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Spectrally-Resolved Single Molecule Localization Microscopy
(srSMLM) is a recent multidimensional technique enriching sin-
gle molecule localization imaging by the simultaneous record-
ing of single emitters spectra. As for SMLM, the localization
precision is fundamentally limited by the number of photons
collected per emitters . But srSMLM is more impacted be-
cause splitting the emission light from single emitters into a spa-
tial and a spectral channel further reduces the number of pho-
tons available for each channel and impairs both spatial and
spectral precision - or forces the sacrifice of one or the other.
Here, we explored the potential of deep learning to overcome
this limitation. We report srUnet - a Unet-based image pro-
cessing that enhances the spectral and spatial signals and com-
pensates for the signal loss inherent in recording the spectral
component. We showed that localization and spectral precision
of low-emitting species remain as good as those obtained with
a high photons budget together with improving the fraction of
localizations whose signal is both spatially and spectrally inter-
pretable. srUnet is able to deal with spectral shift and its appli-
cation to multicolour imaging in biological sample is straight-
forward.
srUnet advances spectrally resolved single molecule localiza-
tion microscopy to achieve performance close to conventional
SMLM without complicating its use.
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Introduction

Super-resolution microscopy has opened exciting new oppor-
tunities in life science to study biological processes at the
nanometer scale. Among the super-resolution imaging meth-
ods, single molecule localization microscopy (SMLM) (1–3)
is widely used - presumably because it builds on conventional
wide-field imaging and is relatively easy to implement (4).
SMLM is based on the principle that the localization of a
molecule can be determined with high accuracy from its PSF
if the latter corresponds to a single molecule emitter. The
elegant idea behind SMLM is to achieve the spatial isola-
tion of single emitters by repeatedly recording sparse subsets
of individual fluorophores stochastically-activated over time.
Isolated emitters are then pinpointed and their localizations
accumulated to reconstruct a SMLM image. The routine lat-
eral resolution of SMLM is in the range of 10-50 nm - an or-
der of magnitude improvement over conventional diffraction-
limited microscopy resolutions.

SMLM has recently been extended beyond the spatial po-
sitions of single emitters to explore additional dimensions
of their emission signals. In Spectrally-resolved SMLM
(srSMLM), both the full emission spectra and the localiza-
tions of single emitters are simultaneously recorded (5–8).
The additional characterization of the spectral component
is a breakthrough and srSMLM has rapidly found success-
ful applications in multicolour imaging (5, 8–10) or tracking
(9, 11–13), single molecule conformational changes (14–17),
or single-molecule polarity sensing (6, 18–20).
Different technical approaches have been reported to capture
the spectral decomposition of light (21). A dual-objective
configuration was initially described (5) where one objective
lens is dedicated to localization measurements and the sec-
ond - combined with a prism - is used for collecting spectral-
measurements of the same single molecules. While this de-
sign achieved excellent light collection efficiency, more re-
cent works reported the use of a single-objective combined
either with a transmission grating (Fig. 1 a.) or with the as-
sociation of a beam splitter and a prism. These setups are
simpler in design and impose fewer constraints on sample
mounting as compared to a dual-objective setup. But split-
ting the signal into two paths reduces the number of photons
available for each path. Additionally, strong spectral disper-
sion reduces the signal-to-noise ratio in the spatial domain, so
that parameters of the emission spectra cannot always be re-
covered or properly characterized for all detected molecules
- particularly for the lowest emissive ones. These are limiting
srSMLM because the final image resolution depends on the
accuracy of each individual localization measurement (the
higher the number of emitted photons, the better the pointing
precision) and on the spatial density of emitters localized in
the final image (Nyquist sampling theory). Some recent at-
tempts have been made for improving srSMLM resolutions
- either by improving the photon detection efficiency (9),
proposing new fluorophores (20) or by enabling higher emit-
ter densities (22, 23) - but the improvements remain modest.
In this work, we aimed to advance srSMLM through data
post-processing. Recent developments in deep learning
methods now offer powerful analysis tools that have the po-
tential to outperform conventional image processing (24, 25).
For example, content-aware image restoration (CARE) (26)
can improve and restore the quality of under-exposed or
under-sampled images and makes it possible to recover im-
portant biological information from noisy images. CARE
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Fig. 1. srSMLM and srUnet principles.
a. Schematic representation of srSMLM. In srSMLM, the diffraction-limited image (PSF) of a single emitter is recorded in a spatial space - allowing its localization to be
estimated with high accuracy. Simultaneously, part of the emission light is diffracted and the emission spectrum is recorded in a spectral space on the same detector - giving
access to spectroscopic information on the emitter.
b. srUnet architecture. srUnet is based on a Unet architecture. A Unet is a convolutional neural network made of a contracting path (left part of the U - operating 2D
convolutions (Conv2D), batch normalization (BN) and using Leaky Rectified Linear Activation (LReLU) as activation function) and a symmetric expanding path (right part
of the U: based on Transposed convolution (Conv2DTranspose) layers also called deconvolution layers) with cross connections between some same-sized parts of the
down-sampling and of the up-sampling paths (horizontal arrows). srUnet can be trained end-to-end to restore high signal-to-noise ratio (SNR) from low-SNR image.

