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Abstract

We introduce Catalyst.jl, a flexible and feature-filled Julia library for modeling and high performance simulation of
chemical reaction networks (CRNs). Catalyst acts as both a domain-specific language and an intermediate representation
for symbolically encoding CRN models as Julia-native objects. This enables a pipeline of symbolically specifying, analyzing,
and modifying reaction networks; converting Catalyst models to symbolic representations of concrete mathematical models;
and generating compiled code for use in numerical solvers. Currently Catalyst supports conversion to symbolic discrete
stochastic chemical kinetics (jump process), chemical Langevin (stochastic differential equation), and mass-action reaction
rate equation (ordinary differential equation) models. Leveraging ModelingToolkit.jl and Symbolics.jl, Catalyst models can
be analyzed, simplified, and compiled into optimized representations for use in a broad variety of numerical solvers. The
performance of the numerical solvers Catalyst targets is illustrated across a variety of reaction networks by benchmarking
stochastic simulation algorithm and ODE solver performance. We demonstrate the extendability and composability of
Catalyst by highlighting both how it can compose with a variety of Julia libraries, and how existing open source projects
have extended the intermediate representation. These benchmarks demonstrate significant performance improvements
compared to several popular reaction network simulators.

Introduction

Chemical reaction network (CRN) models are used across a variety of fields, including the biological sciences, epidemiology,
physical chemistry, combustion modeling, and pharmacology. At their core, they combine a set of species (defining a system’s
state) with a set of reaction events (rates for reactions occuring, with rules for altering the system’s state when a reaction
occurs). One advantage with the formulation of a biological model as a CRN is that these can be simulated according to
several well-defined mathematical representations, representing different physical scales at which reaction processes can be
studied. For example, the reaction rate equation (RRE) is a macroscopic system of ordinary differential equations (ODEs),
providing a deterministic model of chemical reaction processes. Similarly, the chemical Langevin equation (CLE) is a system
of stochastic differential equations (SDEs), providing a more microscopic model that can capture certain types of fluctuations
in reaction processes [16]. Finally, stochastic chemical kinetics, typically simulated with Gillespie’s algorithm (as well as
modifications to, and improvements of, it), provides an even more microscopic model, that captures both stochasticity and
discreteness of populations in chemical reaction processes [14, 15]. That a CRN can be unambiguously represented using
these models forms the basis of several CRN modeling tools [36, 23, 18, 26, 41, 27, 38, 21]. Here we present a new modeling
tool for CRNs, Catalyst.jl, which we believe offers a unique set of advantages for both inexperienced and experienced modelers.

Catalyst’s defining trait, which sets it apart from other popular CRN modeling packages, is that it represents models in
an entirely symbolic manner, accessible via standard Julia programs. This permits algebraic manipulation and simplification
of the models, either by the user, or by other tools. Once a CRN has been defined, it is stored in a symbolic intermediate
representation (IR). This IR is the target of methods that provide functionality to Catalyst, including numerical solvers for
both continuous ODEs and SDEs, as well as discrete Gillespie-style stochastic simulation algorithms (SSAs). As Catalyst’s
symbolic representations can be converted to compiled Julia functions, it can be easily used with a variety of Julia libraries.
These include packages for parameter fitting, sensitivity analysis, steady state finding, and bifurcation analysis. Finally, to
simplify model implementation, Catalyst provides a domain-specific language (DSL) that allows users to declare CRN models
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using classic chemical reaction notation.

Catalyst is implemented in Julia, a new (version 1.0 released in August 2018) open-source programming language for scientific
computing. Its combination of high performance and user-friendliness makes it highly promising [4, 3]. It has grown quickly,
and already has a highly developed ecosystem of available packages for scientific simulation. This includes the Scientific
Machine Learning (SciML) organization, of which Catalyst is a part. SciML, through its ModelingToolkit.jl package, pro-
vides the IR on which Catalyst is based [28]. This IR is used across the organization’s projects, providing a target structure
both for model-generation tools (such as Catalyst), and tools that provide additional functionality. ModelingToolkit sym-
bolic models leverage the Symbolics.jl [19] computer algebraic system (CAS), enabling them to be represented in a symbolic
manner. Simulations of ModelingToolkit-based models are typically carried out using DifferentialEquations.jl, perhaps the
largest software package of state-of-the-art, high performance numerical solvers for ODEs, SDEs and jump processes [35].

