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Abstract 18 

Human blood is conventionally considered sterile. Recent studies have challenged this, 19 

suggesting the presence of a blood microbiome in healthy humans. We present the 20 

largest investigation to date of microbes in blood, based on shotgun sequencing 21 

libraries from 9,770 healthy subjects. Leveraging the availability of data from multiple 22 

cohorts, we stringently filtered for laboratory contaminants to identify 117 microbial 23 

species detected in the blood of sampled individuals, some of which had signatures of 24 

DNA replication. These primarily comprise of commensals associated with human body 25 

sites such as the gut (n=40), mouth (n=32), and genitourinary tract (n=18), which are 26 

species that are distinct from common pathogens detected in clinical blood cultures 27 

based on more than a decade of records from a tertiary hospital. Contrary to the 28 

expectations of a shared blood microbiome, no species were detected in 84% of 29 

individuals, while only a median of one microbial species per individual was detected in 30 

the remaining 16%. Futhermore, microbes of the same species were detected in <5% of 31 

individuals, no co-occurrence patterns similar to microbiomes in other body sites was 32 

observed, and no associations between host phenotypes (e.g. demographics and blood 33 

parameters) and microbial species could be established. Overall, these results do not 34 

support the hypothesis of a consistent core microbiome endogenous to human blood. 35 

Rather, our findings support the transient and sporadic translocation of commensal 36 

microbes, or their DNA, from other body sites into the bloodstream.  37 
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Introduction 38 

In recent years, there has been considerable interest regarding the existence of a 39 

microbiome in the blood of healthy individuals, and its links to health and disease. 40 

Human blood is traditionally considered a sterile environment (i.e., devoid of viable 41 

microbes), where the occasional entry and proliferation of pathogens in blood can 42 

trigger a dysregulated host response, resulting in severe clinical sequelae such as 43 

sepsis, septic shock or death1. Asymptomatic transient bacteraemia (i.e., bacterial 44 

presence in blood) in blood donors is also known to be a major cause of transfusion-45 

related sepsis2. Recent studies have suggested the presence of a blood microbiome, 46 

providing evidence for microbes circulating in human blood for healthy individuals3–7 47 

(reviewed in Castillo et al8). However, most of these studies were either done in 48 

relatively small cohorts or lacked rigorous checks to distinguish true biological 49 

measurements from different sources of contamination8. As such, the concept of a 50 

microbial community present in the blood of healthy individuals remains controversial 51 

and is an area of active research. In this work, we analysed blood DNA sequencing data 52 

from a population study of healthy individuals, comprising of multiple cohorts processed 53 

by different laboratories with varied sequencing kits. By leveraging the large dataset 54 

(n=9,770) complete with batch information in our systematic differential analyses for 55 

potential contaminants, our aim was to determine whether a blood microbiome truly 56 

exists in the general population. 57 

For meaningful discourse, it is useful to formalise what the presence of a hypothetical 58 

‘blood microbiome’ entails. Berg et al.9 concluded that the term microbiome should refer 59 

to a community of microbes that interact with each other and with the environment in 60 

their ecological niche, which in our context is human blood. Therefore in a blood 61 

microbiome, the presence of microbial cells in blood from healthy individuals should 62 

exhibit community structures indicated by co-occurrence or mutual exclusion of 63 

species10 as seen in the microbiomes of other sites such as the gut11 or mouth12. 64 

Furthermore, we may expect the presence of core microbial species, which can be 65 

defined as species that are frequently observed and shared across individuals13,14, such 66 

as Staphylococcus epidermidis on human skin15. More precisely, taxa that are found in 67 
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a substantial fraction of samples from distinct individuals (i.e. with high prevalence) may 68 

be considered ‘core’. Notably, the prevalence threshold for defining core taxa is 69 

arbitrary, with previous microbiome studies using values ranging from 30-100% and 70 

many of these studies opting for 100%14. Regardless, identifying core microbes in blood 71 

would form the basis for associating microbiome changes with human health.  72 

Existing studies have provided evidence for the presence of microbes in the blood of 73 

healthy individuals using both culture-based3,4 and culture-independent5–7 approaches. 74 

The former approach involves blood culture experiments while the latter involves one or 75 

a combination of the following molecular methods: 16S ribosomal RNA (rRNA) 76 

quantitative polymerase chain reaction (qPCR), 16S rRNA amplicon sequencing, and 77 

shotgun sequencing of RNA or DNA. Depending on the study design, these results 78 

should be interpreted with caution due to several methodological and technical 79 

limitations which include small sample sizes, limited taxonomic resolution, difficulties in 80 

distinguishing cell-free microbial DNA from live microbial cells, and the ubiquity of 81 

environmental contamination8,16–19. In particular, contaminating DNA must be accounted 82 

for in order to characterize the blood microbiome. The workflow of sample processing, 83 

from skin puncture during phlebotomy, to microbial detection, is rife with opportunities 84 

for microbes or microbial nucleic acids to be introduced. Contaminating microbial cells 85 

introduced due to poor aseptic technique or insufficient disinfection of the skin puncture 86 

site20 affects both culture-dependent and culture-independent approaches. Sequencing-87 

based approaches are especially sensitive to contaminant microbial DNA native to 88 

laboratory reagent kits (i.e., the ‘kitome’)19, exacerbated by the low microbial biomasses 89 

in blood, accompanied by high host background which increases the noise-to-signal 90 

ratio17. Correspondingly, comprehensive profiling of the breadth and prevalence of 91 

microbial species in blood after accounting for external sources of contamination has 92 

not yet been done and several aspects of the ‘blood microbiome’ remain unclear. For 93 

instance, are the detected microbes endogenous to blood or translocated from other 94 

body sites? Is there a core set of microbes that circulates in human blood? Is there a 95 

microbial community whose structure and function could influence host health?  96 

To address these questions, we performed the largest scale analysis of a blood 97 

sequencing dataset to date, based on DNA libraries for 9,770 healthy individuals from 98 
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six distinct cohorts (Supplementary Table 1). We applied various bioinformatic 99 

techniques to differentiate DNA signatures of microbes in blood from potential reagent 100 

contaminants and sequence analysis artefacts, leveraging the differences in reagent 101 

kits used to process each cohort. We detected 117 microbial species in the blood of 102 

these healthy individuals, most of which are commensals associated with the 103 

microbiomes of other body sites. Additionally, we identified DNA signatures of 104 

replicating bacteria in blood using coverage-based peak-to-trough ratio analyses21,22, 105 

providing a culture-independent survey that has not been achieved previously. Despite 106 

this, we found no evidence for microbial co-occurrence relationships, core species, or 107 

associations with host phenotypes. These findings challenge the paradigm of a ‘blood 108 

microbiome’ and instead support a model whereby microbes from other body sites (e.g. 109 

gut, oral) sporadically translocate into the bloodstream of healthy individuals, albeit 110 

more commonly than previously assumed. Overall, our observations serve to establish 111 

a much needed baseline for the use of clinical metagenomics in investigating 112 

bloodstream infections.  113 

Results 114 

Robust inference of microbial DNA signatures in blood based on multi-cohort 115 

analysis 116 

Blood samples from healthy individuals typically contain low microbial biomass 117 

accompanied by high host DNA background17, making it difficult to discriminate between 118 

biologically relevant signals from artefactual ones. We first addressed artefacts arising 119 

during bioinformatic sequence analysis by performing stringent quality control on 120 

samples (Figure 1a), comprising of read quality trimming and filtering, removal of low 121 

complexity sequences that are of ambiguous taxonomic origin, exclusion of reads that 122 

likely originate from human DNA (Methods), and removal of samples with low number 123 

of reads (<100 read pairs) of microbial origin after taxonomic classification with 124 

Kraken223. This provided a species-level characterisation of microbial DNA signatures in 125 

blood for most (n=8,892) samples. To minimise noise due to false positive taxonomic 126 

assigments, we applied an abundance-cutoff based filter to discriminate between 127 

species that are likely present from those that could be misclassification artefacts 128 
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(Methods). Additionally, we validated the reliability of the microbial species detected via 129 

Kraken2 by comparison to read alignment analysis using reference genomes, where 130 

recovery of large fractions of a microbial reference covered uniformly by mapped reads 131 

improves our confidence that they are true positives as opposed to sequencing or 132 

analysis artefacts24,25. We validated 96% of the microbial species that had sufficient 133 

read coverage using this mapping-based approach. We further observed an excellent 134 

linear relationship between the number of Kraken2-assigned read pairs and the number 135 

of aligned read pairs on the log10 scale (slope=1.15; F=154, d.f.=1, p<0.001; 136 

