, BRCA1 heterozygous knockout MCF-10A 259 

cells were treated with CM from reduction mammoplasty or non-tumor quadrants of mastectomy 260 

tissue (Fig. 4A, n=36, BMI: 20.6-40.1 kg/m2). Breast adipose CM treatment was positively 261 

correlated with DNA damage as a function of the patient’s BMI, as measured by 262 

immunofluorescence of γH2AX foci (Fig. 4B). RNA-seq was performed in a subset of CM-263 

treated samples (lean and obese, n=3/group). Results demonstrate that consistent with DNA 264 

damage measurements (Fig. S1), IPA analysis of differentially regulated genes in the obese CM 265 

treated cells relative to lean showed increased activation of functions associated with DNA 266 

damage and genomic instability including “Formation of micronuclei”, “Chromosomal 267 

instability”, and “Breakage of chromosomes”. Alternatively, activation of functions associated 268 

with DNA repair were decreased, including “Repair of DNA” and “Checkpoint control” (Table 269 

4). 270 

To determine whether effects of CM on DNA damage were generalizable to BRCA2 271 

mutation carriers, a subset of CM cases were tested in MCF-10A cells carrying a heterozygous 272 

BRCA2 mutation, generated using CRISPR-Cas9 gene editing (see Supplementary Materials and 273 

Methods). A positive correlation between BMI and DNA damage was also observed in these 274 
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cells (Fig. 4C). These studies demonstrate that factors secreted by breast adipose tissue directly 275 

stimulate DNA damage in breast epithelial cells. Furthermore, given the lack of estrogen 276 

receptor expression in MCF-10A cells (33), these studies also highlight the existence of 277 

additional factors beyond estrogen that may be contributing to DNA damage induction in the 278 

setting of obesity in BRCA1 and BRCA2 mutant breast epithelial cells. 279 

  The expression of leptin, known to be directly correlated with adiposity, is significantly 280 

higher in overweight/obese compared to lean breast tissue from BRCA mutation carriers (Table 281 

S1, log2FC= 0.61, P=3.48x10-6). A number of studies have found leptin to have pro-mitogenic 282 

and anti-apoptotic effects in breast cancer cells (34-37). However, its effects on normal breast 283 

epithelial cells are less well characterized. Here, we treated both BRCA1 and BRCA2 284 

heterozygous MCF-10A cells with leptin (400ng/mL) for 24 hours and found a significant 285 

induction of DNA damage in both cell lines (Fig. 4D) and in primary breast epithelial cells (Fig. 286 

4E). Additionally, the ability of obese CM to induce DNA damage in BRCA1 heterozygous 287 

breast epithelial cells is blocked when treating in the presence of a leptin neutralizing antibody 288 

(Fig. 4F). 289 

 Next, having identified insulin as positively correlated with DNA damage in tissue 290 

microarrays from BRCA mutation carriers, independent of BMI (Fig. 1F, Table 2), and as a top 291 

upstream regulator of gene expression in primary breast epithelial organoids from 292 

overweight/obese women (Fig. 3A), we conducted additional mechanistic studies to determine 293 

whether insulin can directly induce DNA damage. Treatment of BRCA1 and BRCA2 294 

heterozygous knockout MCF-10A cells with insulin (100nM) for 24 hours resulted in a 295 

significant increase in DNA damage in both cell lines (Fig. 4G) and in primary breast epithelial 296 

cells (Fig. 4H). Both leptin and insulin have been shown to act via PI3K (38, 39). Treatment of 297 
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BRCA1 heterozygous breast epithelial cells with a PI3K inhibitor, BKM120 (1µM), was 298 

effective at reducing obese CM-induced DNA damage (Fig. 4I). These data show that factors 299 

produced locally by obese breast adipose tissue or elevated with metabolic dysfunction 300 

contribute to induction of DNA damage in BRCA heterozygous knockout breast epithelial cells.  301 

  302 

High fat diet feeding is associated with elevated mammary gland DNA damage and early 303 

tumor penetrance in female Brca1 heterozygous knockout mice 304 

  305 

DNA damage is a known driver of chromosomal defects that can lead to cancer. 306 

However, whether obesity-associated elevation in breast epithelial cell DNA damage is linked to 307 

breast cancer penetrance in the setting of a heterozygous BRCA mutation has not been 308 

established. To investigate this question, we conducted preclinical studies utilizing mice that 309 

were developed to carry a whole-body heterozygous loss in Brca1 (Brca1+/-) on a C57Bl/6 310 

background. Four-week-old female Brca1+/- mice were randomized to receive low fat diet 311 

(LFD) or high fat diet (HFD) for 22 weeks to produce lean and obese mice, respectively (Fig. 312 

5A). Mice fed HFD gained significantly more weight than LFD fed mice and weighed on 313 

average 34.1g vs 23.3g, respectively, at the time of sacrifice (Fig. 5B). Overall adiposity was 314 

also increased in association with HFD feeding as determined by greater accumulation of 315 

subcutaneous and visceral fat compared to the LFD group (Fig. S2). To confirm that the HFD-316 

fed mice exhibit altered metabolic homeostasis in our Brca1+/- model of diet-induced obesity, 317 

glucose tolerance tests were conducted after 21 weeks on experimental diets, highlighting 318 

delayed clearance of glucose from blood over 90 minutes post-intraperitoneal injection of 319 

glucose in the HFD group compared to LFD-fed mice (Fig. 5C & D). To determine whether 320 

changes observed in the mammary fat pad of Brca1+/- mice in response to feeding were 321 
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analogous to those seen in the breast tissue of women in relation to obesity, RNA-seq was 322 

conducted on inguinal mammary fat pads from LFD and HFD mice harvested at sacrifice (Table 323 

S5). IPA was used to identify activation of the top differentially regulated canonical pathways in 324 

HFD mammary fat pads relative to LFD, results of which were juxtaposed with regulation of 325 

these same pathways in human breast tissue from overweight/obese vs lean BRCA mutation 326 

carriers. The top 20 canonical pathways regulated by obesity in the mouse mammary fat pad 327 

show very similar regulation patterns compared to overweight/obese human breast tissue (Fig. 328 

5E), suggesting that diet-induced obesity in our Brca1+/- mice can serve as a model system for 329 

obesity in women carrying a BRCA mutation with respect to studies of the breast.  330 

Similar to findings made in human breast tissue from BRCA mutation carriers, IF staining 331 

for H2AX of Brca1+/- mouse mammary glands at the time of sacrifice show that HFD-fed mice 332 

have elevated levels of mammary gland DNA damage compared to LFD-fed mice (Fig. 5F). 333 

Furthermore, there is a trend for a positive correlation between DNA damage and bodyweight 334 