Several existing modeling packages provide overlapping functionality with Catalyst. COPASI is a well known and pop-
ular software that enables both deterministic and stochastic CRN modeling, as well as many auxiliary features (such as
parameter fitting and sensitivity analysis) [23]. BioNetGen is another such software suite, currently available as a Visual
Studio Code extension, that is built around the popular BioNetGen language for easily specifying complex reaction net-
work models [21]. It provides options for model creation, network simulation, and network free-modeling. Another popular
tool, VCell provides extensive functionality, via an intuitive graphical interface [36]. Other modeling tools such as GINsim,
CellNOpt, gillespy2, and Matlab’s SimBiology are more limited in their target scope [18, 1, 41].

Compared to these packages, Catalyst has immediate access to a more extensive set of numerical solvers for ODEs, SDEs
(which COPASI lacks), and SSAs. It also has the ability to include Julia-native functions within rate laws and stoichiometric
expressions, and to include coupled ODEs or algebraic constraint equations (potentially resulting in differential-algebraic
equations (DAEs)). For example, to encode bursty reactions stoichiometric coefficients can be defined using standard Julia
functions that sample from a random variable distribution. Similarly, rate-laws can include data-driven modeling terms
constructed via Julia libraries such as Surrogates.jl, SciMLSensitivity.jl, and DiffEqFlux.jl. Moreover, Catalyst generates
differentiable models, which can be easily incorporated into higher-level Julia codes and composed with other Julia libraries.

In contrast to several other packages, Catalyst does not currently provide easy generation of hybrid methods that allow
model components to be defined at different physical scales (such as resolving some reactions via ODEs and others via jump
processes). Catalyst is also DSL and API-based, with simulation and analysis of models carried out via Julia programs as
opposed to the GUIs of BioNetGen, COPASI, and VCell.

In the next sections we overview a basic workflow for using Catalyst to define and simulate CRNs; overview how Cata-
lyst performs relative to several popular CRN modeling packages for solving ODEs and simulating jump processes; discuss
Catalyst’s symbolic representation of CRNs, Catalyst’s network analysis functionality, and how it can compose with other
Julia packages; and introduce some of the higher-level applications in which Catalyst models can be easily embedded.

Results

The Catalyst DSL enables models to be created using chemical reaction notation

Catalyst offers several ways to define a CRN model, with the most effortless option being the @reaction network DSL. This
feature extends the natural Julia syntax via a macro, allowing users to declare CRN models using classic chemical reaction
notation (as opposed to declaring models using equations, or by declaring reactions implicitly or through functions). This
alternative notation makes scripts more human legible, and greatly reduces code length (simplifying both script writing and
debugging). Using the DSL, the CRN’s chemical reactions are listed, each preceded by its reaction rate (Figure 1). From
this, the system’s species are automatically extracted and a ReactionSystem IR structure is created (which can be used as
input to e.g. numerical simulators).

To facilitate a more concise notation, similar reactions (e.g. several degradation events) can be bundled together. Reac-
tion rates can either be a constant, a parameter, or a function (such as a Hill function). Both non-integer and parametric
stoichiometric coefficients are possible. There are also several non-DSL methods for model creation. They include loading
networks from files via SBMLToolkit.jl (for SBML files) and ReactionNetworkImporters.jl (for BioNetGen generated .net
files). CRNs can also be created via defining symbolic variables in ModelingToolkit, and directly building ReactionSystems
from collections of Reaction structures. This enables programmatic definition of CRNs, making it possible to create large
models by iterating through a relatively small number of rules using standard Julia language scripts.
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Chemical Reaction Network DSL-based model declaration