Supplementary Figure 1), suggesting that Kraken2 taxonomic assignments are a 137 

reliable proxy for the more precise and stringent read alignment approach. These 138 

findings collectively provide confidence that the microbial species detected in our blood 139 

sequencing libraries are not likely sequence analysis artefacts. 140 

To address artefactual signals arising due to reagent and handling contamination during 141 

sample processing, we used a series of stringent decontamination filters (Figure 1a). 142 

These filters are based on the idea that contamination artefacts will lead to false positive 143 

detections that are often correlated with each other (within-batch consistency) and 144 

biased towards specific laboratory batches (between-batch variability; Supplementary 145 

Figure 2)26, and such analysis was found to be highly effective for in silico 146 

decontamination in previous studies27–29 (Methods). Additionally, the identification of 147 

batch-specific contaminants in this study was greatly aided by the availability of multiple 148 

large cohorts of healthy individuals (Supplementary Table 1), and corresponding rich 149 

batch information, including reagent kit types and lot numbers. Application of reagent 150 

and handling contamination filters resulted in a final list of 117 microbial species that 151 

were detected in the whole blood samples of 8,892 individuals (Supplementary Table 152 

2). The list of 117 confidently detected microbial species spanned 56 genera, and 153 

comprised of 110 bacteria, 5 viruses and 2 fungi.  154 

To estimate the effectiveness of our filtering strategy in improving biological signal while 155 

reducing contamination noise, we examined the types of microbial species detected in 156 

our dataset before (870 species) and after (117 species) all filters were applied (Figure 157 

1b-d). Firstly, the microbial species were cross-referenced against a published list of 158 

common genera seen as contaminants in sequencing data as curated by Poore et al30 159 
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and derived from the list published by Salter et al19. In this list, genera were either 160 

classified as likely contaminants, mixed-evidence (i.e., both a pathogen and common 161 

contaminant), or potential pathogens/commensals. Following decontamination, the 162 

proportion of detected species that are classified as contaminants decreased from 21% 163 

to 10% (Figure 1b). Next, the microbial species were compared against human blood 164 

culture records spanning more than a decade (2011-2021) from a tertiary hospital 165 

(Figure 1c). These blood cultures were typically ordered if clinical indications of 166 

bacteraemia were present, and therefore represent the range of microbial species that 167 

are known to cause symptomatic infection as detected in a clinical setting. The 168 

proportion of species that have been cultured from blood increased from 12% to 27% 169 

after decontamination, suggesting that our filtering procedures enriched for microbial 170 

species which are capable of invading the bloodstream. Finally, we compared the 171 

proportion of human-associated microbes before and after decontamination using a 172 

host-pathogen association database describing the host range of pathogens31 (Figure 173 

1d). For species that were not found in this database, a systematic PubMed search 174 

(Methods) was performed to determine if there was at least one past report of human 175 

infection. The proportion of human-associated species increased from 40% to 78% after 176 

decontamination, indicating that they are more likely to be biologically relevant. Finally, 177 

we tested our results against the null hypotheses that the 117 microbial species 178 

retained after decontamination produced the same proportions of species classified as 179 

likely contaminants, human-associated, or that were detected in blood culture compared 180 

to species picked at random (Methods). This analysis suggests that our 181 

decontamination filters significantly decreased the proportions of likely contaminants, 182 

while increasing the proportions of human-associated species and those detected in 183 

blood cultures (p<0.005; Supplementary Figure 3). These results collectively suggest 184 

that by using a set of contaminant-identification heuristics, our filters are sensitive and 185 

specific in retaining a higher proportion of biologically relevant taxa while removing likely 186 

contaminants.  187 
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Blood microbial signatures from healthy individuals reflect sporadic translocation 188 

of DNA from commensals 189 

We next determined the fraction of distinct, healthy individuals for which microbes could 190 

be detected (i.e., prevalence). Notably, the most prevalent microbial species, C. acnes, 191 

was observed in 4.7% of individuals (Figure 2a), suggesting that none of the 117 192 

microbes can be considered ‘core’ species that are consistently detected across most 193 

healthy individuals. Additionally, we did not detect any microbial species in most (82%) 194 

of the samples after decontamination (Figure 2b), whereas the remaining 18% of 195 

samples had a median of only one microbial species per sample. This low number of 196 

species detected per sample was not due to insufficient sequencing depth since there 197 

was a weak negative correlation between the number of confidently detected species 198 

per sample and the microbial read depth (Spearman’s ρ=-0.232, p<0.001). Furthermore, 199 

some samples containing no microbial species had a microbial read count of up to ~2.1 200 

million (median=6,187 reads; distribution shown in Supplementary Figure 4). That is, 201 

even though a considerable number of reads were classified as microbial, they were all 202 

assigned to contaminant species. These results suggest that the presence of microbes 203 

in the blood of healthy and apparently asymptomatic individuals, as estimated by our 204 

detection methods, is infrequent and sporadic.  205 

Given past reports of bacterial translocation from the mouth32 or gut33 into blood, we 206 

asked if the microbes we detected could have originated from various body sites. To do 207 

so, we assigned potential body site origins to the 117 microbial species detected in 208 

blood based on microbe-to-body-site mappings extracted from the Disbiome 209 

database34. We found that many (n=59; 50%) of these confidently detected species are 210 

indeed human commensals that are present at various human body sites (Figure 2c). 211 

While some of these species may be contaminants that have survived our stringent 212 

decontamination filters, this observation, together with their low prevalence, suggests 213 

that the microbial DNA of many of these species may have transiently translocated from 214 

other locations in the body rather than being endogenous to blood. We further 215 

categorised the microbial species based on their growth environments (Figure 2d). A 216 

significant portion (n=42; 36%) of the species were obligate anaerobes or obligate 217 

intracellular microbes, atypical of skin-associated microbes that may be introduced 218 
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during phlebotomy2, indicating that they are not likely to be sampling artefacts. All in all, 219 

the diverse origins of the microbes detected in blood, together with their low prevalence 220 

across a healthy population, is consistent with sporadic translocation of commensals, or 221 

their DNA, into the bloodstream. 222 

Microbial presence in blood (i.e., bacteraemia) is typically associated with a range of 223 

clinical sequelae from mild fevers to sepsis. As such, we asked if the common microbes 224 

identified in patients with disease-associated bacteraemia are different from those 225 

detected in our cohorts of healthy individuals. To do so, we compared the prevalence of 226 

microbes detected in the sequenced blood samples against observations from 11 years 227 

of hospital blood culture records. The prevalence of microbial genera detected in the 228 

hospital blood culture records clearly differed from that in our sequenced blood 229 

samples, despite the overlap in detected taxa (Figure 2e). For example, while 230 

Staphylococcus, Escherichia and Klebisiella were the predominant genera identified in 231 

blood cultures, they were rarely detected in our blood sequencing libraries. We 232 

performed a similar comparison with a previous study35 which sequenced blood 233 

microbial signatures in sepsis patients and found a similar difference in prevalence 234 

compared to our dataset (Supplementary Figure 5), confirming that our observations 235 

are not due to differences in the detection methods (sequencing vs. culture-based) 236 

used. If the species detected through sequencing were genuine, and represent 237 

microbial cells, these findings may be explained by the potentially higher virulence of 238 

pathogens detected in the clinic, which are more likely to cause clinical symptoms in 239 

individuals that would result in exclusion during our recruitment process. Conversely, 240 

under the same assumptions, our findings suggest that the microbes detected in the 241 

blood of healthy individuals are potentially better tolerated by the immune system (e.g. 242 