(irrespective of diet) (Fig. 5G) and a significant positive correlation between DNA damage and 335 

mammary fat pad weight (Fig. 5H), suggesting that level of adiposity may be a stronger 336 

predictor of DNA damage in mammary epithelium compared to whole body weight. 337 

Next, we examined whether elevation in mammary gland DNA damage is associated 338 

with tumorigenesis. Female Brca1+/- mice were first made obese by HFD-feeding for 10 weeks 339 

and then were implanted with a subcutaneous medroxyprogesterone acetate (MPA) pellet to 340 

sensitize them to mammary tumor development upon exposure to three doses of the carcinogen 341 

7,12-dimethylbenz[a]anthracene (DMBA) (Fig. 5I). Mammary tumors developed earlier in the 342 

HFD group compared with the control LFD group (Fig. 5J). Additionally, 85.7% of mice in the 343 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.29.502090doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502090


16 

 

HFD group developed mammary tumors by the end of the 28-week surveillance period 344 

compared to 69.2% of mice in the LFD group (Fig. 5K).  345 

 346 

Obesity is associated with DNA damage in the fallopian tube, but not ovary, of BRCA 347 

mutation carriers 348 

 In addition to elevated breast cancer risk, women carrying a BRCA1 or BRCA2 mutation 349 

have high lifetime risk for developing ovarian cancer (1, 2). Since weight gain is associated with 350 

increased risk of ovarian cancer in BRCA mutation carriers (40), we extended our studies in the 351 

breast to investigate the impact of elevated BMI on DNA damage in the ovarian epithelium as 352 

well as in epithelial cells of the fallopian tube (Fig. 6). IF staining for γH2AX was performed 353 

with nuclear counter stain Hoechst to quantify number of foci of DNA damage per epithelial cell 354 

in non-tumorous ovarian tissue and fallopian tube fimbria from women carrying a BRCA1 or 355 

BRCA2 mutation undergoing prophylactic salpingo-oophorectomy. In the ovarian epithelium, 356 

there was no increase in DNA damage in the overweight/obese cases (n=12) compared to the 357 

lean cases (n=21) (Fig. 6A, P=0.59). However, there was a significant increase in DNA damage 358 

observed in the epithelial cells of the fallopian tube from overweight/obese women (n=9) 359 

compared to lean women (n=17) (Fig. 6B, P=0.03).  360 

 361 

DISCUSSION  362 

 363 

 The data presented here demonstrate that BMI is positively associated with DNA damage 364 

in normal breast epithelial cells in carriers of a mutation in BRCA1 or BRCA2. Beyond BMI,  365 

insulin and insulin resistance, as measured by HOMA2 IR, were independently associated with 366 

DNA damage, irrespective of BMI or age. Accordingly, it is possible that BRCA mutation 367 
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carriers who are defined as lean by BMI, but hyperinsulinemic (‘metabolically obese’), may also 368 

be at risk for elevated levels of DNA damage and consequently, breast cancer development. 369 

Although previous studies have shown that inflammation can lead to DNA damage in both 370 

normal and cancerous cells in other tissues (41-44), our data do not support a link between local 371 

or systemic inflammation and breast epithelial cell DNA damage. 372 

To our knowledge, this is the first study to conduct transcriptional profiling of non-373 

cancerous breast tissue and isolated breast epithelial cells from overweight/obese vs lean BRCA 374 

mutation carriers. While several factors and pathways associated with metabolic dysfunction 375 

were shown to be upregulated in breast tissue and in epithelial cells, the identification of 376 

pathways related to estrogen biosynthesis (tissue) and signaling (epithelial cells) were of 377 

particular interest given the availability of clinically approved drugs that target estrogen. 378 

Additionally, previous in vitro studies showed that treatment with estrogen and estrogen 379 

metabolites induced DNA damage in BRCA1 heterozygous breast epithelial cells (45), providing 380 

further rationale for exploring the role of estrogen as a mediator of obesity-induced DNA 381 

damage. Here, we show that fulvestrant, an estrogen receptor degrader, is effective at reducing 382 

epithelial cell DNA damage in breast tissue explants from BRCA mutation carriers. However, 383 

this drug is not currently approved for use in the prevention setting and the side effects may limit 384 

its future use for this purpose. Alternatively, metformin is widely prescribed in patients with type 385 

II diabetes and has an excellent safety profile which makes this drug an intriguing option for 386 

preventative use in BRCA mutation carriers with excess bodyweight. We show that metformin 387 

was effective at reducing breast epithelial cell DNA damage at clinically relevant concentrations 388 

primarily due to effects on the breast adipose microenvironment. Previous studies have shown 389 

that metformin decreases adipose stromal cell expression of aromatase through activation of 390 
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AMPK (31, 32). Our study extends these findings by demonstrating the downstream 391 

consequence of downregulation in aromatase through mass spectrometry studies which showed 392 

marked reduction in E2 in breast tissue after metformin treatment. In addition to reducing 393 

estrogen exposure, previous work has shown that metformin treatment reduces endogenous 394 

reactive oxygen species (ROS) and associated DNA damage (46) in a mammary epithelial cell 395 

line, providing an additional possible mechanism for the effects of metformin in our studies.  396 

Epidemiological studies have reported decreased risk of breast cancer in BRCA mutation 397 

carriers in association with reduced estrogen exposure achieved via salpingo-oophorectomy 398 

surgery which diminishes ovarian estrogen production or through treatment with tamoxifen, an 399 

estrogen receptor antagonist in the breast (47-49). Our studies propose estrogen-mediated 400 

induction of DNA damage as a possible explanation for the protective effects observed by 401 

decreasing estrogen exposure in this population. Estrogen can induce DNA damage through 402 

various actions as reviewed by our group and others (50, 51), including through ligand binding to 403 

ERα which stimulates proliferation and potentially replication stress with ROS production as a 404 

byproduct of increased cellular respiration. Additionally, the metabolism of estrogen yields 405 

genotoxic metabolites, a process which produces ROS through redox cycling. These metabolites 406 

can directly interact with DNA to form adducts in an ER-independent manner. Given the 407 

multiple avenues through which estrogen can induced DNA damage in cells, additional studies 408 

are warranted to characterize the mechanisms of estrogen-induced DNA damage in breast 409 

epithelial cells from BRCA mutation carriers in the setting of obesity. 410 

Interestingly, our RNA-seq analysis of BRCA1 heterozygous MCF-10A cells treated with 411 

obese vs lean CM not only showed increased activation of pathways associated with DNA 412 

damage, but also downregulation of pathways associated with DNA repair. This raises the 413 
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possibility that obesity may affect DNA repair capacity, which would be especially detrimental 414 

in cells already exhibiting defective DNA repair due to a mutation in BRCA1 or BRCA2. 415 