network architectures are based on convolutional U-nets (27).
These deep artificial convolutional network architectures can
be trained end-to-end with relatively few images and with
relative quick training time to denoise and restore images.
We presented here srUnet, a U-net-based image processing
for srSMLM that enhances the spectral and spatial signals
and compensates for the photon loss inherent in recording
the spectral component.

Results

Convolutional network.
Convolutional neural networks are very efficient at semantic
segmentation, classification, image denoising, domain trans-
lation, or reconstruction (28, 29). U-net are particular convo-
lutional networks made of a contracting path ( left hand side
of the U) and a symmetric expanding path (right hand part.)
(Fig. 1 b.) with cross connections between same sized parts
of the down-sampling and the up-sampling paths (27, 30). In
image denoising, U-nets can efficiently restore high signal to
noise ratio (SNR) images from low SNR images. The model
has first to be trained with pairs of images, using the low SNR
images as inputs and their corresponding high SNR images as
targets. Once trained, the network can be used to predict high
SNR images from any new low SNR images with good gen-
eralizing properties for images unseen during the training.

Generating a training data set.
We first built a training data set made of noisy low-SNR im-
ages (x_train) paired with their corresponding high-SNR im-
ages (y_train).
Because of the stochastic nature of the emissions in SMLM
it is improbable to match low and high SNR acquisition se-
quences composed of exactly similar localizations in space
and time at the scale of a field of view. To circumvent this,
we worked on 64x16 pixels image patches - themselves a