Bifidobacterium spp.36 and Faecalibacterium prausnitizii37 with immunomodulatory 243 

properties as gut commensals; Figure 2a).  244 

Evidence for replicating microbial cells but without community structure or host 245 

associations  246 

To better characterise the microbial DNA signatures detected in blood, we asked if they 247 

reflect the presence of viable microbial cells as opposed to circulating cell-free DNA. 248 
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This is because the former would allow for complex microbe-microbe or microbe-host 249 

interactions that would be of greater and more direct clinical relevance. In contrast to 250 

previous approaches that used microbial cultures3,38, we looked for more broad-based 251 

evidence of live bacterial growth in by applying replication rate analyses21,22 on our 252 

sequenced blood samples. This approach is based on the principle that DNA 253 

sequencing of replicating bacteria would yield an increased read coverage (i.e., peak) 254 

nearer to the origin of replication (Ori) and decreased coverage (i.e., trough) nearer to 255 

the terminus (Ter)22. A coverage peak-to-trough ratio (PTR) greater than one is 256 

indicative of bacterial replication. Through this analysis, we found evidence for 257 

replication of 11 bacterial species out of the 20 that were sufficiently abundant to do this 258 

analysis (Figure 3a). The median-smoothed coverage plots of the replicating species all 259 

exhibited the sinusoidal coverage pattern (in black; Figure 3b) characteristic of 260 

replicating bacterial cells22. This contrasts with the even coverage patterns of three 261 

representative contaminants identified during the decontamination steps: 262 

Achromobacter xylosoxidans, Pseudomonas mendocina and Alcaligenes faecalis 263 

(Figure 3c). The Ori and Ter positions determined using coverage biases largely 264 

corresponded with an orthogonal method based on the GC-skew39 of bacterial 265 

genomes, suggesting that the replication rate analyses are reliable. Additionally, all but 266 

one of these replicating species are present in hospital blood culture records and in 267 

previous reports of bacteraemia40–49 (Figure 3a), indicating their ability to replicate in 268 

human blood. Overall, beyond the detection of microbial DNA, we present the first 269 

culture-independent molecular signatures for microbial replication from blood.  270 

Given the presence of live bacteria, we investigated if the microbial species detected 271 

showed patterns of microbe-microbe interactions as would be expected from a microbial 272 

community. To do so, we computed pairwise SparCC correlations50 between species, 273 

where positive and negative values indicate co-occurrence and mutual-exclusion, 274 

respectively. SparCC correlation is a reliable metric for assessing co-occurrence since it 275 

accounts for the sparse and compositional nature of microbial taxonomic profiles that 276 

confound standard correlation inference techniques50. We visualised SparCC 277 

correlations of the 117 microbial species confidently detected in blood sequencing 278 

libraries using network graphs, where each node is a species and each edge represents 279 
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the co-occurrence/exclusion associations between two species (Figure 4a). We could 280 

not detect strong community co-occurrence/exclusion patterns, with most associations 281 

being weak (SparCC correlation<0.05), and only 19 pairwise associations exceeding a 282 

correlation value of 0.2, with four exceeding a value of 0.3 (Figure 4a). To determine if 283 

this result is a function of our stringent decontamination filters, we generated 284 

independent network graphs for the five adult cohorts before decontamination filtering 285 

and examined the co-occurrence/exclusion associations shared across cohorts. With an 286 

already lenient SparCC correlation threshold of 0.2, we identified no associations 287 

common to all the network graphs (Figure 4b), indicating that there were no consistent 288 

detectable microbial community associations in blood typical of microbiomes in various 289 

human body sites.   290 

Previous studies have demonstrated the use of blood microbial DNA as a biomarker for 291 

disease, demonstrating associations with cancer30, type II diabetes51 and periodontal 292 

disease52. In a similar vein, we investigated if the presence of microbes was associated 293 

with host phenotypes in our dataset. We first examined if microbes were detected more 294 

frequently in infants relative to adults. Given that the still-developing immune systems of 295 

infants puts them at greater risk of infection relative to healthy adults53, we reasoned 296 

that the prevalence of microbes in blood may differ within a birth cohort (GUSTO) 297 

relative to adult cohorts. Indeed, samples from GUSTO appeared to have a higher 298 

prevalence of microbes associated with most human body sites (Supplementary 299 

Figure 6a). This was in part, driven by genitourinary tract-associated microbes, 300 

Fannyhessea vaginae, Lactobacillus jensenii, Lactobacillus crispatus, Lactobacillus 301 

iners, and Gardnerella vaginalis (Supplementary Figure 6b). Similarly, we found 302 

enrichment of gut-associated bacteria such as Bifidobacterium spp. in GUSTO 303 

(Supplementary Figure 6c). These findings suggest that bacterial translocation may be 304 

more frequent in infants relative to adults, though differences in sample collection 305 

(umbilical cord versus venipuncture) could also explain them. A future study controlling 306 

for differences in sampling methods would be useful for further exploration of this 307 

observation.      308 

Next, we systematically tested for pairwise associations between eight host phenotypes 309 

that were documented on the day of blood collection and the presence of each of the 310 
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117 microbial species detected in blood. These host phenotypes attributes were: sex, 311 

ancestry, age, body mass index (BMI), blood total cholesterol (TC), blood triglycerides 312 

(TG), systolic and diastolic blood pressure (SBP and DBP). Given the multiple large 313 

independent cohorts, we could perform statistical tests on each cohort separately, which 314 

allowed us to assess the consistency of identifed association patterns across the 315 

different cohorts. Since these cohorts were sampled from a homogenous population, 316 

true association patterns are expected to be detected repeatedly regardless of cohort. 317 

Using this statistical testing approach, we found only five significant microbe-phenotype 318 

associations (p<0.05; Supplementary Table 3) after adjusting for multiple comparisons. 319 

Notably, all but one of the significant associations were present in only one cohort. The 320 

exception was C. acnes, which was significantly associated with ancestry in two 321 

cohorts. However, while C. acnes was more prevalent in individuals of Malay ancestry 322 

within the SEED cohort, it was more prevalent in Chinese individuals within the MEC 323 

cohort (Supplementary Figure 7). These cohort specific differences could be due to 324 

other demographic variables that were not recorded in this study, or perhaps from C. 325 

acnes subspecies differences. To ensure that we did not miss any associations due to 326 

the possible non-linearity of host-phenotype and microbial relationships, we also derived 327 

categorical phenotypes based on the recorded phenotypic information. These include 328 

being elderly (age>=65), and other measures of ‘poorer health’, such as being obese 329 

(BMI>30), having high blood triglycerides (TG>2.3 mmol/L), high total cholesterol 330 

(TC>=6.3 mmol/L), or high blood pressure (SBP>=130 and DBP>=80). We then tested 331 

for pairwise associations between these derived phenotypes and the presence of any 332 

bacteria but found no significant associations (p>0.05; Supplementary Table 4). 333 

Collectively, these results suggest no consistent associations between the presence of 334 

microbes in blood and the host phenotypes tested within a healthy population of 335 

individuals.   336 

Discussion 337 

We present the largest scale analysis, to date, of microbial signatures in human blood 338 

with rigorous accounting for computational and contamination artefacts and found no 339 

evidence for a common blood microbiome in a healthy population. Instead, we observed 340 
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mostly sporadic instances of blood harbouring DNA from single microbial species of 341 

diverse bodily origins, some of which might be actively replicating. Our findings hint at 342 

the possibility that the bloodstream represents a route for movement of microbes 343 

between different body sites in healthy individuals. However, the low prevalence of the 344 

detected species suggest that this movement is likely to be infrequent and transient. 345 

Unresolved questions remain about how interconnected the microbiomes at various 346 

body sites are, and whether these processes are altered during disease or throughout a 347 

person’s lifetime. Can perturbations to the microbial community at one body site affect 348 

that at another site, and how does the host immune system asymptomatically regulate 349 

microbial presence in blood? Our study lays the groundwork for future investigations 350 

into these questions, which may pave the way for a systemic understanding of the 351 

human microbiome across body sites in relation to human health and disease.  352 

We employed a series of decontamination filters to differentiate microbial signatures in 353 

blood from artefactual signals associated with reagent and handling contamination, on 354 

the basis that the latter display strong batch-specific biases (Supplementary Figure 2; 355 

see Methods). Although our approach substantially improved the signal-to-noise ratio 356 

(Fig. 1b-d), it is still likely not fully effective in removing contaminants, evidenced from 357 

the fact that 10% of the 117 microbial species remaining after decontamination were still 358 

flagged as being of environmental or non-human origin (Fig. 1b, “likely contaminant”). 359 

Hence, we recommend that any decontamination procedures should include further 360 

comparisons to various microbiome databases (Fig. 1b-d) to prioritise species for 361 

validation in future studies. For example, one might prioritise species that are not 362 

common contaminants, detected in blood cultures, and that are human associated 363 