Additional studies exploring the relationship between obesity and DNA repair would be relevant 416 

not only for BRCA mutation carriers, but also for the general population where obesity is 417 

associated with increased breast cancer risk in post-menopausal women (3). Defective DNA 418 

repair capacity would illuminate a novel mechanism through which obese non-carriers become 419 

more susceptible to breast cancer.  420 

Our in vitro studies demonstrate the ability of several obesity-associated factors, 421 

including leptin and insulin, to cause DNA damage, suggesting a collective milieu of factors that 422 

may contribute to the elevation in DNA damage observed in BRCA mutation carriers in 423 

association with BMI. The ability of obese CM to induce damage in BRCA1 heterozygous cells 424 

was diminished when treating in the presence of an antibody or drug that inhibits leptin or insulin 425 

signaling, respectively. Of note, since insulin signals through phosphatidylinositol 3-kinases 426 

(PI3K), we utilized BKM120, a PI3K inhibitor, to disrupt insulin actions in the presence of obese 427 

CM. It is possible that inhibiting PI3K signaling not only disrupted insulin signaling, but also 428 

signaling of other factors associated with obesity that act through PI3K, including growth factors 429 

or leptin, which collectively contributed to the observed decrease in DNA damage. Additionally, 430 

growing evidence points to a role for the PI3K pathway in the DNA damage response, however, 431 

these studies have been limited to cancer cells (52-55).  432 

Our studies also show a link between obesity-induced DNA damage and tumor 433 

development using a Brca1+/-  mouse model of diet-induced obesity. HFD-fed mice exhibited 434 

elevated mammary gland DNA damage in association with decreased latency and increased 435 

overall penetrance of mammary tumors when exposed to the carcinogen DMBA. These data 436 
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suggest that the elevation in DNA damage that we observed in association with BMI in women 437 

carrying a BRCA mutation may also be associated with increased breast cancer penetrance. The 438 

extent to which data from this mouse model can be extrapolated to humans is somewhat limited 439 

given that we employed a carcinogen-indued tumor model, whereas in BRCA mutation carriers, 440 

tumors will arise after years of exposure to both endogenous and environmental factors, some of 441 

which will act as carcinogens.  442 

Finally, our data show that obesity-associated DNA damage may not only be limited to 443 

the breast epithelium of BRCA mutation carriers. Although no increase in DNA damage was 444 

found in epithelial cells of the ovary in overweight/obese women undergoing prophylactic 445 

salpingo-oophorectomy, we did observe a significant increase in DNA damage in the epithelial 446 

cells of the fallopian tube in overweight/obese women. Our results are consistent with reports 447 

from recent years which point to the fallopian tube as the likely site of origin of ovarian cancer 448 

(56, 57), to be confirmed by ongoing clinical trials of risk-reducing salpingectomy with delayed 449 

oophorectomy, and also highlights a potential mechanism for the link between weight gain and 450 

ovarian cancer in this population.  451 

A limitation of our study includes a cohort size of n=72 in our correlation study of DNA 452 

damage and BMI which prevented us from analyzing effects of BMI separately in BRCA1 and 453 

BRCA2 mutation carriers. Although both BRCA1 and BRCA2 are essential for DNA repair, their 454 

roles in the DNA damage response are not identical and each mutation is associated with 455 

different subtypes of tumor development. Larger studies assessing the relative effect of BMI on 456 

DNA damage in BRCA1 and BRCA2 mutation carriers separately could provide additional 457 

information to help personalize risk estimates. Additionally, levels of estrogens vary 458 

considerably during the menstrual cycle and impact proliferation of breast epithelial cells. Our 459 
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studies did not account for phase of menstrual cycle when assessing DNA damage which may 460 

have led to increased variability in our data, particularly considering our identification of 461 

estrogen as a mediator of obesity-induced epithelial cell DNA damage.  462 

Many methodological challenges exist which explain the lack of consensus in 463 

epidemiological studies attempting to ascertain modifiers of breast cancer risk in BRCA mutation 464 

carriers, as reviewed by Milne & Antinou (58). Although a number of studies have associated 465 

bodyweight with increased risk of breast cancer as discussed earlier, the largest study to date to 466 

contradict these findings showed protective effects of BMI on pre-menopausal breast cancer risk 467 

in BRCA mutation carriers (11). Drawing definitive conclusions from this study is limited due to 468 

the utilization of subject-reported BMI at the time of study questionnaire which is subject to 469 

recall bias and utilization of calculated genetic BMI score which does not necessarily predict 470 

actual observed BMI and may be influenced by dietary and environmental factors. Additionally, 471 

a subset of the overweight/obese population may have received treatment for obesity-associated 472 

co-morbidities like diabetes which potentially confounds risk assessment if these treatments or 473 

medications reduce breast cancer risk. Overall, given the inconsistencies in reported data and 474 

significant challenges in assessing modifiers of breast cancer risk in this population, the 475 

consensus to date is that there is insufficient evidence to determine the effect of bodyweight on 476 

breast cancer risk in BRCA mutation carriers (58-60). Therefore, a strength of our study is the 477 

presentation of mechanistic experimental evidence which helps to elucidate the relationship 478 

between bodyweight and breast cancer risk in this population.  479 

Additionally, our findings provide rationale for conducting clinical trials in 480 

overweight/obese BRCA mutation carriers to test the efficacy of pharmacological interventions 481 

that target metabolic health, weight and/or estrogens. In fact, identifying which obesity-related 482 
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factors need to be targeted for risk reduction, if not all, will have a meaningful impact on 483 

developing effective risk reduction strategies. Although recently reported results of the phase 3 484 

randomized MA.32 trial (NCT01101438) found that addition of metformin to standard of care in 485 

non-diabetic patients with high-risk breast cancer did not significantly improve invasive disease-486 

free survival vs placebo (61), it remains to be determined if metformin in the preventative setting 487 

would be effective at reducing risk of breast cancer, particularly among BRCA mutation carriers 488 

and those with metabolic dysfunction. Our studies point towards the potential of metformin in 489 

this setting, as it has been shown to reduce weight, as well as cause decreases in circulating 490 

levels of insulin, leptin and estrogens (62-64). These studies would help clarify whether 491 

accumulation of DNA damage over time is reversable or if targeted interventions prevent 492 

accumulation of further damage. Positive results would offer clinicians actionable evidence-493 

based prevention strategies for patients in this high-risk population who opt to delay or forgo 494 

risk-reducing surgery.  495 

 496 

 497 

MATERIALS AND METHODS 498 

 499 

Study Design 500 

 501 

The objective of this study was to gain insight into the role of obesity and metabolic 502 

dysfunction on breast cancer penetrance among carriers of germline mutations in BRCA1 and 503 