Simulation Methods

Analysis Methods

erk_model = @reaction_network begin
  (k₁,k₋₁), M + MKK ↔ C_M_MKK
  k₂, C_M_MKK → Mp + MKK
  (k₃,k₋₃), Mp + MKK ↔ C_Mp_MKK
  k₄, C_Mp_MKK → Mpp + MKK
  (h₁,h₋₁), Mpp + MKP ↔ C_Mpp_MKP
  h₂, C_Mpp_MKP → Mp + MKP
  (h₃,h₋₃), Mp + MKP ↔ C_Mp_MKP
  h₄, C_Mp_MKP → M + MKP
end k₁ k₋₁ k₂ k₃ k₋₃ k₄ h₁ h₋₁ h₂ h₃ h₋₃ h₄

ReactionSystem IR

{...}

A B C

Figure 1: Catalyst connects an intuitive domain-specific language with a well supported intermediate representation.
The extracellular signal-regulated kinase (ERK) network is important to the regulation of many cellular functions, and its disruption
has been implicated in cancer [31]. (A) Here, a CRN representation of the ERK network is shown. (B) A model of the ERK CRN can
be implemented in Julia through the Catalyst DSL, using code very similar to the actual CRN representation. (C) From this code, the
DSL generates a ReactionSystem IR that is the target structure for a range of supported simulation and analysis methods.
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A using DiffEqJump
u0 = [0, 0]
tspan = (0., 60.)
p = [3.0, 4.0]
dprob = DiscreteProblem(brusselator,u0,tspan,p)
jprob = JumpProblem(brusselator,dprob,Direct())
jsol = solve(jprob,SSAStepper());

using OrdinaryDiffEq
u0 = [:X => 0., :Y => 0.]
tspan = (0., 60.)
p = [:A => 1.0, :B => 4.0]
oprob = ODEProblem(brusselator,u0,tspan,p)
sol = solve(oprob,Rosenbrock23())
plot(sol)
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B using DiffEqJump
u0 = [0, 0]
tspan = (0., 60.)
p = [3.0, 4.0]
dprob = DiscreteProblem(brusselator,u0,tspan,p)
jprob = JumpProblem(brusselator,dprob,Direct())
jsol = solve(jprob,SSAStepper());

using StochasticDiffEq
u0 = [:X => 0., :Y => 5.]
tspan = (0., 60.)
p = [:A => 1.0, :B => 4.0]
sprob = SDEProblem(brusselator,u0,tspan,p)
sol = solve(sprob,ImplicitEM())
plot(sol)
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C using DiffEqJump
u0 = [:X => 0, :Y => 0]
tspan = (0., 60.)
p = [:A => 3.0, :B => 4.0]
dprob = DiscreteProblem(brusselator,u0,tspan,p)
jprob = JumpProblem(brusselator,dprob,Direct())
sol = solve(jprob,SSAStepper())
plot(sol)

Figure 2: Catalyst models can be simulated using both deterministic and stochastic interpretations. The well known
brusselator CRN contains two species (X and Y ) and depends on two parameters (A and B). Here, it is simulated using three different
interpretations, in each case both the code to make and plot the simulation, as well as the plot is shown. Note, the code to define
the brusselator ReactionSystem model is not shown, but is analogous to the DSL code for the erk model in Figure 1. Additional
post-processing has been carried out on the plot to improve their visualization in the article format. (A) While B > 1 + A2, the
deterministic interpretation of the model exhibits a limit cycle. This is confirmed using RRE simulations. (B) The model can also be
simulated using the stochastic CLE interpretation. (C) Finally, the discrete, stochastic, jump process interpretation is simulated via
Gillespie’s direct method. Here, the system displays a limit cycle even though B < 1 +A2, confirming the well known phenomenon of
noise induced oscillations [46].
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Figure 3: Simulations of Catalyst models outperform those of other modeling packages. Benchmarking of simulation
runtimes against the final (physical) time at which models are simulated to for Catalyst and four other modeling packages (gillespy2,
BioNetGen, Matlab SimBiology, and COPASI). The benchmarks were run on the multi-state (Multistate, 9 species and 18 reactions
[39]), multi-site (Multisite 2, 66 species and 288 reactions [9]), epidermal growth factor receptor signalling (Egfr net, 356 species and 3749
reactions [5]), B-cell receptor (1122 species and 24388 reactions [2]), and high-affinity human IgE receptor signalling (Fceri gamma2,
3744 species and 58276 reactions [11]) models. Catalyst typically outperforms the other packages by one to two orders of magnitude.
(A-E) Benchmarking deterministic RRE ODE simulations of the five models. Identical values for absolute and relative tolerance
parameters are used for all packages. (F-J) Benchmarking of stochastic chemical kinetics SSA simulations of the five models. Via
JumpProcesses.jl, Catalyst can use several different algorithms for exact Gillespie simulations, a subset of which are shown. Note, it
was remarked in [20] that BioNetGen (dotted green lines) use a pseudo-random number generator in SSAs that, while fast, is lower
quality than many (slower) modern generators such as Mersenne Twister.