(Supplementary Table 2) for follow-up experiments. Nevertheless, it is important to 364 

note that we could not detect a common blood microbiome despite the likely presence 365 

of residual contamination artefacts. 366 

We observed signatures of replicating DNA from putatively genuine microbial species in 367 

blood by applying an existing PTR-based replication analysis approach. However, we 368 

cannot distinguish signals arising from replicating microbes in blood from those derived 369 

from microbial cells (intact or otherwise) which were recently replicating at other body 370 

sites before entering the bloodstream. Interestingly, while we could detect replication 371 
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signatures in blood associated with 11 out of 20 species with sufficient coverage across 372 

their genomes, we could not detect any amongst the 20 most prevalent contaminant 373 

species identified by our decontamination filters, including species from the genera 374 

Alcaligenes, Caulobacter, Bradyrhizobium and Sphingomonas, suggesting that the 375 

replication signatures detected in our dataset are not likely to be due to ‘kitome’ 376 

contamination. Furthermore, this observation highlights the potential use of replication 377 

analyses for discriminating between putatively genuine taxa from ‘kitome’ contaminants 378 

in future metagenomic studies. 379 

We found no core species in human blood on the basis of low prevalence across 380 

individuals in our population-level dataset. The prevalence estimates provided in this 381 

study are contingent on the sensitivity of detecting microbes through sequencing. 382 

Previous studies have shown that untargeted shotgun sequencing is highly sensitive for 383 

the detection of microbes in blood at a total sequencing depth of 20-30 million reads per 384 

sample35,54,55, perhaps even more so than culture-based methods56,57. In contrast, a 385 

median of 373 million reads was generated per sample for our sequencing libraries, 386 

suggesting that our methods do not lack sensitivity. Our prevalence estimates are also 387 

affected by the abundance thresholds used to determine whether a species is present in 388 

a single sample (i.e., abundance filter; Figure 1a). We defined these thresholds in terms 389 

of both absolute read count and relative abundance, which were determined based on 390 

simulation experiments (see Methods). Overly stringent abundance thresholds would 391 

lead to the erroneous masking of genuine signals, leading to an underestimation of 392 

microbial prevalence. However, even when relaxing the threshold to just a relative 393 

abundance of 0.001, none of the species, whether flagged as a contaminant or not, had 394 

more than 52% prevalence (Supplementary Table 5). Furthermore, the 20 most 395 

prevalent species at this threshold are all environmental microbes, and mostly comprise 396 

of Sphingomonas and Bradyrhizobium species, which are known to be common 397 

sequencing-associated contaminants19. This suggests that independent of our 398 

decontamination filters, none of the species detected qualify as core members.   399 

In addition to not being able to detect any core species, we could not detect any strong 400 

co-occurrence or mutual exclusion associations between species regardless of whether 401 

our decontamination filters were applied. These associations generally reflect 402 
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cooperation or competition between species, respectively58. Indeed, within a microbial 403 

community, metabolic dependencies of species and the ability of different species to 404 

complement these dependencies have been shown to be a key driver of microbial co-405 

occurrence59. On the other hand, competitive behaviours such as nutrient sequestration 406 

to deprive potential competitors of nutrients or producing adhesins to bind and occupy 407 

favourable sites in an environment60 can lead to mutual exclusion between species. The 408 

fact that we could not detect any strong associations therefore points to the absence of 409 

an interacting microbial community in healthy humans. Of note, since our dataset was 410 

derived from circulating venous blood, we are, in principle, not able to detect microbial 411 

interactions that may be occurring at other sites of the bloodstream such as the inner 412 

endothelial lining of blood vessels. Experiments investigating the adherence of bacteria 413 

to blood vessel linings may provide further insight into this.  414 

The availability of 11 years of blood culture records from the same country of origin as 415 

our blood samples enabled a reliable comparison of the prevalence of microbes in the 416 

healthy population and in the clinic. This is because the frequency of infections caused 417 

by different microbial species is known to differ from country to country61. Despite this, 418 

we expect that some of the variation in prevalence estimates may be due to the 419 

differences in detection methods. That said, previous studies have shown a strong 420 

concordance between culture and sequencing-based detection35,54,56,57, suggesting that 421 

the distinction between the prevalence of microbes found in healthy individuals and in 422 

the clinic is not due to the differences in detection methods. Our results support the 423 

conclusion that microbial presence in blood (i.e., bacteraemia) does not always lead to 424 

disease. These results are consistent with our other observation that microbial DNA 425 

detected in our cohorts of asymptomatic individuals tend to be from commensals, which 426 

may inherently be less virulent and better tolerated by the host compared to disease-427 

causing pathogens. Indeed, the long-standing co-evolution of humans and colonizing 428 

microbes, places a selective pressure against high virulence phenotypes in these 429 

microbes to maintain host viability62. Simultaneously, there is a selective pressure for 430 

immunomodulatory phenotypes in commensals to improve their fitness, evidenced by 431 

the wealth of immunomodulatory activities found in the gut microbiome63. This agrees 432 

with previous findings that colonisation by commensals modulate early development of 433 
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the immune system64, which would allow a measured and regulated response against 434 

translocated commensals. By extension, the immunomodulatory properties of bacteria 435 

and their links to host tolerance to bacteraemia may be key factors in determining 436 

clinical outcomes. Perhaps, the presence (or lack) of these properties may determine 437 

whether an individual with bacteraemia is asymptomatic or septic. For example, 438 

abundant gut bacterial species such as Bacteroides spp. were not commonly detected 439 

in blood. Further exploration into the immunomodulatory activities of commensals vis-à-440 

vis common blood culture pathogens may be the key to design therapeutics to manage 441 

or prevent the dysregulated host response that defines sepsis1.  442 

We found no convincing associations between both measured (e.g. TC, SBP) and 443 

derived (e.g. obesity) host phenotypes with microbial presence that were consistent 444 

across the different cohorts. This suggests that the risk of transient microbial 445 

translocation, at least across our cohorts of healthy adults, is fairly consistent. In 446 

contrast, this risk may increase in individuals with more severe disease. In fact, variable 447 

microbial DNA profiles in blood have been used to delineate health and disease states. 448 

This has most prominently been shown for sepsis35,54–57,65, where the presence of viable 449 

microbes is expected, but also for cancer30, periodontal disease52, and chronic kidney 450 

disease66, which are unrelated to bloodstream infections. These studies highlight the 451 

promise of metagenomic sequencing of blood for developing diagnostic, prognostic, or 452 

therapeutic tools. Our characterisation of the species breadth in healthy individuals 453 

forms a crucial baseline for comparison with that in diseased individuals. Indeed, our 454 

findings open new doors to understanding why and how blood microbial profiles 455 

correlate with health status. One possible hypothesis is that mucosal integrity is 456 

compromised in a disease state, leading to higher translocation rates of microbes into 457 

the bloodstream. This is consistent with findings of increased intestinal permeability (i.e., 458 

‘leaky gut’) in disease or even during physiological stress67. Future studies testing this 459 

hypothesis may consider a focus on the gut-associated bacteria that were detected in 460 

our study (e.g. Bifidobacterium adolescentis, Faecalibacterium prausnitzii). Further 461 

experimental investigations into the mechanisms of microbial translocation and the 462 

modulatory effects of the microbiomes present at other body sites may shed light on the 463 

relationship between microbial presence in blood and health status.  464 
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If we take the definition of a ‘microbiome’ as a microbial community whose member 465 

species interact amongst themselves and with their ecological niche9, our findings lead 466 

to the conclusion that there is no consistent circulating blood microbiome in healthy 467 

individuals. Sporadic and transient translocation of commensals from other body sites 468 

into the bloodstream (Figure 5) is the more parsimonious explanation for the 469 

observation that most of the microbes detected are commensals from other body sites. 470 

Furthermore, the relatively low prevalence of microbes in blood suggests rapid 471 

clearance of translocated microbes rather than prolonged colonisation in blood. Based 472 

on these findings, we advocate against the use of the term ‘blood microbiome’ or 473 

‘circulating microbiome’, which are potentially misleading, when referring to the 474 

detection of microbial DNA or of microbial cells in blood due to transient translocation 475 

events.   476 
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Methods 477 

Datasets 478 

Our sequencing dataset, also known as the SG10K_Health dataset 479 

(https://www.npm.sg/collaborate/partners/sg10k/), comprises of shotgun sequencing 480 

libraries of DNA extracted from the whole blood or umbilical cord blood of 9,770 healthy 481 