concatenation of a 16x16 pixels container centered around
the PSF in the spatial channel and a 48x16 pixels container
collecting the corresponding spectra in the spectral channel
(Fig. 2 a. and b.). At the localization scale, collecting the
same single molecule several time with different SNR is pos-
sible.
We imaged the ATTO 542 dye of a DNA-PAINT origami
nanoruler (GATTA-PAINT 80RG with , GattaQuant GmbH)
immobilized on a microscope glass slide. Each DNA-PAINT
origami nanoruler has three docking sites for labelled imag-
ing DNA strands (imagers), creating three aligned localiza-
tion sites with robust and reproducible mark-to-mark dis-
tances of 80 nm (31). To fully control the matching between
high and low SNR localizations, we took advantage of the
fact that the signal from an emitter can be observed on sev-
eral consecutive frames during the acquisition - in particular
at low laser illumination intensity - generating repeated mea-
surements of the same emitter at a given position (Fig. 2
b.). These repeated measurements can be clustered in space
and time and clusters with at least three localizations ob-
served in a radius of less than 10 nm were kept. Within a
cluster c composed of n frames, a random frame k was se-
lected to append the training set (x_trainc) while the (n− 1)
left images of the cluster were fused using Spatial Frequency
weighted averaging (wSF fusion) (32) followed by a white
top-hat transformation to create the corresponding high SNR
image (y_trainc). (Fig. 2 c.). This original approach al-
lowed us to build a training data set made of pairs of low
SNR / high SNR images of the same PSF. The training set
was composed of pairs of images acquired at different laser
intensities to collect different levels of signal and/or noise.
We also augmented the training set with images in which the
spectral container box was randomly shifted along the spec-
tra axis - mimicking a shift of the emission spectra of the
emitter. Finally we introduced about 15% of images without
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Fig. 2. Training data set and performance of the srUnet to learn to predict ground-truth images.
a. Raw srSMLM image (scale bar 10 µm). The PSF of a single emitter in the spatial channel can be associated to its spectral decomposition in the spectral channel. The
total signal of a single emitter is detected in two distinct domains.
b. Cluster of "mergeable" frames of a single molecule. In single molecule microscopy, fluorescent molecules can be detected in their ’on’ state for more than one frame.
Molecules appearing on several consecutive frames are usually merged as a single localization.
c. Building srUnet training data-set. Here we used signal appearing on consecutive frames to generate the srUnet training data-set. All but one image of a cluster were
fused using a weighting based on their spatial frequencies to generate a reference image with higher signal to noise ratio (ground truth image or y_train). The image left is
used as a train low SNR image (x_train). The training set was composed of k ≈ 265,000 pairs of images and split in a train and a test data-set.
d. Representative images and e. signal profiles of the test data set and of their srUnet predictions. The y_pred image predicted by the srUnet for the x_test image
appears very similar to the y_test reference image used as a target.
f. Peak signal-to-noise ratio (PSNR) and g. structural similarity index (SSIM). The restored images predicted by the network (pred) exhibited an average improvement of
∼ 26 dB, a value very similar to the improvement between the raw images and their corresponding ground truth (G.T.). Similarly, the SSIM values between predicted images
and their ground-truth target were very close to one, showing that srUnet was able to predict ground truth quality images from raw noisy data

any localization in the training data set to force the network
to make parsimonious predictions. Taken together, we gener-
ated a training matrix of dimensions (265000, 16, 64, 2) (Fig.
2 c.) that we split in a train (90%) and a test (10%) data set.

Training the network.

The srUnet was trained on the ∼ 240,000 pairs of images of
the training set. The training time was about 60 min (200
epochs of 15-20 seconds each) on a GPU (Nvidia GTX 1080
Ti) using keras data generator (33). The ∼ 25,000 pairs of
images of the test data set were used to evaluate the qual-
ity of the training. Restored images (y_pred) were generated
from the x_test images and compared to the y_test images
used as a ground truth (G.T.) (Fig. 2 d. and e.). Visually,
predicted images were very similar to the targeted G.T. im-
ages. As compared to the raw images, the restored images
predicted by the network (Ŷ or y_pred) exhibited an aver-
age improvement of 26 [22-29] dB (mean [CI95%]) measured
by peak signal-to-noise ratio (PSNR) (Fig. 2 f.). The corre-
sponding value between raw images and their corresponding
ground truth was 25.5 [21-29] dB (mean [CI95%]). As ex-
pected from these very similar PSNR and from the visual im-
pression, the structural similarity index (SSIM), a perceptual
metric used to quantify the difference between the y_pred im-
ages and their corresponding ground truth images, was 0.93
[0.90-0.96] (median [IQR]) (Fig. 2 g.). These high SSIM val-
ues clearly demonstrate that the network was able to predict
ground truth quality images from raw noisy data.

Exploring the reconstruction performance of the srUnet.