BRCA2 and to identify clinically relevant prevention strategies. Clinical samples including both 504 

archival tissues and prospectively collected tissues from BRCA mutation carriers, as well as cell 505 

lines engineered to carry a BRCA1 or BRCA2 heterozygous knockout mutation and Brca1+/- 506 

mouse models were utilized in support of this objective. All studies utilizing human tissues were 507 
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conducted in accordance with protocols approved by the Institutional Review Boards of 508 

Memorial Sloan Kettering Cancer Center (MSKCC) under protocol #10-040 and Weill Cornell 509 

Medicine under protocols #1510016712, 1004010984-01 and 1612017836. Informed consent 510 

from each subject was obtained by study investigators prior to tissue collection. Animal 511 

experiments were conducted in accordance with an approved Institutional Animal Care and Use 512 

Committee protocol (#2018-0058) at Weill Cornell Medicine.  513 

Studies utilizing archival tissues were coded and DNA damage was analyzed in a blinded 514 

fashion. Studies utilizing prospectively collected tissues and in vitro treatment studies were not 515 

blinded, however, DNA damage was analyzed by immunofluorescence staining using 516 

methodology to limit bias as described in the section “Confocal microscopy & quantification of 517 

γH2AX foci” below. Sample size power calculations were performed for human breast tissue 518 

microarray construction (BMI vs DNA damage study) and in animal studies. Any sample 519 

exclusion criteria are described in the sections below or in the figure legends.  520 

 521 

Human breast tissue microarray construction & study population 522 

Archival paraffin blocks of embedded non-tumorous breast tissue were obtained from 72 523 

women carrying a BRCA1 (n=42) or BRCA2 (n=30) mutation who had previously undergone 524 

prophylactic or therapeutic mastectomy at MSKCC from 2011-2016. Table 1 describes the 525 

clinical characteristics of the study population which were extracted from electronic medical 526 

records. BMI was calculated using height and weight recorded prior to surgery (kg/m2) and 527 

menopausal status was determined per criteria established by the National Comprehensive 528 

Cancer Network ((65). A pathologist reviewed hematoxylin & eosin-stained sections from each 529 

block to identify areas enriched in breast epithelium. Cores measuring 1.5mm in diameter from 530 
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identified epithelial areas of each case were incorporated into paraffin blocks for the construction 531 

of tissue microarrays. Each tissue microarray was constructed with cases representing an equal 532 

distribution of clinical characteristics, including BRCA1 or BRCA2 mutation status and BMI. 533 

Unstained sections were cut from each tissue microarray and used for quantification of breast 534 

epithelial cell DNA damage by immunofluorescence staining as described in the section below.  535 

 536 

Assessment of DNA damage by immunofluorescence staining 537 

To quantify epithelial cell DNA damage, immunofluorescence staining of the DNA 538 

double strand break marker γH2AX was conducted on human tissue sections, mouse mammary 539 

gland tissue sections, or plated cells. Antibodies/reagents that were used include: primary 540 

γH2AX (p Ser139) antibody (Novus Biologicals #NB100-74435 unless otherwise stated) at 541 

1:300 dilution, Goat anti-Mouse Alexa Fluor 546 secondary antibody (Life technologies 542 

#A11030) at 1:1000 dilution, Hoechst 33342 nuclear stain (Santa Cruz Biotechnology #SC-543 

495790) at 1:1000 dilution, CAS block (Life Technologies #008120), M.O.M (Mouse-on-544 

Mouse) immunodetection kit (Vector Laboratories # BMK-2202), and ProLong Gold Antifade 545 

Mountant (Invitrogen # P36934). Full staining procedures for tissue sections, plated cells, and 546 

co-localization studies can be found in the Supplementary Materials and Methods.  547 

 548 

Confocal microscopy & quantification of γH2AX foci  549 

Tissue slides or plated epithelial cells stained with γH2AX and Hoechst were imaged 550 

using a Zeiss LSM 880 confocal microscope. Confocal settings were not changed across samples 551 

within each experiment. Areas to image were first selected based on identification of regions rich 552 

in breast epithelial cells as determined by Hoechst staining prior to viewing the γH2AX channel 553 
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to limit any potential bias in image selection. Images were exported to the image analysis 554 

software Imaris (Oxford Instruments) for semi-automated quantification of γH2AX foci per 100 555 

cells. Imaris analysis settings were programmed to identify and quantify total cell number in 556 

each image and to identify number of γH2AX foci co-localizing with nuclei. All Imaris-analyzed 557 

images were visually inspected by investigators to ensure appropriate identification of γH2AX 558 

foci and exclusion of background staining. A minimum of 100 cells per case or condition were 559 

analyzed and DNA damage was reported as # of γH2AX foci per 100 cells. Any sample with less 560 

than 100 cells detected were excluded.  561 

 562 

Quantification of blood biomarkers  563 

Fasting blood was collected from patients prior to surgery. Serum was separated by 564 

centrifugation, aliquoted, and stored at -80°C. Enzyme-linked immunosorbent assay was used to 565 

measure serum levels of insulin (Mercodia, Uppsala, Sweden), hsCRP, glucose, SHBG, and IL-6 566 

(R&D Systems, Minneapolis, MN) following the manufacturer’s protocols.  567 

 568 

RNA-Seq studies & computational analysis: 569 

RNA-Sequencing (RNA-Seq) was conducted on samples in 4 studies including: breast 570 

tissue from BRCA mutation carriers, isolated breast epithelial organoids from BRCA mutation 571 

carriers, breast adipose tissue conditioned media (CM)-treated BRCA1 heterozygous MCF-10A 572 

cells, and Brca1+/- mouse mammary fat pads. Details on RNA extraction, sequencing 573 

methodology, and computational analyses can be found in the Supplementary Materials and 574 

Methods.  575 
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 576 

Isolation of primary breast epithelial cells and breast explant studies 577 

For ex vivo tissue explant studies and isolation of breast epithelial cells, breast tissue was 578 

obtained from women undergoing breast mammoplasty or mastectomy surgeries at Weill Cornell 579 

Medicine and MSKCC from 2017-2021. Surgical specimens were transferred from the operating 580 

room to a pathologist who evaluated the breast tissue to confirm that the tissue distributed for 581 

experimentation was normal and uninvolved with any quadrant where a tumor may have been 582 

present. The tissue was then brought to the laboratory and utilized in the experiments as 583 

described below.  584 

 585 

Isolation of breast epithelial cells 586 

Approximately 25mL of breast tissue was utilized in each organoid preparation with care 587 

taken dissect out overly fibrous areas or visible blood vessels. The tissue was finely minced and 588 

mixed with complete Ham’s F12 media (Corning #10-080-CV, supplemented with 10% FBS and 589 