Singaporean individuals68 who were recruited as part of six independent cohorts. 482 

Individuals were deemed to be healthy if they do not have any personal history of major 483 

disorders such as stroke, cardiovascular diseases, cancer, diabetes and renal failure. 484 

Oral health information was not collected and therefore not part of the exclusion criteria.  485 

Whole blood for sequencing was collected via venipuncture only from the five adult 486 

cohorts (median age=49; interquartile range=16): Health for Life in Singapore (HELIOS; 487 

n=2,286), SingHealth Duke-NUS Institute of Precision Medicine (PRISM, n=1,257), Tan 488 

Tock Seng Hospital Personalised Medicine Normal Controls (TTSH, n=920), Singapore 489 

Epidemiology of Eye Diseases (SEED, n=1,436)69,70, and the Multi-Ethnic Cohort (MEC, 490 

n=2,902)71. Additionally, cord blood was collected only for the birth cohort Growing Up 491 

in Singapore Towards healthy Outcomes (GUSTO; n=969)72. Measurement of host 492 

phenotypes was performed on the day of blood collection, except for the GUSTO cohort 493 

where measurements were taken at a later timepoint when the children were at a 494 

median age of 6.1 (interquartile range=0.1). Using nearest neighbor approaches to 495 

reference genotypes73, individuals were broadly categorised into four ethnic categories 496 

representing distinct genetic ancestries: Chinese (59%), Malays (19%), Indians (21%) 497 

and Others (1%). All individuals were deemed healthy at the point of recruitment if they 498 

did not include any self-reported diseases in the recruitment questionnaires. All cohort 499 

studies were approved by relevant institutional ethics review boards. A summary of the 500 

cohort demographics and the ethics review approval reference numbers are provided in 501 

Supplementary Table 1.  502 

Additionally, we retrieved anonymised blood culture records from Singapore General 503 

Hospital, the largest tertiary hospital in Singapore. These records span the years 2011-504 

2021 and include aerobic, anaerobic and fungal blood cultures taken from 282,576 505 

unique patients. These blood cultures were ordered as part of routine clinical 506 
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management, that is, when clinically indicated for the investigation of bacteremia or 507 

fungemia. Blood cultures were performed and analysed as per hospital standard 508 

operating procedures. In brief, blood samples were collected aseptically and inoculated 509 

into BDTM BACTECTM bottles at the bedside (BDTM BACTECTM Plus Aerobic/F Culture 510 

vials Plastic [catalogue number 442023] for aerobic blood culture, BDTM BACTECTM 511 

Plus Anaerobic/F Culture vials Plastic [catalogue number 442022] for anaerobic blood 512 

culture and Myco/F Lytic [catalogue number 42288] for fungal blood culture). The 513 

inoculated bottles were transported to the diagnostic laboratory at ambient temperature 514 

and incubated in the BDTM BACTECTM FX Blood Culture System on arrival. Aerobic and 515 

anaerobic blood culture bottles were incubated for a maximum of five days, and fungal 516 

blood culture bottles were incubated for a maximum of 28 days. Blood culture bottles 517 

that were flagged positive by the BDTM BACTECTM FX Blood Culture System were 518 

inoculated onto solid media, and the resultant colonies were identified using a 519 

combination of biochemical tests and matrix assisted laser desorption ionization-time of 520 

flight mass spectrometry (MALDI-TOF MS) (Bruker® microflex LRF).  521 

Sample preparation and batch metadata 522 

DNA from whole blood was extracted using one of six different DNA extraction kits. 523 

Paired-end 151bp sequencing with an insert size of 350bp was performed up to 15-fold 524 

or 30-fold coverage of the human genome. Library preparation was performed using 525 

one of three library preparation kits. Sequencing was performed on the Illumina HiSeq X 526 

platform with HiSeq PE Cluster Kits and HiSeq SBS Kits. The type of extraction kits and 527 

library preparation kits used, and lot numbers for the SBS Kits, PE Cluster Kits, and 528 

sequencing flow cells used are provided as batch metadata. All reagent kits used, the 529 

number of batches and the number of samples processed per batch are provided in 530 

Supplementary Table 6. 531 

Data pre-processing and quality control 532 

The bioinformatic processing steps applied to the sequencing libraries are summarised 533 

in Figure 1a. Read alignment of sequencing reads to the GRCh38 human reference 534 

genome was already performed as part of a separate study68 using BWA-MEM 535 

v0.7.1774. We retrieved read pairs where both members of the pair did not map to the 536 
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human genome. Following which, we performed quality control of the sequencing reads. 537 

We trimmed low quality bases at the ends of reads with quality <Q10 (base quality 538 

trimming) and discarded reads with average read quality less than Q10 (read quality 539 

filter). We also discarded low complexity sequences with an average entropy less than 540 

0.6, with a sliding window of 50 and k-mer length of five (low complexity read filter). All 541 

basic quality control steps were performed using bbduk from the BBTools suite v37.62 542 

(sourceforge.net/projects/bbmap/).  543 

Taxonomic classification of blood sequencing libraries 544 

Taxonomic classification of non-human reads was done using Kraken2 v2.1.223 with the 545 

‘—paired’ flag. We used the PlusPF database (17th May 2021 release) maintained by 546 

Ben Langmead (https://genome-547 

idx.s3.amazonaws.com/kraken/k2_pluspf_20210517.tar.gz), which includes archaeal, 548 

bacterial, viral, protozoan, and fungal references. Of all non-human read pairs, 72% 549 

were classified as microbial at the species level, yielding 8,890 species. Samples with 550 

less than 100 microbial read pairs were removed, resulting in a final dataset comprising 551 

8,892 samples, with a median microbial read-pair count of 6187.  552 

To minimise noise in the taxonomic assignments, we defined a set of abundance 553 

thresholds whereby species with abundance values less than or equal to these 554 

thresholds (i.e., relative abundance≤0.005, read pairs assigned≤10) were counted as 555 

absent (set to zero read counts). We performed simulations to systematically determine 556 

a relative abundance threshold that minimizes false positive species assignments. 557 

Sequencing reads were simulated using InSilicoSeq v1.5.475 with error models trained 558 

on the SG10K_Health sequencing libraries and processed using the same bioinformatic 559 

steps as per the SG10K_Health dataset to obtain microbial taxonomic profiles. We 560 

simulated 373 million reads equivalent to the median library read count of all samples, 561 

comprising reads from the GRCh38 human reference and ten microbial genomes 562 

(Yersinia enterocolitica, Leclercia adecarboxylata, Moraxella osloensis, Streptococcus 563 

pneumoniae, Pasteurella multocida, Staphylococcus epidermidis, Actinomyces 564 

viscosus, Torque teno virus, Human betaherpesvirus 6A, Candida albicans) at various 565 

proportions. Due to read misclassification, some of the simulated reads were 566 
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erroneously assigned to another species and produced false positives. A final relative 567 

abundance threshold of 0.005 that delineated these false positive assignments from 568 

true positives was selected (Supplementary Figure 8). Following the application of 569 

these thresholds, the relative abundance distribution of microbial taxa classified as 570 

present were distinct from the distribution for those classified as absent 571 

(Supplementary Figure 9). Furthermore, the distribution of abundances for microbe-572 

negative samples is centred around a relative abundance of 0.0001, i.e. at least tenfold 573 

below the typical relative abundance thresholds used to determine if a taxon is present 574 

or absent (0.001-0.04514). Relative abundances were calculated by dividing the 575 

microbial read count in a sample by the total number of microbial reads assigned to that 576 

sample. 577 

Decontamination filters 578 

After application of the presence/absence filter, we identified and removed putative 579 

contaminants using established decontamination heuristics26 that have been validated 580 

in previous studies27,28, prior to our downstream analyses. These rules were applied 581 

using eight types of batch information: source cohort, DNA extraction kit type, library 582 

preparation kit type, and lot numbers for sequencing-by-synthesis kit (box 1, box 2), 583 

paired-end cluster kit (box 1, box 2) and sequencing flow cell used. Other batch 584 

information such as the pipettes and consumables used, or storage location and 585 

duration were not recorded and could potentially contribute to some level of batch-586 

specific contamination. However, these batches are expected to be correlated with the 587 

other types of batch information available, and so the resultant contaminants could in 588 

theory be accounted for using our filters. We describe the four decontamination filters 589 

used, as shown in Figure 1a, in sequential order: 590 

(1) Prevalence filter. A microbial species is considered a contaminant specific to a 591 

batch if it is present at greater than 25% prevalence in that batch and has greater 592 

than a two-fold higher prevalence than that for any other batch. Batches with less 593 

than 100 samples were excluded from this analysis. This filter is based on the 594 

principle that species which are highly prevalent in some batches but lowly 595 
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prevalent or absent in others are likely contaminants26. We illustrate this for an 596 

example species in Supplementary Figure 10a.  597 

(2) Correlation filter. A microbial species is considered a contaminant if it is highly 598 

correlated (Spearman’s ρ>0.7) with any contaminant within the same batch, as 599 

identified by the prevalence filter. This filter is based on the principle that 600 

contaminants are highly correlated within the same batch26. Spearman’s ρ was 601 

calculated using centred log-ratio (CLR) transformed76 microbial relative 602 

abundances. CLR transformations and Spearman’s ρ were calculated using the 603 

clr function as part of the compositions package77 and cor.test function in R. We 604 

illustrate this within-batch correlation for an example species in Supplementary 605 