Catalyst models can be simulated using a wide range of high-performance methods

Numerical simulations of Catalyst models are generally carried out using the DifferentialEquations package. It contains a
large number of numerical solvers and a wide range of additional features (such as event handling and automatic paralleliza-
tion). The package is highly competitive, often outperforming packages written in C and Fortran [35]. Simulation syntax is
straightforward, and output solutions can be plotted using the Plots.jl package [7] via a recipe that allows users to select the
species and times to display. CRNs can be translated and simulated using three interpretations, the ODE based RRE, the
SDE based CLE, and through discrete SSAs (Figure 2).

To demonstrate the performance of these solvers, we benchmarked simulations of CRN models using a range of CRN mod-
eling tools (BioNetGen, Catalyst, COPASI, gillespy2, and Matlab’s SimBiology toolbox) (Methods). We used both ODE
simulations and discrete SSAs. Few packages permit SDE simulations, hence such simulations were not benchmarked. Note,
however, DifferentialEquations’ SDE solvers are highly performative [34]. When comparing a range of models, from small
to large, we see that Catalyst typically outperforms the other packages, often by one to two orders of magnitude or more
(Figure 3). Especially for Gillespie-style simulations, the wide range of methods provided by DifferentialEquations enables
Catalyst to outperform the other packages (most of which only uses Gillespie’s direct method).

Catalyst enables composable, symbolic modeling of CRNs

Catalyst’s primary feature is that its models are represented using a CAS, enabling them to be algebraically manipulated.
Examples of how this is utilised include automatic computation of system Jacobians, calculation and elimination of conser-
vation laws, and simplification of generated symbolic DAE models via ModelingToolkit’s symbolic analysis tooling. These
techniques can help speed up numeric simulations, while also facilitating higher level analysis (for example, by generating
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ReactionSystem
ps
kB
kD

eqs

u0 = [A => 1.0, B => 1.0]
p = [kD => 1.0, kB => 1.0]
tspan = (0.0,10.0)

function (ˍ₋out, ˍ₋arg1, ˍ₋arg2, t)
  begin
      begin
          @inbounds begin
              ˍ₋out[1] = (+)((*)((*)(-1//1, ˍ₋arg2[1]), (^)((getindex)(ˍ₋arg1, 1), 2)), (*)((*)(2, ˍ₋arg2[2]), (getindex)(ˍ₋arg1, 2)))
              ˍ₋out[2] = (+)((*)((*)(1//2, ˍ₋arg2[1]), (^)((getindex)(ˍ₋arg1, 1), 2)), (*)((*)(-1, ˍ₋arg2[2]), (getindex)(ˍ₋arg1, 2)))
              nothing
          end
      end
  end
end

Solution
t
[0.0, 0.002,...,10.0]

u
[[1.0,1.0], [1.002, 0.998], ... [1.30, 0.84]]

states
A(t)
B(t)

eqs
kB, 2*A --> B
kD, B --> 2*A

@parameters kB kD
@variables t A(t) B(t)

reactions = [Reaction(kB, [A], [B], [2], [1]),
                   Reaction(kD, [B], [A], [1], [2])]
@named rs  = ReactionSystem(reactions, t)

rs = @reaction_network begin
    (kB,kD), 2A <--> B
end kB kD

os = convert(ODESystem,rs)