1% penicillin/streptomycin) containing a digestion mix of 10mg/mL collagenase type 1 (Sigma 590 

Aldrich #C0130) and 10µg/mL hyaluronidase (Sigma Aldrich #H3506) in a total volume of 591 

50mL. The tissue was digested overnight on a rotator at 37°C and then centrifuged. The 592 

supernatant containing free lipid and adipocytes was discarded and the pellet was washed and 593 

reconstituted with in media followed by incubation at 4°C for 1 hour to ensure inhibition of 594 

enzyme activities. After centrifugation, the pellet was treated with red cell lysis buffer (Sigma 595 

Aldrich #11814389001), pelleted, reconstituted in media, and then ran through a 100µM filter 596 

followed by 40µM filter. Breast epithelial organoids were collected from the top of the 40µM 597 

filter in mammary epithelial cell growth medium with added supplements (PromoCell #C-598 
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21010). Isolated mammary epithelial organoids were snap frozen in liquid nitrogen for RNA 599 

extraction and RNA-sequencing or plated for in vitro studies. 600 

 601 

Ex vivo metformin and fulvestrant explant studies 602 

To examine the role of breast adipose tissue estrogen in mediation of DNA damage in 603 

BRCA mutant epithelial cells, breast explants were treated with drugs targeting estrogen 604 

signaling (fulvestrant) or production (metformin). 1 cm breast tissue explants were cut from 605 

breast tissue transferred after surgery and were plated in replicate in a 12-well dish. Metformin 606 

studies: Breast explants from n=3 subjects were cultured in complete Ham’s F12 media (10% 607 

FBS, 1% penicillin/streptomycin) supplemented with either vehicle (methanol) or metformin 608 

hydrochloride (25-100µM, Sigma #PHR1084). Fulvestrant studies: Breast explants from n=7 609 

subjects were cultured in basal mammary epithelial cell growth media + 0.1% BSA containing 610 

either vehicle (ethanol) or 100uM fulvestrant (Sigma #I4409). 611 

After 24 hours of treatment at 37°C in a 5% CO2 incubator, explants were snap frozen in 612 

liquid nitrogen and formalin fixed and paraffin embedded. Tissue sections were cut from each 613 

paraffin block for assessment of breast epithelial cell DNA damage by immunofluorescence 614 

staining.  615 

 616 

Collection of breast adipose tissue conditioned media  617 

Conditioned media (CM) was generated from breast tissue obtained from n=36 women 618 

with BMIs that range from lean to obese (20.6 – 49.1 kg/m2). Ten 1 cm explant pieces of breast 619 

adipose tissue were cut from each case with a focus on fatty areas containing no visible blood 620 

vessels. The pieces were weighed and placed on a 10cm dish with 10mL of basal (phenol red 621 
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free, serum free, and supplement mix free) mammary epithelial cell growth media (PromoCell 622 

#C-21215) containing 0.1% BSA. The explants were incubated at 37°C for 24 hours. After 623 

incubation the breast adipose tissue CM was collected and centrifuged at 300xg. The supernatant 624 

was aliquoted and stored -80°C for use in in vitro treatment studies.  625 

 626 

In vitro studies in MCF-10A cells 627 

Non-cancerous breast epithelial cell line MCF-10A carrying a BRCA1 heterozygous 628 

mutation (185delAG/+) was purchased from Horizon Discovery and have been previously 629 

described (66). MCF-10A cells carrying a BRCA2 heterozygous mutation (6174delT/+) were 630 

generated in-house using CRISPR/Cas9 gene editing (additional details provided in the 631 

Supplementary Materials and Methods). Cells were cultured in DMEM/F12 (Invitrogen #11330-632 

032) supplemented with 5% FBS, 1% penicillin/streptomycin and the following growth factors: 633 

20ng/mL EGF, 0.5mg/mL hydrocortisone, 100ng/mL cholera toxin, and 10µg/mL insulin (all 634 

purchased from Sigma Aldrich). Cells were serum starved for 16 hours prior to treatments. 635 

In CM studies, CM was thawed on ice from each case and diluted to a final concentration 636 

of 25% CM. In leptin studies, cells were treated with 400ng/mL of human recombinant leptin 637 

(Sigma #L4146). In leptin neutralization studies, obese CM was pre-incubated with a leptin 638 

neutralizing antibody (Lep ab, 13.3µg/mL, Fisher Scientific #AF398) for 1 hour at 4°C and then 639 

cells were treated with lean or obese CM alone or obese CM + Lep ab. In insulin studies, cells 640 

were treated with 100nM insulin (Sigma #I1882). To block insulin signaling, cells were pre-641 

treated with the PI3K inhibitor BKM120 (1uM, MedChemExpress #HY-70063) for 1 hour and 642 

then then treated with obese CM + BKM120. All treatments were conducted in replicates or 643 
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triplicates for 24 hours unless otherwise stated. After treatment, all wells were fixed with ice cold 644 

methanol followed by γH2AX IF staining.   645 

 646 

Brca1+/- mouses studies 647 

Generation of Brca1+/- mice 648 

To determine if obesity impacts mammary gland DNA damage and tumor penetrance in 649 

the setting of a Brca mutation, Brca1 heterozygous (Brca1+/-) mice were generated on a 650 

C57BL/6 background as described in the Supplementary Materials and Methods.  651 

 652 

Diet-induced obesity & mammary gland DNA damage 653 

At 4 weeks of age, 24 female Brca1+/- mice were randomized to one of two groups 654 

(n=12/gp). One group was fed 10 kcal% low fat diet (LFD, 12450Bi, Research Diets) and the 655 

second group was fed 60 kcal% high fat diet (HFD, D12492i, Research Diets) ad libitum for 22 656 

weeks until sacrifice. One week prior to sacrifice all mice were fasted overnight for 12 hours and 657 

underwent glucose tolerance tests to confirm obesity-induced metabolic dysfunction as 658 

previously described. In brief, baseline glucose measurements were taken from tail vein blood 659 

drop collection using a handheld glucose meter (Bayer Contour). Mice then received an 660 

intraperitoneal injection of 1g/kg glucose and tail vein blood glucose levels were recorded at 15-661 

30 minute intervals over 90 minutes. Following the final measurement respective experimental 662 

diets were re-started ad libitum for an additional week prior to sacrifice. Mice were euthanized 663 

via CO2 inhalation and mammary gland tissue was collected and snap frozen (inguinal fat pads) 664 

for RNA-Seq or fixed (thoracic fat pads) in 10% neutral buffered formalin overnight prior to 665 

paraffin embedding and sectioning for histological assessment of DNA damage.  666 
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 667 