Figure 10b. 606 

(3) Batch filter. A non-contaminant microbial species must be detected in samples 607 

processed by at least two reagent kit batches or reagent types. That is, any 608 

species that is only detected in a single batch for any of the reagent kits used 609 

(Supplementary Table 6) are considered contaminants. This filter is based on 610 

the principle that species that can be repeatedly observed across different 611 

reagent batches are more likely to reflect genuine non-contaminant signals26. 612 

Library preparation kit type was excluded from this analysis since only three kit 613 

types were used, with 86% of samples processed using one of the kits.  614 

(4) Read count filter. A microbial species is considered a sequencing or analysis 615 

artefact if it is not assigned at least 100 reads in at least one sample. This filter is 616 

based on the principle that species that are always assigned a low number of 617 

read pairs, never exceeding the background noise within sequencing libraries, 618 

are more likely to be artefactual rather than genuine signals. An example of an 619 

artefactual species is Candidatus Nitrosocosmicus franklandus, which was 620 

assigned at most 22 read pairs by Kraken2 across 21 sequenced samples.    621 

To demonstrate the effectiveness of our decontamination filters, we additionally tested 622 

our results against the null hypothesis that the 117 microbial species retained after 623 

decontamination produced the same proportions of species classified as likely 624 

contaminants, human-associated, or that were detected in blood culture compared to if 625 
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we picked these species at random. In this analysis, we generated 1000 sets of 117 626 

microbial species that were randomly selected from the list of species before 627 

decontamination and compared the species to the three databases as per Figure 1b-d. 628 

P-values were calculated by taking the proportion of random iterations that generated 629 

proportions of species classified as likely contaminants, detected in blood, or human-630 

associated that were as extreme or more extreme than those observed for the 117 631 

species retained by our decontamination filters.  632 

Characterisation of microbial species 633 

We classified microbial species as human-associated or not based on a published host-634 

pathogen association database78. In this database, host-pathogen associations are 635 

defined by the presence of at least one documented infection of the host by the 636 

pathogen31. For species that were not found in this database, we performed a 637 

systematic PubMed search using the search terms: (microbial species name) AND 638 

(human) AND ((infection) OR (commensal)). Similarly, species that had at least one 639 

published report of human colonisation/infection were considered human-associated. 640 

Additionally, we classified the potential body site origins for each microbial species 641 

using the Disbiome database, which collects data and metadata of published 642 

microbiome studies in a standardised way34. We extracted the information for all 643 

microbiome experiments in the database using the URL: 644 

‘https://disbiome.ugent.be:8080/experiment’ (accessed 26th April 2022). We first 645 

extracted microbe-to-sample type mappings from this information (e.g. C. acnes�skin 646 

swab). We then manually classified each sample type into different body sites (e.g. skin 647 

swab�skin). This allowed us to generate microbe-to-body site mappings. Sample types 648 

with ambiguous body site origins (e.g. abscess pus) were excluded. The range of 649 

sample types within the Disbiome database used to derive the microbe-body-site 650 

mappings are provided in Supplementary Table 7. Finally, we classified microbial 651 

species based on their growth requirements, with reference to a clinical microbiology 652 

textbook79. Viruses were classified as obligate intracellular. The microbiological 653 

classifications for each species are provided in Supplementary Table 2. 654 
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Estimating coverage breadth and bacterial replication rates 655 

We performed read alignment of sequencing libraries to microbial reference genomes 656 

using Bowtie v2.4.580 with default parameters. In total, we used references for 28 of the 657 

117 microbial species detected in blood, comprising all bacterial species with at least 658 

1000 Kraken2-assigned read pairs in a single sample and all viral species (n=5). For 659 

each species, we aligned the microbial reads of five sample libraries with the most 660 

reads assigned to that species, to the reference genome of that species. For each 661 

sample and microbial genome, the genome coverage per position was computed using 662 

the pileup function as part of the Rsamtools v2.8.0 package81 in R.  In principle, 663 

recovery of a larger fraction of a microbial genome provides a higher confidence that it 664 

is truly present in a sample24,25. We could recover at least 10% of the microbial 665 

genomes for 27/28 (96%) of the species. Since it is difficult to assess coverage breadth 666 

for a species covered by a low number of reads, we only performed this analysis on all 667 

viruses (n=5), and all bacterial species with at least 1000 Kraken2-assigned read pairs 668 

(n=23), which corresponds to ~10% coverage over a typical 3Mbp bacterial genome 669 

(assuming non-overlapping reads). For the replication rate analyses, PTR values were 670 

calculated using the bPTR function in iRep v1.1.021, which is based on the method 671 

proposed by Korem et al.22. The Ori and Ter positions were determined based on the 672 

coverage peaks and troughs (in red and blue, respectively; Figure 3). Ori and Ter 673 

positions were also calculated using a cumulative GC-skew line, which is expected to 674 

be in anti-phase with the sinusoidal coverage pattern across the genome39 (in green; 675 

Figure 3). 676 

Microbial networks 677 

Microbial co-occurrence/mutual exclusion associations were computed using the 678 

SparCC algorithm50, implemented in the SpiecEasi v1.1.2 package82 in R and the 679 

microbial networks were visualized using Igraph v1.2.983. We excluded the birth cohort 680 

GUSTO since it is of a different demographic that may possess a distinct set of 681 

microbial associations. 682 
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Detecting associations between microbial taxonomic profiles and host phenotypes 683 

We tested for microbe-host phenotype associations within individual cohorts separately. 684 

For the two categorical host phenotypes, genetic sex and ancestry, we tested for 685 

differences in the prevalence of each microbial species between the different categories 686 

using a two-sided Fisher’s exact test (fisher.test function in R). For the continuous 687 

variables (age, BMI, TC, TG, SBP and DBP) we used a two-sided Mann-Whitney U test 688 

(wilcox.test function in R) to test for differences in the distributions of the variables when 689 

a species was present or absent. Benjamini-Hochberg multiple-testing correction was 690 

applied only after consolidating the p-values from both tests and for all cohorts using the 691 

p.adjust function in R. Statistical tests were only performed if a species was present in 692 

at least 50 samples in total. Separately, for derived phenotypes (i.e., being elderly or 693 

measures of ‘poorer health’), we used the Fisher’s exact test before applying Benjamini-694 

Hochberg multiple-testing correction. In all cases, samples with missing host 695 

phenotypes were excluded. 696 

Data analysis and visualisation 697 

All data analyses were performed using R v4.1.0 or using Python v3.9.12. Visualisations 698 

were performed using ggplot v3.3.584. Figure 5 was created using BioRender.com 699 

under an academic subscription. 700 

Data availability 701 

Requests for the sequencing data used in this study should be made through the 702 

National 703 

Precision Medicine (NPM) Programme Data Access Committee (contact_npco@gis.a-704 

star.edu.sg). All other data used in our analyses are hosted on Zenodo 705 

(https://doi.org/10.5281/zenodo.7368262). The accession numbers for all genome 706 

references used are provided in Supplementary Table 8.  707 

Code availability 708 

All custom code used to perform the analyses reported here are hosted on GitHub 709 

(https://github.com/cednotsed/blood_microbial_signatures.git).  710 
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Figure legends  754 