ODESystem
ps
kB
kD

eqsstates
A(t)
B(t)

eqs
Differential(t)(A(t)) ~ 2kD*B(t) - kB*(A(t)^2)
Differential(t)(B(t)) ~ (1//2)*kB*(A(t)^2) - kD*B(t)

oprob = ODEProblem(os,u0,tspan,p)
sol = solve(oprob)

A

B

C

Figure 4: The simulation of a Catalyst model, with internal intermediates displayed. Code as written by the user (yellow
background), and as generated internally by Catalyst and ModelingToolkit (blue and grey backgrounds respectively) are shown, in
addition to the generated structures and their fields (some of the internal fields are omitted in all displayed structures). (A) A
reaction system (consisting of a reversible dimerisation reaction) is created using either the DSL, or programmatically using the CAS.
The model is stored in a ReactionSystem structure. (B) The ReactionSystem can be converted into a ModelingToolkit ODESystem

structure, corresponding to a symbolic RRE ODE model. (C) By providing initial conditions, parameter values, and a time span, the
ODESystem can be simulated, generating an output solution. The generated (internal) Julia code for evaluating the derivatives defining
the ODEs, which gets compiled and is input to the ODE solver, is displayed in grey. At each step, the user has the ability to investigate
and manipulate the generated structures.
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non-singular Jacobians after elimination of conservation laws that can aid steady-state analysis). The symbolic representa-
tion also permits model internals to be freely extracted, investigated, and manipulated, giving the user full control over their
models (Figure 4). This enables various forms of programmatic model creation, extension and composition. Model structures
that occur repetitively can be duplicated, and disjoint models can be connected together. For example, such functionality
can be used to model a population of cells, each with defined neighbours, where each cell can be assigned a duplicate of
the same simple CRN. The CRNs within each cell can then be connected to those of its neighbours, enabling models with
transport structures. Similarly, one could define a collection of genetic modules, and then compose such modules together
into a larger gene regulatory network.

Catalyst is highly flexible in the allowed Julia functions that can be used in defining rates, rate laws, or stoichiometry
coefficients. This means that while reaction rates and rate laws are typically constants, parameters, or simple functions, e.g.
Hill equations, they may also include other terms, such as neural networks or data-driven, empirically defined, Julia functions.
Likewise, stoichiometric coefficients can be random variables by defining them as a symbolic variable, and setting that variable
equal to a Julia function sampling the appropriate probability distribution. Such functionality can be utilized, for example,
to model transcriptional bursting [17], where the produced mRNA copy-numbers are random variables. Finally, standard
Catalyst-generated ODE and SDE models are differentiable, in that the generated codes can be used in higher-level packages
that rely on automatic differentiation. In this way Catalyst-generated models can be used in machine-learning based analyses.

That Catalyst gives full access to its model internals, combined with its composability, allows other packages to easily
integrate into, and build upon, it. Indeed, this is already being utilised by independent package developers. The Moment-
Closure.jl Julia package, which implements several techniques for moment closure approximations, is built to be deployed on
Catalyst models [40]. It can generate symbolic finite-dimensional ODE system approximations to the full, infinite system
of moment equations associated with the chemical master equation. These symbolic approximations can then be compiled
and solved via ModelingToolkit in a similar manner to how Catalyst’s generated RRE ODE models are handled. Similarly,
FiniteStateProjection.jl [32] builds upon Catalyst and ModelingToolkit to enable the numerical solution of the chemical mas-
ter equation, while DelaySSAToolkit.jl [12] can accept Catalyst models as input to its SSAs that handle stochastic chemical
kinetics models with delays. Another example of how Catalyst’s flexibility enables its integration into the Julia ecosystem is
that CRNs with polynomial ODEs (a condition that holds for pure mass action systems) can be exported as polynomials.
This enables polynomial methods, such as homotopy continuation, to be employed on Catalyst models. Here, homotopy
continuation (implemented by the HomotopyContinuation.jl Julia package) can be used to reliably compute all roots of a
polynomial system [6]. This is an effective approach for finding multiple steady states of a system. While the presence of Hill
functions generates rational polynomial systems, from these the numerator can be extracted, and homotopy continuation can
still be used.