To evaluate further the reconstruction performance of the
trained network (SSIM evaluated differences at the pixel
level), we applied it to the previously unseen images of a val-
idation set built independently from the testing set. We first
explored the ability of the srUnet to reconstruct properly im-
ages from raw noisy images. We explored whether we could
fit a PSF in the reconstructed image if a localization was ini-
tially truly present in the G.T. image. From the confusion
matrix (Fig. 3 a.) we calculated a sensitivity of 99.5%. The
specificity was also very good (Sp= 0.988%). Together, the
accuracy reached 99.4%, showing that discrepancies relative
to the G.T. data was minimal. To explore the properties of
the reconstructed PSF, we fitted the G.T. PSF and the recon-
structed PSF of the validation data set using the same soft-
ware (Peakfit) with same setup parameters. Compared to the
G.T. PSF, we observed a small systematic bias both on the
center position of the 2D-Gaussian fits, with about 4 nm and
about 2 nm on the X and Y axes, respectively (Fig. 3 b.),
The standard deviation (SD) distributions of the circular 2D-
Gaussian fits were very similar (Fig. 3 c.). The presence of
the limited spatial bias is hard to interpret because of the un-
known true position of the emitting molecules in the sample.
This systematic bias is not critical as it only results in a trans-
lation of a few nanometers of the reconstructed image. The
number of detected photons by emitters calculated as the in-
tegral of the 2D-Gaussian fits were greatly increased in the
reconstructed srUnet image as compared to the the original
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Fig. 3. U-net performance evaluated on a validation set.
a. Confusion matrix and localization detection performance metrics. The localizations retrieved on srUnet restored images were compared to the actual localizations.
b. Center position bias (in nm ) and c. standard deviation change of the 2-D Gaussian fits of the PSF. A few nanometer systematic bias was found in the localization
coordinates of the srUnet images using the raw data as a reference, but was not observed in the standard deviation of the 2D Gaussian fits.
d. Comparison of the number of collected photons between the srUnet and (black) raw images or (green) ground truth images. Interestingly, the improvement factor
provided by the srUnet was increasing with the decrease of the raw signals.
e. Spatial and f. spectral precision as a function of the number of collected photons. We found an ultimate spatial precision of about 6 nm and an ultimate spectral
precision of about 1.9 nm. The use of srUnet resulted in great improvement in both spatial and spectral precision.
g. Wavelength allocation probability as a function of the collected intensity signals. The fraction of localization for which a wavelength can be assigned increases with
the signal intensity of single molecules. The fraction retrieved using srUnet was largely increased as compared to raw data and was at least as good as the one obtained for
the highest signals in the raw data.

raw image. The number of photons increased by a factor of
4 to 15, with a clear tendency for the least emissive emit-
ters to be more improved than the most emissive ones (Fig.
3 d. - black dots). Interestingly, the number of photons in
the reconstructed images were very similar the the number of
photons retrieved in the G.T. ones, showing that the srUnet
was able to learn to reconstruct images with G.T. qualities
(Fig. 3 d. - green dots).
Then we explored comparatively the spatial and spectral pre-
cisions achievable as a function of the number of photons.
In the spatial domain, typical photons values obtained during
srSMLM (400-1,500 photons) led to a spatial pointing pre-
cision of 25 nm to 13 nm in the raw images (Fig. 3 e.) .
The ultimate spatial precision of the instrument (that is with
an infinite photon number) was 6± 0.5 nm. In line with the
enhanced signal in the reconstructed images, the precision
calculated from the reconstruction of the same images with
the srUnet was much better and in the range of 9 nm to 7nm.
For the intensity signals ranging from 400 to 1,500 photons,
the spatial precision remained close to the ultimate achiev-
able value of about 6 nm. Interestingly, the spatial precision
of the srUnet images was improved over the entire intensity
range. The precisions of lowest emitting molecules with the
srUnet were at least as good as those obtained for the most
emissive molecules in the raw data. A similar trend was ob-
served for the spectral precision. In Fig. 3 f., the condi-