Figure 1: Decontamination results. (a) Summary of pre-processing steps and filters 755 

applied to taxonomic profiles (n=9,770 individuals) and the number of species retained 756 

after each filter. Pie charts showing the proportion of microbial species that are (b) 757 

human-associated, (c) common sequencing contaminants, and (d) detected in blood 758 

culture records, before and after applying the decontamination filters.  759 

Figure 2: Microbial signatures in human blood from healthy individuals. (a) Bar 760 

chart showing the prevalence of the top 50 confidently detected microbial species in all 761 

8,892 blood sequencing libraries. (b) Histogram of the number of microbial species per 762 

sample. (c) Bar chart of the human body sites that the 117 confidently detected species 763 

are associated with, as determined using the Disbiome database34. Species are 764 

classified as ‘multiple’ if they are associated with more than one body site and classified 765 

otherwise if they are only associated with a single body site. (d) Piechart showing the 766 

microbiological classification of the 117 confidently detected species. (e) Bar chart 767 

showing prevalence of genera in blood culture records and in the blood sequencing 768 

libraries before and after decontamination. 769 

Figure 3: Evidence for replicating bacteria in blood samples from healthy 770 

individuals. (a) Summary statistics for samples where bacterial species were deemed 771 

to be replicating using iRep21 (i.e., peak-to-trough ratio (PTR)>1). The number of reads 772 

assigned to the species by Kraken2 23, the possible body sites the species are 773 

associated with, whether they were previously reported in published studies of 774 

bacteraemia, the overall prevalence of the species across all 8,892 individuals in our 775 

study and the calculated PTR values, are indicated. Coverage plots of (b) three 776 

representative confidently detected species and (c) three representative contaminant 777 

species, showing the expected patterns of Ori to Ter coverage skew only where 778 

expected i.e. confidently detected species.  779 

Figure 4: Microbial co-occurrence networks. (a) SparCC50 co-occurrence networks 780 

computed from all samples with at least two microbial species following 781 

decontamination at different SparCC correlation thresholds (0.05, 0.2, 0.3). Only 782 

associations with a magnitude of SparCC correlation greater than the respective 783 
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thresholds are retained. (b) SparCC networks for individual cohorts at a correlation 784 

threshold of 0.2. No co-occurrence associations were retained after taking the 785 

intersection of edges between all cohort networks. For (a) and (b), each node 786 

represents a single microbial species, and each edge a single association between a 787 

pair of microbial species. Edge thickness is scaled by the magnitude of correlation. The 788 

number of samples used to compute each network and the correlation thresholds used 789 

are annotated. Positive and negative SparCC correlations are indicated in green and 790 

blue respectively.  791 

Figure 5: Potential models for microbes in blood. Our findings suggest that there is 792 

no consistent circulating blood microbiome (i.e., the blood microbiome model). The 793 

more likely model is where microbes from other body sites transiently and sporadically 794 

translocate into blood. Created with BioRender.com under an academic subscription. 795 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30

References 796 

1. Singer, M. et al. The third international consensus definitions for sepsis and septic shock 797 
(Sepsis-3). Jama 315, 801–810 (2016). 798 
2. Brecher, M. E. & Hay, S. N. Bacterial contamination of blood components. Clin. 799 
Microbiol. Rev. 18, 195–204 (2005). 800 
3. Damgaard, C. et al. Viable bacteria associated with red blood cells and plasma in freshly 801 
drawn blood donations. PLoS One 10, e0120826 (2015). 802 
4. Schierwagen, R. et al. Circulating microbiome in blood of different circulatory 803 
compartments. Gut 68, 578–580 (2019). 804 
5. Païssé, S. et al. Comprehensive description of blood microbiome from healthy donors 805 
assessed by 16 S targeted metagenomic sequencing. Transfusion (Paris) 56, 1138–1147 (2016). 806 
6. Whittle, E., Leonard, M. O., Harrison, R., Gant, T. W. & Tonge, D. P. Multi-method 807 
characterization of the human circulating microbiome. Front. Microbiol. 3266 (2019). 808 
7. D’Aquila, P. et al. Microbiome in Blood Samples From the General Population Recruited 809 
in the MARK-AGE Project: A Pilot Study. Front. Microbiol. 2055 (2021). 810 
8. Castillo, D. J., Rifkin, R. F., Cowan, D. A. & Potgieter, M. The healthy human blood 811 
microbiome: Fact or fiction? Front. Cell. Infect. Microbiol. 9, 148 (2019). 812 
9. Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. 813 
Microbiome 8, 1–22 (2020). 814 
10. Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS 815 
Comput. Biol. 8, (2012). 816 
11. Das, P., Ji, B., Kovatcheva-Datchary, P., Bäckhed, F. & Nielsen, J. In vitro co-cultures of 817 
human gut bacterial species as predicted from co-occurrence network analysis. PLoS One 13, 818 
e0195161 (2018). 819 
12. Relvas, M. et al. Relationship between dental and periodontal health status and the 820 
salivary microbiome: bacterial diversity, co-occurrence networks and predictive models. Sci. 821 
Rep. 11, 1–22 (2021). 822 
13. Risely, A. Applying the core microbiome to understand host–microbe systems. J. Anim. 823 
Ecol. 89, 1549–1558 (2020). 824 
14. Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: 825 
Challenges and prospects. Proc. Natl. Acad. Sci. 118, e2104429118 (2021). 826 
15. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. 827 
nature 486, 207 (2012). 828 
16. Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level 829 
microbiome analysis. Nat. Commun. 10, 5029 (2019). 830 
17. Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent bacterial 831 
DNA contamination of extraction and sequencing reagents may affect interpretation of 832 
microbiota in low bacterial biomass samples. Gut Pathog. 8, 24 (2016). 833 
18. Hornung, B. V. H., Zwittink, R. D. & Kuijper, E. J. Issues and current standards of 834 
controls in microbiome research. FEMS Microbiol. Ecol. 95, fiz045 (2019). 835 
19. Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-836 
based microbiome analyses. BMC Biol. 12, 87 (2014). 837 
20. Doern, G. V et al. A comprehensive update on the problem of blood culture 838 
contamination and a discussion of methods for addressing the problem. Clin Microbiol Rev 33, 839 
e00009-19 (2019). 840 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31

21. Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial 841 
replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016). 842 
22. Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from 843 
single metagenomic samples. Science 349, 1101–1106 (2015). 844 
23. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. 845 
Genome Biol. 20, 257 (2019). 846 
24. Hillmann, B. et al. SHOGUN: a modular, accurate and scalable framework for 847 
microbiome quantification. Bioinformatics 36, 4088–4090 (2020). 848 
25. Al-Ghalith, G. & Knights, D. BURST enables mathematically optimal short-read 849 
alignment for big data. bioRxiv 2020.09.08.287128 (2020) doi:10.1101/2020.09.08.287128. 850 
26. de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 851 
(2018). 852 
27. Chia, M. et al. Shared signatures and divergence in skin microbiomes of children with 853 
atopic dermatitis and their caregivers. J. Allergy Clin. Immunol. (2022) 854 
doi:https://doi.org/10.1016/j.jaci.2022.01.031. 855 
28. Chng, K. R. et al. Cartography of opportunistic pathogens and antibiotic resistance genes 856 
in a tertiary hospital environment. Nat. Med. 26, 941–951 (2020). 857 
29. de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential 858 
pathogens. Nature 572, 329–334 (2019). 859 
30. Poore, G. D. et al. Microbiome analyses of blood and tissues suggest cancer diagnostic 860 
approach. Nature 579, 567–574 (2020). 861 
31. Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. 862 
Mol. Ecol. 29, 3361–3379 (2020). 863 
32. Tomás, I., Diz, P., Tobías, A., Scully, C. & Donos, N. Periodontal health status and 864 
bacteraemia from daily oral activities: systematic review/meta�analysis. J. Clin. Periodontol. 865 
39, 213–228 (2012). 866 
33. Wells, C. L., Maddaus, M. A. & Simmons, R. L. Proposed mechanisms for the 867 
translocation of intestinal bacteria. Rev. Infect. Dis. 10, 958–979 (1988). 868 
34. Janssens, Y. et al. Disbiome database: linking the microbiome to disease. BMC 869 
Microbiol. 18, 50 (2018). 870 
35. Blauwkamp, T. A. et al. Analytical and clinical validation of a microbial cell-free DNA 871 
sequencing test for infectious disease. Nat. Microbiol. 4, 663–674 (2019). 872 
36. Ruiz, L., Delgado, S., Ruas-Madiedo, P., Sánchez, B. & Margolles, A. Bifidobacteria and 873 
their molecular communication with the immune system. Front. Microbiol. 8, 2345 (2017). 874 
37. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal 875 
bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. 876 
105, 16731–16736 (2008). 877 
38. Domingue, G. J. & Schlegel, J. U. Novel bacterial structures in human blood: cultural 878 
isolation. Infect. Immun. 15, 621–627 (1977). 879 
39. Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. 880 
Biol. Evol. 13, 660–665 (1996). 881 
40. Yang, C.-C. et al. Characteristics and outcomes of Fusobacterium nucleatum 882 
bacteremia—a 6-year experience at a tertiary care hospital in northern Taiwan. Diagn. 883 
Microbiol. Infect. Dis. 70, 167–174 (2011). 884 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32