MPA/DMBA tumor model 668 

To investigate how obesity impacts mammary gland tumor development in Brca1+/- 669 

mice the same diet-induced obesity model as described above was utilized. At 4 weeks of age, 27 670 

female Brca1+/- mice were randomized to one of two groups (n=13-14/gp). One group was fed 671 

LFD and the second group was fed HFD for the duration of the study. At 14 weeks of age (after 672 

10 weeks on experimental diets) all mice were surgically implanted with a 40mg 673 

medroxyprogesterone acetate (MPA) pellet (90-day continuous release, Innovative Research of 674 

America, #NP-161) placed subcutaneously. At 15, 16, and 17 weeks of age all mice were dosed 675 

with 1mg/22g bodyweight of the carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) delivered 676 

by oral gavage in corn oil once per week for 3 consecutive weeks. Mammary tumor development 677 

and growth were monitored weekly by palpating all 5 mammary gland pairs and recording tumor 678 

presence and size with caliper measurements for 28 weeks following the last dose of DMBA. 679 

Mice were euthanized at the end of the 28-week surveillance period or earlier based on ethical 680 

endpoints, including tumor burden reaching 1.5cm. Mice that did not recover from pellet 681 

implantation surgery or displayed morbidity unrelated to mammary tumors were excluded from 682 

the study.  683 

 684 

Quantitative steroid analysis in breast explants 685 

Quantification of steroid levels (E2, E1, testosterone, and androstendione) in snap frozen 686 

breast adipose tissue explants treated with metformin was performed using gas chromatography-687 

mass spectrometry (GC-MS)-based steroid profiling as previously described (67, 68). Detailed 688 

protocol included in the Supplementary Materials.   689 
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 690 

Statistical analysis 691 

To assess significant differences in baseline clinical characteristics and categorical 692 

variables the Fisher exact test was used. To test the strength of correlation between DNA damage 693 

and continuous variables, nonparametric Spearman’s rank correlation coefficient was used with 694 

two-tailed P value to determine significance of correlations. A multivariable linear model was 695 

used to test the association between the level of DNA damage and clinical characteristics 696 

adjusting for BMI or age. Two-tailed Mann Whitney test was performed on clinical data testing 697 

significant differences between two groups. Two-tailed student’s t-test was used in vitro 698 

treatment studies and in mouse studies comparing two groups. All results were performed using 699 

R (version 4.0.5) or GraphPad Prism 9. Results with a P-value < 0.05 were considered 700 

statistically significant.  701 

 702 

Supplementary Materials 703 

Materials and Methods  704 

Fig. S1. Breast adipose conditioned media from obese women stimulate more DNA damage in 705 

BRCA1+/- MCF-10A cells compared to conditioned media from lean women. 706 

Fig. S2. Brca1+/- mice fed high fat diet have significantly greater accumulation of body fat 707 

compared to Brca1+/- mice fed low fat diet 708 

Fig. S3. Generation of MCF-10A cells carrying a BRCA2 heterozygous mutation 709 

Data file S1: Tables S1-5: Full list of differentially expressed genes in presented RNA-seq 710 

studies (multi-tab Excel file).  711 
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Data file S2: Original data for experiments presented  712 
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 1089 
 1090 

Fig. 1. BMI and additional clinical characteristics are positively correlated with DNA 1091 

damage in breast epithelium of women carrying a BRCA mutation 1092 
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(A) Representative image of tissue microarray section of normal breast epithelium shown by 1093 

H&E stain (left) and by IF staining (right) for γH2AX (red, arrows) co-localizing with Hoechst 1094 

(blue), scale bar=10µM. (B-C) Correlation between epithelial cell DNA damage as measured by 1095 

#γH2AX foci/100 cells with clinical characteristics including BMI and age. (D) Average DNA 1096 

damage in the study population grouped by menopausal status: pre-menopausal, n=48 and post-1097 

menopausal, n=24. (E-J) Epithelial cell DNA damage correlated with circulating serum 1098 

biomarkers in a subset of the study population with available fasting serum at the time of surgery 1099 

(n=43). (K) Average DNA damage in the study population when grouped by those exhibiting 1100 

histological breast adipose tissue inflammation defined as presence of crown-like structures 1101 

(CLS) vs those with no CLS present (i.e. CLS- vs CLS+). Two-tailed Mann Whitney test was 1102 

used to determine significant differences in grouped comparisons and data is presented as mean 1103 

+/- SD. and Correlation between variables were assessed by Spearman’s rank correlation 1104 

coefficient (ρ). Associated P value and ρ are shown for continuous variables with 95% 1105 

confidence intervals. *P<0.05; ns, not significant; n=72 unless otherwise stated. 1106 
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 1123 
 1124 

Fig. 2. Elevated bodyweight is associated with significant changes in gene expression in 1125 

breast adipose tissue and in breast epithelial cells of BRCA mutation carriers 1126 
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(A) Unsupervised heatmap of whole breast tissue gene expression by RNA-seq in BRCA 1127 

mutation carriers identified by BMI category of lean (n=64, blue) or overweight/obese (n=67, 1128 

pink). (B) IPA analysis of RNA-Seq data showing activation (z-score) of the top 20 canonical 1129 

pathways regulated in breast tissue from overweight/obese BRCA mutation carriers compared to 1130 

lean carriers with an absolute value z-score of  >0.5. (C) Heatmap of RNA-seq gene expression 1131 

data generated from breast tissue of BRCA mutation carriers grouped by BMI category of lean 1132 

(yellow) or overweight/obese (Ow/obese, green) showing selected genes associated with 1133 

estrogen biosynthesis, estradiol (E2) inactivation, and estrogen metabolism. Corresponding gene 1134 

expression (log2FC) and P values are shown in Ow/obese relative to lean tissue. (D) DNA 1135 

damage in breast epithelial cells was quantified in tissue sections from n=61 patients from whom 1136 

corresponding whole breast tissue RNA-seq data was also available. The cases were stratified by 1137 

quartile of DNA damage and the breast tissue gene expression from cases with the highest level 1138 

of DNA damage (quartile 4, Q4) were compared to cases with the lowest level (quartile 1, Q1) of 1139 

DNA damage. Top 15 canonical pathways regulated in Q4 vs Q1 with an absolute value z-score 1140 

of  >2.0 are shown. (E) Representative H&E-stained images of a breast tissue section before 1141 

digestion and epithelial organoids after isolation are shown. Organoids stain positively for 1142 

luminal marker cytokeratin 8 (CK8, green) and basal marker cytokeratin 14 (CK14, red) as 1143 

shown by IF staining merged with Hoechst (blue). Scale bar= 50µM. (F) IPA analysis of RNA-1144 

seq gene expression data showing activation of the top 20 canonical pathways regulated in 1145 

primary breast epithelial organoids from of overweight/obese (Ow/obese) BRCA mutation 1146 

carriers (n=9) relative to lean carriers (n=10) with an absolute value z-score of  >1.0 is shown. 1147 