tional standard deviation of the retrieved wavelengths were
calculated as the root square of the squared distance from the
mean distance (the residuals) of a regression modeling the
wavelength as a function of the signal intensity. The ultimate
spectral precision was found to be about 1.9±0.3 nm. At the
typical intensity of 1,000 photons, the spatial precision was
2.6±0.1 nm for the srUnet images as compared to 3.9±0.2
nm for the raw data.
Finally, we quantified the fraction of localizations for which
the spectral parameters were retrieved as a function of their
intensityies In the raw data, and as expected, the wavelength
allocation probability increased with the intensity, reaching
about 80% for the highest emissive molecules and only about
50% for the lowest intense signals. Compared to the raw data,
the srUnet wavelength allocation probability was largely im-
proved with a minimal value of about 80% at the lowest in-
tensity to nearly 95% for the highest intensities.

All these results showed that the localization and the spectral
precisions of low-emitting species were greatly improved by
the srUnet. Their precisions remained as good as those ob-
tained with a high photons budget in the raw data, even for
emitting species whose fluorescence intensity was reduced up
to 10 times as compared to the best acquisition conditions.
The fraction of localizations whose signal is both spatially
and spectrally interpretable was also significantly improved
and was well above the usual fraction retrieved in the ab-
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sence of srUnet. Taken together, the use of srUnet resulted
in improved pointing precisions and increased the density of
spots characterized both spatially and spectrally. As these
two parameters define the quality of super-resolution images,
srUnet advances Spectrally-Resolved Single Molecule Lo-
calization Microscopy to reach performances close to clas-
sical SMLM.

a.

b.

c.

δδ-

Box position Added Shift

Fig. 4. Image reconstruction in the presence of a spectral shift.
a. Synthetic spectral shift. An artificial shift in the emission spectra is added by
shifting the position of the container in the spectral domain relative to the position
of the localization container.
b. Retrieved distributions of the wavelength at the maximum of the emission
spectra. Distributions measured in raw data (dashed lines) were systematically
wider as compared to those measured in srUnet images (continuous lines).
c. Mean wavelength at the maximum of emission as a function of the added
shift. srUnet preserves the linearity of the response (r2 = 0.993).

Effect of spectral shift on the srUnet images.
srSMLM has been elegantly used for single-molecule po-
larity detection (6, 18–20) where local hydrophobicity is

probed by slight spectral shifts of spectrally responsive (sol-
vatochromic) fluorophores. It was therefore important to ex-
plore the ability of the network to reconstruct images in the
presence of spectral shifts of the emission signals. To do so,
we artificially added a defined spectral shift to the validation
images by shifting the position of the container in the spec-
tral domain relative to the position of the localization con-
tainer (Fig. 4 a.). We randomly reduce the distance between
the containers to induce spectral shifts of 6, 12 or 18 pixels
(Fig. 4 b.). The wavelengths at the maximum of the emission
spectra were then determined in the raw and in the srUnet
images. The distributions of wavelengths at the maximum of
the emission spectra are shown in Fig. 4 b. . As expected, the
centers of the distributions were shifted to the red with the
increase of the added shifts, both in the raw images and in
the srUnet images. Distributions retrieved in the raw images
appeared wider than the ones of the srUnet images - in line
with the fact that uncertainty on the spectra positions are re-
duced with srUnet. Plotting the mean retrieved wavelengths
at the maximum of emission as a function of the added shift
(Fig 4 c.) showed that the srUnet preserves the linearity of
the response as demonstrated by r2 values of 0.993 for the
srUnet and r2 = 0.978 for the raw images. In full line with
the calibration curve used to characterize the spectral compo-
nent of srSMLM data (6), we found a slope of 2.1± 0.1 nm
per pixels for the spectral resolution of the setup.
These data clearly demonstrate that srUnet can be applied for
single-molecule polarity sensing experiments as srUnet pre-
serves the linearity of the experimental response (when using
a transmission grating for light dispersion). This property is
also important for multicolour experiments.