41. DEMMLER, G. J., COUCH, R. S. & TABER, L. H. Neisseria subflava bacteremia and 885 
meningitis in a child: report of a case and review of the literature. Pediatr. Infect. Dis. J. 4, 286–886 
288 (1985). 887 
42. Oill, P. A., Chow, A. W. & Guze, L. B. Adult bacteremic Haemophilus parainfluenzae 888 
infections: seven reports of cases and a review of the literature. Arch. Intern. Med. 139, 985–988 889 
(1979). 890 
43. Chan, J. F. W. et al. First report of spontaneous intrapartum Atopobium vaginae 891 
bacteremia. J. Clin. Microbiol. 50, 2525–2528 (2012). 892 
44. Mendes, R. E. et al. Assessment of linezolid resistance mechanisms among 893 
Staphylococcus epidermidis causing bacteraemia in Rome, Italy. J. Antimicrob. Chemother. 65, 894 
2329–2335 (2010). 895 
45. Choi, J. Y. et al. Mortality risk factors of Acinetobacter baumannii bacteraemia. Intern. 896 
Med. J. 35, 599–603 (2005). 897 
46. Wertlake, P. T. & Williams, T. W. Septicaemia caused by Neisseria flavescens. J. Clin. 898 
Pathol. 21, 437–439 (1968). 899 
47. Shah, S. S., Ruth, A. & Coffin, S. E. Infection due to Moraxella osloensis: case report 900 
and review of the literature. Clin. Infect. Dis. 30, 179–181 (2000). 901 
48. Felten, A., Barreau, C., Bizet, C., Lagrange, P. H. & Philippon, A. Lactobacillus species 902 
identification, H2O2 production, and antibiotic resistance and correlation with human clinical 903 
status. J. Clin. Microbiol. 37, 729–733 (1999). 904 
49. JeŽek, P. et al. Corynebacterium imitans isolated from blood culture in a patient with 905 
suspected bacteremia-the first isolation from human clinical material in the Czech Republic. 906 
Klin. Mikrobiol. Infekcni Lek. 20, 98–101 (2014). 907 
50. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS 908 
Comput Biol 8, e1002687 (2012). 909 
51. Anhê, F. F. et al. Type 2 diabetes influences bacterial tissue compartmentalisation in 910 
human obesity. Nat. Metab. 2, 233–242 (2020). 911 
52. Emery, D. C. et al. Comparison of blood bacterial communities in periodontal health and 912 
periodontal disease. Front. Cell. Infect. Microbiol. 10, 799 (2021). 913 
53. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in 914 
humans from infancy to old age. Proc. R. Soc. B Biol. Sci. 282, 20143085 (2015). 915 
54. Grumaz, C. et al. Rapid Next-Generation Sequencing–Based Diagnostics of Bacteremia 916 
in Septic Patients. J. Mol. Diagn. 22, 405–418 (2020). 917 
55. Tan, C. C. S., Acman, M., van Dorp, L. & Balloux, F. Metagenomic evidence for a 918 
polymicrobial signature of sepsis. Microb. Genomics 7, (2021). 919 
56. Grumaz, S. et al. Next-generation sequencing diagnostics of bacteremia in septic patients. 920 
Genome Med. 8, 73 (2016). 921 
57. Grumaz, S. et al. Enhanced performance of next-generation sequencing diagnostics 922 
compared with standard of care microbiological diagnostics in patients suffering from septic 923 
shock. Crit. Care Med. 47, e394 (2019). 924 
58. Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. 925 
Microbiol. 10, 538–550 (2012). 926 
59. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse 927 
microbial communities. Proc. Natl. Acad. Sci. 112, 6449–6454 (2015). 928 
60. Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: 929 
surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8, 15–25 (2010). 930 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

61. Cross, A. & Levine, M. M. Patterns of bacteraemia aetiology. Lancet Infect. Dis. 17, 931 
1005–1006 (2017). 932 
62. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary 933 
perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007). 934 
63. Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory 935 
organisms. Cell 168, 928–943 (2017). 936 
64. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by 937 
microbiota in early life shapes the immune system. Science 352, 539–544 (2016). 938 
65. Brenner, T. et al. Next-generation sequencing diagnostics of bacteremia in sepsis (Next 939 
GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, 940 
clinical trial. Medicine (Baltimore) 97, (2018). 941 
66. Shah, N. B. et al. Blood microbiome profile in CKD: a pilot study. Clin. J. Am. Soc. 942 
Nephrol. 14, 692–701 (2019). 943 
67. Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. 944 
Gut 68, 1516–1526 (2019). 945 
68. Wu, D. et al. Large-scale whole-genome sequencing of three diverse Asian populations 946 
in Singapore. Cell 179, 736–749 (2019). 947 
69. Foong, A. W. P. et al. Rationale and methodology for a population-based study of eye 948 
diseases in Malay people: The Singapore Malay eye study (SiMES). Ophthalmic Epidemiol. 14, 949 
25–35 (2007). 950 
70. Lavanya, R. et al. Methodology of the Singapore Indian Chinese Cohort (SICC) eye 951 
study: quantifying ethnic variations in the epidemiology of eye diseases in Asians. Ophthalmic 952 
Epidemiol. 16, 325–336 (2009). 953 
71. Tan, K. H. X. et al. Cohort profile: the Singapore multi-ethnic cohort (mec) study. Int. J. 954 
Epidemiol. 47, 699–699j (2018). 955 
72. Soh, S.-E. et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes 956 
(GUSTO) birth cohort study. Int. J. Epidemiol. 43, 1401–1409 (2014). 957 
73. Teo, Y.-Y. et al. Singapore Genome Variation Project: a haplotype map of three 958 
Southeast Asian populations. Genome Res. 19, 2154–2162 (2009). 959 
74. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler 960 
transform. bioinformatics 25, 1754–1760 (2009). 961 
75. Gourlé, H., Karlsson-Lindsjö, O., Hayer, J. & Bongcam-Rudloff, E. Simulating Illumina 962 
metagenomic data with InSilicoSeq. Bioinformatics 35, 521–522 (2019). 963 
76. Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 964 
Methodol. 44, 139–160 (1982). 965 
77. Van den Boogaart, K. G. & Tolosana-Delgado, R. “Compositions”: a unified R package 966 
to analyze compositional data. Comput. Geosci. 34, 320–338 (2008). 967 
78. Shaw, L. The phylogenetic range of bacterial and viral pathogens of vertebrates: dataset 968 
and supplementary material. Preprint at https://doi.org/10.6084/m9.figshare.8262779.v2 (2020). 969 
79. Jorgensen, J. et al. Manual of Clinical Microbiology. (American Society for 970 
Microbiology Press, 2015). doi:10.1128/9781555817381. 971 
80. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 972 
9, 357–359 (2012). 973 
81. Morgan, M., Pagès, H., Obenchain, V. & Hayden, N. Rsamtools: Binary alignment 974 
(BAM), FASTA, variant call (BCF), and tabix file import. R package version 2.8.0. (2021). 975 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

82. Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological 976 
networks. PLoS Comput Biol 11, e1004226 (2015). 977 
83. Csardi, G. & Nepusz, T. The igraph software package for complex network research. 978 
InterJournal Complex Syst. 1695, 1–9 (2006). 979 
84. Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011). 980 
 981 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2022. ; https://doi.org/10.1101/2022.07.29.502098doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.29.502098
http://creativecommons.org/licenses/by-nc-nd/4.0/