The length of the bars on all canonical pathway graphs are determined by the Fisher’s Exact Test 1148 

P value with entities that have a -log(p-value) >1.3 shown.   1149 
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 1150 
 1151 

Fig. 3.  Targeting estrogen signaling or production in breast tissue decreases epithelial cell 1152 

DNA damage in in women carrying a mutation in BRCA1 or BRCA2 1153 
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(A) Representative IHC staining of ERα expression in breast epithelium from carriers of a 1154 

BRCA1 or BRCA2 mutation (top panel). Representative IF staining showing co-localization of 1155 

#γH2AX foci (green) with ERα positive cells (red) (bottom panel), scale bar=10µM. (B) 1156 

Experimental schematic showing collection of breast tissue and plating of explants or isolation of 1157 

primary breast epithelial organoids for treatment studies. (C) Breast epithelial cell DNA damage 1158 

assessed by IF (#γH2AX foci/100 cells) in ex vivo breast adipose tissue explants from BRCA 1159 

mutation carriers treated with fulvestrant (100nM) for 24 hours (pooled average of n=7 patients). 1160 

(D) Aromatase expression in breast tissue from BRCA mutation carriers (RNA-seq counts per 1161 

million, CPM) correlated with level of breast epithelial cell DNA damage in corresponding tissue 1162 

sections (n=61). Spearman’s rank correlation coefficient (ρ) and associated P value are shown 1163 

with 95% confidence intervals. (E) Breast epithelial cell DNA damage in ex vivo breast adipose 1164 

tissue explants from BRCA mutation carriers treated with metformin (0-100µM) for 24 hours 1165 

(pooled average of n=3 patients). (F) DNA damage in isolated primary breast epithelial cells 1166 

from BRCA mutation carriers treated with metformin (0-100µM) for 24 hours (representative of 1167 

n=2 experiments). (G) Average 17β-estradiol (E2) levels and (H) overlay of E2, testosterone (T), 1168 

androstenedione, and estrone (E1) levels in ex vivo breast adipose explants after 24-hour 1169 

treatment with metformin (pooled average of n=3 patients). Student’s t-test was used to 1170 

determine significant differences from control unless otherwise stated. Data is presented as mean 1171 

+/- SEM. *P <0.05, **P <0.01, ***P<0.001. 1172 
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 1181 
 1182 

Fig. 4.  Obesity-induced changes to the local breast adipose microenvironment promotes 1183 

DNA damage in BRCA1 and BRCA2 heterozygous breast epithelial cells 1184 

(A) Experimental schematic showing the collection of breast adipose tissue conditioned media 1185 

(CM) from lean and overweight/obese women. (B) MCF-10A cells were treated with CM for 24 1186 

hours. DNA damage assessed by IF (#γH2AX foci/100 cells) is shown correlated with BMI in 1187 

BRCA1+/- (n=36 CM cases) and (C) BRCA2+/- (n=13 CM cases) MCF-10A cells. Spearman’s 1188 
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rank correlation coefficient (ρ) and associated P value are shown along with 95% confidence 1189 

intervals. (D) DNA damage in BRCA1+/- and  BRCA2+/- MCF-10A cells and in (E) primary 1190 

BRCA1+/- breast epithelial cells treated with leptin (400ng/µl) for 24 hours. (F) DNA damage in 1191 

BRCA1+/- MCF-10A cells after 24-hour treatment with lean CM, obese (ob) CM, or ob CM in 1192 

the presence of a leptin neutralizing antibody (Lep Ab). (G) DNA damage in BRCA1+/- and 1193 

BRCA2+/- MCF-10A cells and in (H) primary BRCA2+/- breast epithelial cells treated with 1194 

insulin (100nM) for 24 hours. (I) DNA damage in BRCA1+/- MCF-10A cells after 24-hour 1195 

treatment with lean CM, ob CM, or ob CM in the presence of PI3K inhibitor BKM120 (1µM). 1196 

Student’s t-test was used to determine significant differences in (D-I). All experiments in MCF-1197 

10A cells were conducted a minimum of two times with representative results from one 1198 

experiment shown. Data in primary cells were generated from cells treated in triplicate. Data is 1199 

presented as mean +/- SD. *P <0.05, **P <0.01, ***P <0.001, ns= not significant. 1200 
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 1225 
 1226 

Fig. 5.  High fat diet feeding leads to elevated mammary gland DNA damage in association 1227 

with increased mammary tumor penetrance and decreased tumor latency in Brca1+/- mice 1228 
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(A) Experimental schematic of diet-induced obesity in female Brca1+/- mice (n=12/gp). (B) 1229 

Average body weight of mice fed low fat diet (LFD) or high fat diet (HFD) over 22 wks. (C) 1230 

Glucose tolerance test conducted one week prior to sacrifice and (D) area under curve (AUC) 1231 

calculation for each group (mean +/- SEM). (E) RNA-Seq was conducted on whole mammary 1232 

fat pad tissue from HFD and LFD mice (n=6/gp). Activation of top 20 canonical pathways 1233 

regulated in mammary fat pads from HFD mice compared to LFD mice are shown adjacent to 1234 

corresponding pathway regulation in breast tissue from overweight (Ow)/obese vs lean women 1235 

carrying a BRCA mutation (n=64-67/gp). (F) DNA damage assessed by IF (#γH2AX foci/100 1236 

cells) in mammary glands at the time of sacrifice. (G) Correlation between mammary gland 1237 

DNA damage and mouse body weight and (H) mammary fat pad weight among all mice. 1238 

Spearman’s rank correlation coefficient (ρ) and associated P values are shown along with 95% 1239 

confidence intervals. (I) Experimental schematic of MPA/DMBA-induced tumorigenesis model 1240 

in female Brca1+/- mice randomized to LFD or HFD groups (n=13-14/gp). (J) Mammary tumor 1241 

development in LFD and HFD mice shown as % of mice tumor free over the 28-week 1242 

surveillance period. (K) Overall mammary tumor penetrance at the end of the surveillance period 1243 

shown as % of mice in each group that developed a mammary tumor. Student’s t-test was used to 1244 

determine significance unless otherwise stated. Data is presented as mean +/- SD unless 1245 

otherwise stated. *P <0.05. 1246 
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 1262 

Fig. 6.  BMI is associated with DNA damage in the fallopian tube but not ovary 1263 