Multicolour imaging with single laser excitation and fluo-
rophores with overlapping spectra.
Successful applications of srSMLM in multicolour imag-
ing largely rely on its ability to achieve true color imaging
(5, 8, 9) - offering the potential to clearly outperform mul-
ticolour measurements based on the detection of signals in
spectrally separated channels. The ability to record the full
emission spectra makes srSMLM suitable for multicolour
imaging with closely emitting fluorophores, limiting chro-
matic aberrations and allowing single laser excitation. Even
though the complete spectra fluorophores are captured in
srSMLM, the fluorophores distinctions are generally made on
the basis of their spectral weighted means or positions of their
emission maximum - exposing to misidentifications. Improv-
ing spectral signals and precision is expected to result in more
easily identifiable spectra.
We imaged small fixed and permeabilized Gram negative
rod-shaped bacteria with two fluorophores in PAINT mode
(3). We used Nile-Red, a solvatochromic dye labelling pref-
erentially lipid membranes and emitting in this sample in the
range of 590-620 nm based on local hydrophobicity (34) , and
POPO-III iodide - a symmetric cyanine dye dimer with high
affinity for DNA, poorly emitting in water but showing strong
signal when bound to DNA. POPO-III is emitting at its maxi-
mum at ∼575 nm. This is to our knowledge the first reported
use of POPO-III as a PAINT probe. Both dyes are excited by
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Fig. 5. Multicolour srSMLM in bacteria with Nile Red and POPO-III fluorophores.
a. srUnet augmented experimental spectra. About 200 experimental normalized spectra of single molecules of POPO-III (cyan) and Nile Red (red) are represented to
illustrate the spectral overlap between the two fluorophores.
b.-g. srSMLM images of fixed Pseudomonas aeruginosa. (scale bar 1 µm) (b. and e.) For visualization, true colours where changed for cyan (λ ≤ 580 nm) or red
(λ > 585 nm). Reconstruction are represented using (b.) or not (e.) srUnet. The localizations were also split to represent the reconstruction of the spatial positions of
POPO-III (c. and f.) and Nile Red (d. and g.)
h.and i. Transverse intensity profiles of the localizations density in the image in b. (h.) or e. (i.), showing better contrasts between the Nile Red stained membranes
and the POPO-III labelled DNA-rich nucleoid using srUnet.

a solid state 532 nm laser source and imaged in TIRF mode,
limiting the excitation in the sample to the bacterial mem-
brane and nucleoid close to the glass-slide surface. As seen
in Fig. 5 a., the experimental emission spectra of POPO-III
and Nile Red were largely overlapping. The effect of srUnet
on improving the quality of the two-color srSMLM images
is double. First, the number of localizations with character-
ized wavelength information is largely increased, resulting in
higher localization densities in the super-resolution images
(Fig. 5 b,c,d vs e,f,g). Then, the improved precision of the
spectral dimension resulted in easier fluorophore determina-
tion. In this sample, spatial cross-talk between the two fluo-
rophores is expected because in TIRF mode the Nile Red sig-
nals localized in the membrane are projected partially in the
same areas as the POPO-III signals staining the DNA rich
nucleoid of the bacteria. As a result, the two fluorophores
are not spatially separated, challenging fluorophore identifi-
cation. A better fluorophore discrimination is obtained us-
ing U-net. This was easily observed on the transverse sec-
tion showing better contrasts between the expected Nile Red
stained membrane and the POPO-III labelled nucleoid (DNA
rich area) (Fig. 5 h-i). Additionally, the distribution of the
wavelengths at the maximum of emission of the Nile Red
was very similar if the dye was present alone or in mixture
with POPO-III - whatever the order of addition of the two
fluorophores in the sample. (Supplementary fig Sx)
Together, we demonstrate that srUnet improves multicolour
imaging in a demanding small sample where the labelled
components are not spatially exclusive - even using fluo-
rophores with overlapping spectra and excited by a single
laser.