Catalyst models are compatible with a wide range of ancillary tools and methods

The Julia SciML open source organization supports a wide range of techniques for working with models and data, based
around the IR that Catalyst produces. While the reactions that constitute a CRN are often known in developing a model,
system parameters rarely are (these typically correspond to the reaction rates). A first step in analysing a model is identi-
fiability analysis, where we determine when the parameters can be uniquely identified from the data [30]. This is enabled
through the StructuralIdentifiability.jl package. In the next step, parameters can be fitted to data. This can be done using
DiffEqParamEstim.jl, which provides simple functions that are easy to use. Alternatively, more powerful packages, like the
Turing.jl Julia library for Bayesian analysis, offer increased flexibility for experienced users [13]. Fitting model structure to
data is also possible using the DataDrivenDiffEq.jl SciML package, for which specific CRN support is currently a work in
progress. Alternatively, unknown CRN structures can be simplified using neural networks, which are then trained on data.

Finally, there exists a large number of tools within SciML and the wider Julia ecosystem which can be employed on Catalyst
models (Figure 5). System steady states can be computed using SteadyStateDiffEq.jl or the HomotopyContinuation.jl Julia
package [6]. The BifurcationKit.jl Julia package can be used to compute bifurcation diagrams [45]. Options for displaying
CRNs, either as network graphs (via Graphviz) or Latex formatted equations (via Latexify.jl), also exist.
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Visualization
 
 using DiffEqJump, Plots
 dprob = DiscreteProblem(rn,u0,tspan,p)
 jprob = JumpProblem(rn,dprob,Direct())
 sol = solve(jprob,SSAStepper())
 plot(sol)

Gillespie Simulations
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 using StochasticDiffEq, Plots
 prob = SDEProblem(rn,u0,tspan,p)
 sol = solve(prob,ImplicitEM())
 plot(sol)

CLE Simulations
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 using OrdinaryDiffEq, Plots
 prob = ODEProblem(rn,u0,tspan,p)
 sol = solve(prob,Rosenbrock23())
 plot(sol)

RRE Simulations
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Simulation

 
 using Catalyst, ReactionNetworkImporters
 rn = loadrxnetwork(BNGNetwork(), "Path/To/File.net")

Load from File

Model Creation

 
 using Catalyst, ModelingToolkit
 @parameters S D τ v v0 n d t
 @variables σ(t) A(t)
 Hill(X,Y,v,n) = v*(X^n)/(X^n+Y^n+1)
 rxs=[Reaction(v0+Hill(S*σ,D*A,v,n),nothing,[σ],nothing,[1])
      Reaction(d,[σ],nothing,[1],nothing)
      Reaction(σ/τ,nothing,[A],nothing,[1])
      Reaction(1/τ,[A],nothing,[1],nothing)]
 rn  = ReactionSystem(rxs, t, [σ,A], [S, D, τ, v, v0, n, d])

 
 using Catalyst
 Hill(X,Y,v,n) = v*(X^n)/(X^n+Y^n+1)
 rn = @reaction_network begin
     v0+Hill(S*σ,D*A,v,n), ∅ → σ

     d, σ → ∅

     (σ/τ,τ/τ), ∅ ↔ A
 end S D τ v v0 n d

Manual Declaration

The Catalyst DSL
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Unstable steady state

Bifurcation Analysis
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 latexify(convert(ODESystem,rn))  latexify(rn)  Graph(rn)

via Latexify.jl 

Reaction
System

Structure

Other Functionalities

via Graphviz

Figure 5: A wide range of features are available for Catalyst model analysis. A CRN model can be created
either through the DSL, by manually declaring the reaction events, or by loading it from a file. The model is stored in the
ReactionSystem IR, which can be used as input to a wide range of methods. Purple boxes indicate code written by the user,
and green boxes the corresponding output. For some methods, either one, or both, boxes are omitted.
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Discussion