(A) DNA damage assessed by IF (#γH2AX foci/cell) in epithelial cells of the ovary and in (B) 1264 

epithelial cells of fallopian tube fimbriae in BRCA mutation carriers grouped by BMI category of  1265 

lean (n=17-21/gp) or overweight (Ow)/obese (Ob) (n=9-12). Two-tailed Mann Whitney test was 1266 

used to determine significant differences (P value) between groups. Data is presented as mean 1267 

+/-SEM.  1268 
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 1284 

 1285 

Table 1. Baseline characteristics of study population based on BMI category 

Variables All (n = 72) Lean (n = 46) Overweight/Obese (n = 26) P 

BMI, median (range) 23.7 (17.7-44.9) 21.8 (17.7-24.7) 28.8 (25.3-44.9) <0.01 

BRCA mutation, n (%)    0.46 

 BRCA1 42 (58.3%) 29 (63.0%) 14 (53.8%)  

 BRCA2 30 (41.7%) 17 (37.0%) 12 (46.2%)  

Age, median (range) 40 (25-69) 38.5 (25-60) 44.5 (28-69) 0.01 

Diabetes, n (%)    0.36 

 No 71 (98.6%) 46 (100.0%) 25 (96.2%)  

 Yes 1 (1.4%) 0 (0%) 1 (3.8%)  

Dyslipidemia, n (%)    0.01 

 No 65 (90.3%) 45 (97.8%) 20 (76.9%)  

 Yes 7 (9.7%) 1 (2.2%) 6 (23.1%)  

Hypertension, n (%)    0.02 

 No 64 (88.9%) 44 (95.7%) 20 (76.9%)  

 Yes 8 (11.1%) 2 (4.3%) 6 (23.1%)  

Menopausal status, n (%)   0.037 

 Pre- 48 (66.7%) 35 (76.1%) 13 (50.0%)  

 Post- 24 (33.3%) 11 (23.9%) 13 (50.0%)  

Race, n (%)    0.19 

 Asian 1 (1.4%) 1 (2.2%) 0 (0.0%)  

 Black 2 (2.8%) 2 (4.3%) 0 (0.0%)  

 Other 2 (2.8%) 0 (0.0%) 2 (7.7%)  

 White  59 (81.9%) 36 (78.3%) 23 (88.5%)  

 Missing 8 (11.1%) 7 (15.2%) 1 (3.8%)  

Invasive tumor present, n (%)   1 

 No 40 (55.6%) 26 (56.5%) 14 (53.8%)  

 Yes 32 (44.4%) 20 (43.5%) 12 (46.2%)  

Tumor subtype, n(%)    1 

 HR+ 23 (31.9%) 15 (32.6%) 8 (30.8%)  

 HER2+ 1 (1.4%) 1 (2.2%) 0 (0.0%)  

 TNBC 10 (13.9%) 6 (13.0%) 4 (15.4%)  

  N/A 38 (52.8%) 24 (52.2%) 14 (53.8%)   

Abbreviations: BMI, body mass index; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; 
TNBC, triple negative breast cancer  
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 1291 

Table 2. Association of clinical features and blood biomarkers 
with DNA damage, adjusting for age or BMI 

Variables Correction P Correction  P 

BMI   Age 0.025 

Age BMI 0.115   

SHBG (nmol/L) BMI 0.047 Age 0.026 

Insulin (mU/L) BMI <0.001 Age <0.001 

HOMA2 IR BMI <0.001 Age <0.001 

Abbreviations: BMI, body mass index; SHBG, steroid hormone binding 
globulin, HOMA2 IR, homeostatic model assessment 2 for insulin 
resistance 
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 1293 

 1294 

Table 3. Predicted upstream regulators of gene expression differences in breast 
epithelial organoids from overweight/obese BRCA mutation carriers relative to 
lean carriers and associated gene expression in whole breast tissue  

Organoid 
upstream 
regulator 

Predicted 
activation 

state 

Activation 
z-score 

P-value 
of 

overlap 

Breast 
tissue 
log2FC 

P-value 

beta-estradiol Activated 4.728 2.2E-10 see Fig. 2C  
IL2 Activated 3.402 3.1E-02 0.563 2.3E-01 

GDF2 Activated 3.217 4.9E-03 -0.081 9.8E-01 

IL15 Activated 3.152 1.5E-03 0.299 4.1E-05 

TNFSF11 Activated 3.125 3.2E-02 -0.757 9.7E-02 

Insulin Activated 3.113 6.1E-03   
IL4 Activated 3.016 1.9E-03 -0.25 7.4E-01 

TGFB1 Activated 2.942 6.0E-09 0.455 2.2E-08 

hydrogen peroxide Activated 2.839 3.1E-03   
IL3 Activated 2.674 7.6E-04 -0.122 9.7E-01 

CSF1 Activated 2.602 8.9E-03 0.35 1.4E-06 

Lh Activated 2.598 1.7E-03   
dinoprost (PGF2) Activated 2.569 2.9E-02   
IL5 Activated 2.496 5.5E-03 0.173 6.9E-01 

ATP Activated 2.443 8.7E-03   
MDK Activated 2.433 2.9E-02 -0.34 4.4E-03 

AGT Activated 2.345 4.2E-03 -0.56 9.6E-04 

ANGPT2 Activated 2.329 1.1E-03 0.38 9.2E-05 

WNT5A Activated 2.292 1.7E-03 0.184 1.3E-01 

pyruvic acid Activated 2.156 1.5E-03     
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Table 4. Activation of diseases or functions associated with DNA damage or DNA repair in 
BRCA1+/- epithelial cells treated with breast adipose tissue condition media derived from obese 
women relative to lean women 

Categories 
Diseases or functions 
annotation 

P-value 
Predicted 
activation 

state 

Activation 
z-score 

# 
Molecules 

Cellular Assembly 
and Organization 

Formation of micronuclei 2.53E-06 Increased 2.756 9 

DNA Replication, 
Recombination & 
Repair 

Chromosomal aberration 5.37E-06 Increased 2.853 31 

Chromosomal instability 2.43E-08 Increased 2.603 19 

Breakage of 
chromosomes 

2.88E-05 Increased 2.488 11 

Cell Cycle; DNA 
Replication, 
Recombination & 
Repair 

Checkpoint control 1.99E-06 Decreased -2.756 15 

Spindle checkpoint 9.33E-07 Decreased -2.035 12 

DNA Replication, 
Recombination & 
Repair 

Repair of DNA 4.36E-09 Decreased -3.334 47 

Double-stranded DNA 
break repair of tumor cell 
lines 

9.94E-06 Decreased -2.241 14 

Metabolism of DNA 2.10E-10 Decreased -2.09 54 
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