Conclusions

In this work, we trained a deep convolutional U-net (srUnet)
to restore in post-processing high signal-to-noise (SNR) im-

ages from srSMLM acquisitions. This was made possible
by building an original training data set based on spatial-
frequency weighted image fusion of the same PSF recorded
over several frames. We showed that localization and spec-
tral precision of low-emitting species remain as good as
those obtained with a high photons budget, even for emit-
ting species whose fluorescence intensity is reduced up to
10 times. The spatial precision of srSMLM localizations
obtained with srUnet are very similar to those obtained in
classical SMLM. The use of srUnet therefore almost fully
compensates the photon loss inherent to the recording of the
spectral information. As a consequence of the signal restora-
tion, the fraction of localizations whose signal is both spa-
tially and spectrally interpretable was largely improved and
well above 80% under all tested conditions. srUnet was also
able to reconstruct properly images in the presence of spectral
shifts. Finally, we demonstrated that srUnet is easily appli-
cable to real data collected in biological samples and greatly
facilitates multicolour imaging with single laser excitation -
even for fluorophores with overlapping emission. spectra As
the trained srUnet showed good generalization properties for
Nile Red and POPO-III dyes, our approach is expected to
work for many other fluorophores and other technical setups
designed for srSMLM.
If the contributions of the network are extremely interesting
as is, it could be envisioned to further advance the approach.
This might include coupling the inference on the localization
coordinates and spectral wavelengths directly within the deep
learning network. A deep network could also be built to di-
rectly learn image reconstruction from raw data and derived
versions could also be created for multicolour spectrally-
resolved single molecule tracking experiments.
srSMLM can greatly benefit from the latest improvements in
deep learning. Coupling srSMLM with deep learning could
overcome the potential actual limitations of srSMLM and
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make its use as broad and easy as SMLM.

Material and Methods

Spectrally-resolved Single molecule localization microscopy
SMLM imaging was performed on a home-built bespoke
Micro-Manager controlled Olympus IX-81 inverted optical
microscope equipped with a 100X 1.4 NA oil-immersion ob-
jective (Olympus - Japan) and a z-drift control and auto-focus
system (ZDC Olympus). A 532 nm continuous wavelength
diode-pumped solid-state laser (Coherent Sapphire SF) was
used as a light source. The fluorescent emission was col-
lected through the same objective using a 532 nm dichroic
mirror (Di02-R532 - Semrock) and filtered by a longpass
filter (532 LP Edge Basic, Semrock). A physical aperture
(VA100/M, Thorlabs) and a transmission diffraction grating
(300 Grooves/mm 8.6° Blaze Angle - GT13-03 Thorlabs)
were mounted before the detector to create the spatial and
spectral channels on a 512× 512 pixels electron multiplied
charged coupled device (EMCCD) camera (ImagEM - Hama-
matsu Photonics - Japan).
Typical image stacks ranging from 10,000 to 15,000 frames
with exposure time 40 ms were recorded. Image were
processed by PeakFit (part of GDSC SMLM2 plugin) and/or
ThunderSTORM an open source software packages for Fiji
in order to retrieve molecules localization coordinates. The
procedure described in Bongiovanni et al. (6) was used for
spectral calibration. All subsequent and additional image
processing were performed using self-written scripts in
Python (version 3.8).

DNA origami nanorulers
Green (ATTO 542) nanorulers with mark-to-mark distances
in the sizes 80 nm (Gatta-Paint) were available commercially
(GATTAquant GmbH, Germany) and used according to the
manufacturer recommendations.

Culture and sample preparation of bacteria
Briefly, Pseudomonas aeruginosa (PAO1 - DSM 22644)
were grown overnight in 5 mL lysogeny broth (LB) (L3152,
Sigma Aldrich) at 30 °C under 220 rpm orbital shaking.
Cells were then diluted at OD600nm = 0.1 and grown for
an additional 2 to 3 hours. Cell cultures were pelleted by
centrifugation, washed three times with Phosphate Buffered
Saline (PBS) before being fixed using para-formaldehyde
(PFA 4%) for 15 minutes at room temperature under gentle
agitation. Cells were finally washed three times with PBS,
permeabilized with lysosyme and stored at +4 °C. The
detailed protocol can be found elsewhere (35).