In this article, we have introduced the Catalyst library for modeling of CRNs. It represents models through the Modeling-
Toolkit.jl IR, which is ubiquitously used within the SciML organisation, and can generate optimized inputs for numerical
simulations (RRE ODE, CLE SDE, and stochastic chemical kinetics jump process models). Moreover, it can compose with
a variety of other Julia packages, including data-driven modeling tooling (parameter fitting and model inference), and other
functionality (identifiable analysis, sensitivity analysis, steady state analys, etc). The IR is based on the Symbolics.jl CAS,
enabling algebraic manipulation and simplification of Catalyst models. This can both be harnessed by the user (e.g. to cre-
ate models programmatically) and by software (e.g. for automated Jacobian computations). Finally, this also enables easy
connection to other Julia packages for symbolic analysis, such as enabling polynomial methods (e.g homotopy continuations)
to act on CRN ODEs that have a polynomial form.

In addition to the wide range of powerful tools enabled by the combination of the ModelingToolkit IR and the Symbol-
ics CAS, Catalyst also provides a DSL that simplifies the declaration of especially smaller models. Of a finalized pipeline
that evaluates a model with respect to a specific scientific problem, the model declaration is typically only a minor part.
However, reaching a final model often requires the production and analysis of several alternative network topologies. If the
barrier to create or modify a model can be reduced, more topologies can be explored in a shorter time. Thus, an intuitive
interface can greatly simplify the model exploration portion of a research project. By providing a DSL that reads CRN
models in their most natural form, Catalyst helps to facilitate model construction. In addition, this form of declaration
makes code easier to debug, as well as making it easier to understand for non-experts.

While several previous tools for CRN modeling have been primarily designed around their own interface, we have instead
designed Catalyst to be called from within standard Julia programs and scripts. This is advantageous, since it allows the
flexibility of analysing a model with custom code, without having to save and load simulation results to and from files.
Furthermore, by integrating our tool into a larger context (SciML), support for a large number of higher-order features is
provided, without requiring any separate implementation within Catalyst. This strategy, with modeling software targeting
an IR (here provided by ModelingToolkit) enables modelers across widely different domains to collaborate in the development
and maintenance of tools. We believe this is the ideal setting for a package like Catalyst.

Catalyst is available for free under the permissive MIT License. The source code can be found at https://github.com/
SciML/Catalyst.jl. It is also a registered package within the Julia ecosystem and can be installed from within a Ju-
lia environment using the command Pkg.add("Catalyst"). Full documentation, including tutorials and an API, can be
found at https://catalyst.sciml.ai/stable/. Issues and help requests can be raised either at the Catalyst GitHub page, on
the Julia discourse forum (https://discourse.julialang.org/), or at the SciML organization’s Julia language Slack channels
(#diffeq-bridged and #sciml-bridged). The package is open to pull requests from anyone who wishes to contribute to
its development. Users are encouraged to engage in the project. Current and future SciML organization efforts include the
development of spatial partial differential equation, spatial jump process, τ -leaping, and hybrid/multiscale solvers, along with
plans to extend the Catalyst interface to allow the specification of spatial and hybrid CRN models.

Methods

Benchmarks

Benchmarks were carried out using the five CRN models used in [20]. The .bngl files provided in [20] were used as input to
BioNetGen, while COPASI, gillespy2, and Matlab used the corresponding (BioNetGen generated) .xml files. Catalyst used
the corresponding (BioNetGen generated) .net files. BioNetGen, COPASI, and gillespy2 simulations were performed using
their corresponding Python interfaces.