Preparation of the coverslips for PAO1 imaging
Glass coverslips (0.13 mm thickness, 20× 20 mm)(Knittel
Glass) were cleaned using an argon plasma cleaner (PDC-
002, Harrick Plasma) for 20 min. Frame-seal slide chambers
(9× 9 mm, Bio-rad, USA) were affixed to the glass cover-
slips. The chamber was filled with poly-L-lysine solution
(0.01% w/v, P4707 Sigma Aldrich) to fully coat the cover-
glass surface, incubated for at least 10 min and then washed

ones with PBS buffer. Fifty µL of fixed PAO1 cell solution
were allowed to settle on PLL treated coverslips for 10 min
before being washed ones with PBS buffer. The slide was
transferred to the microscope stage using an Attofluor cell
chamber ( A-7816 Thermofisher) and optically coupled to
the objective lens through index-matching immersion oil
(n=1.518, Olympus, Japan). Diluted solution of Nile Red
(Invitrogen) or POPO-III-iodide (Invitrogen) dyes were
added directly on the sample on the microscope stage.

srUnet
The srUnet was adapted from the princeps Unet paper (27)
and built using Keras library package (2.4.0) running on
Tensorflow backend (2.5.0). The model was composed
of 6×6 convolutions with Exponential Linear Unit (ELU)
activation function followed by batch normalization and
a Leaky Rectified Linear Unit (Leaky ReLU) (Fig. 1, b).
The model had about 1.3 · 106 trainable parameters. The
root mean squared error loss function was minimized using
RMSprop optimizer. The model was trained using batch size
of 70 over about 200 epochs. The training time was fast and
the algorithm converged smoothly.

Weighted image fusion
Image fusion was used to gather all the important informa-
tion from multiple images. We used spatial frequency (SF)
measures to weight the different images as SF measures the
overall information level in an image. SF was defined as

SF =
√

(RF )2 +(CF )2

where RF and CF are respectively the row frequency

RF =

√√√√ 1
MN

M∑
m=1

N∑
n=2

[I(m,n)− I(m,n−1)]2

and column frequency

CF =

√√√√ 1
MN

N∑
n=1

M∑
m=2

[I(m,n)− I(m−1,n)]2

in which M and N are the number of pixels of the (MxN) grey
image and I(m,n) is the intensity of the pixel of coordinates
(m,n).

Metrics for classification performance and Image quality as-
sessment
We used Accuracy (Acc = (tp+ tn)/N , Specificity (Sp =
tn/(tn+fp)), Sensitivity or Recall (Se= tp/(tp+fn), Pos-
itive Predictive Value or Precision (Precision = tp/(tp+
fp), Negative Predictive Value (NPV = tn/(fn+ tn)) and
F1 ( F1 = 2.(precision.recall)/(precision+ recall) met-
rics for performance evaluation. All these measurements
were expressed in terms of tp = true positive, tn = true nega-
tive, fp = false positive and fn = false negative.
Image quality assessment were reported using classical MSE,
PSNB and SSIM metrics (36) defined as:
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Mean Squared Error (MSE)

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2

Peak signal-to-noise ratio (PSNR) in dB

PSNR= 20 · log10

(
MAXI√

MSE

)
with MAXI = 216

Structural similarity index measure (SSIM)

SSIM(x,y) = (2µxµy + c1)(2σxy + c2)
(µ2
x+µ2

y + c1)(σ2
x+σ2

y + c2)

Software and Hardware Availability. The code used for
the training set generation and training the network is avail-
able on https://github.com/hmanko/srSMLM_DeepL.
Most figures of this article can be reproduced independently
using the code found on this repository.
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