First, each model was simulated using each tool, and the corresponding solution trajectories were inspected, ensuring that the
correct output was produced. Next, simulation run times were measured for a range of physical model final times. Runtimes
were measured using timeit (in Python), BenchmarkTools.jl (in Julia, [8]), and timeit (in Matlab). The median runtime
over several simulations was used for the plots in Figure 3. For ODE simulations, for all tools, the absolute tolerance was set
to 10−12 and the relative tolerance 10−6. Catalyst has access to additional ODE solvers via DifferentialEquations.jl, more
specifically OrdinaryDiffEq.jl, and is able to attain even faster run times for some problems (such as QNDF and TRBDF2,
[24, 37]). However, to ensure the benchmarks are comparable across the various tools, we limited ourselves to the CVODE
and lsoda solvers, which the other tools rely on [33, 22]. In this way the ODE solver comparisons help measure the compu-
tational performance of the ODE derivative functions generated by Catalyst and ModelingToolkit in comparison to those of
other packages. For the larger models, some packages were omitted from the reported benchmarks, as these were unable to
successfully simulate the model within a reasonable time frame.
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Model: Multistate Multisite2 EGfr net BCR Fceri gamma2

Explicit Jacobian No No Yes Yes Yes
Sparse No No Yes Yes Yes

Linear solver dense LU dense LU KLU KLU KLU

Table 1: When using the CVODE solver with the larger EGfr net, BCR, and Fceri gamma2 networks, a sparse Jacobian eval-
uation function was automatically constructed for Catalyst models when generating the compiled ODE derivative functions
with ModelingToolkit. This was found to reduce CVODE’s overall simulation time. The KLU linear solver [10] was then
used within CVODE. For the Multistate and Multisite2 networks, no explicit Jacobian evaluation function was provided to
CVODE. In this case CVODE internally approximates the Jacobian using finite differences, and uses dense LU factorizations
in solving linear systems.

In generating compiled functions from Catalyst models for use in ODE solvers, users can also choose to automatically
generate functions for evaluating the Jacobian of the ODE derivative function, and can choose to automatically construct
this function to work with a dense or sparse representation of the Jacobian matrix. With CVODE, we found that including a
sparse Jacobian generally reduced simulation times for the larger reaction network models. Via DifferentialEquations.jl, one
also has flexibility in their choice of linear solver to use within implicit methods. In our benchmarking, Jacobians were only
used for the CVODE solver with Catalyst-generated models; the Jacobian and linear solver choices selected for this solver
for each network are specified in Table 1.

Stochastic chemical kinetics simulations from Catalyst models used SSAs defined in JumpProcesses.jl [25], a component
of DifferentialEquations.jl. In Figure 3, Direct refers to Gillespie’s direct method [14], SortingDirect to the sorting direct
method of [29], RSSA and RSSACR to the rejection SSA methods of [42, 43, 44]. Dependency graphs needed for the different
methods are automatically generated via Catalyst and ModelingToolkit as input to the JumpProcesses.jl solvers.

The benchmarks were carried out on Julia version 1.7.3, using Catalyst version 11.0.0, JumpProcesses (formerly DiffEqJump)
version 8.3.0, and OrdinaryDiffEq version 6.11.2. Note that JumpProcesses and OrdinaryDiffEq are both components in the
meta DifferentialEquations.jl package. We used the version 0.7.0 python interface for BioNetGen, the basico version 0.16
python interface for Copasi, gillespy2 version 1.6.8, and Matlab version 9.11 with SimBiology version 6.2.

Code availability

Scripts for generating all figures presented here, as well as for carrying out the benchmarks, can be found at https://github.
com/TorkelE/Catalyst-Fast-Biochemical-Modeling-with-Julia.
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[46] José M.G. Vilar, Hao Yuan Kueh, Naama Barkai, and Stanislas Leibler. Mechanisms of noise-resistance in genetic
oscillators. Proceedings of the National Academy of Sciences of the United States of America, 99(9):5988–5992, 2002.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.30.502135doi: bioRxiv preprint 

https://hal.archives-ouvertes.fr/hal-02902346
https://doi.org/10.1101/2022.07.30.502135
http://creativecommons.org/licenses/by-nc-nd/4.0/

