
 
 

45 
 

 

Supplementary Figure 1: 

(a) projections of semantic space based on three principal dimensions. t-SNE embedding of 

scripts projected onto dimensions 1-2. Each dot represents a single script, Colored 

volumes are continuous spaces occupied by each script type. Color denotes script type 

(‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). Note overlap of ‘PTSD’ and ‘Sad’ semantic 

content. 

(b) Same as (a) but projected onto dimensions 1-3. 

(c) Same as (a) but projected onto dimensions 2-3. 
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Supplementary Figure 2: 

(a) Hippocampus – neural similarity matrix. Script-by-script neural similarity matrix for 

spatial patterns extracted from the hippocampus during script reactivation. Within-

category similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: red, 

‘Sad’: blue, ‘Calm’: gray). 

(b) Acoustic similarity matrix. Acoustic similarity of scripted narratives. Within-category 

similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: red, ‘Sad’: blue, 

‘Calm’: gray). 

(c) Hippocampus – acoustic-to-neural IS-RSA. Intersubject representational similarity 

analysis conducted on pairwise similarity of acoustic and neural patterns in the 

hippocampus. Each datapoint is one pairwise comparison. Analysis was iterated per script 

type (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). Histograms along axes depict similarity 

distribution, thick trace depict estimated density, colors correspond to main legend. 

Regression lines are approximate visualization of Spearman correlation rho coefficients 

for IS-RSA in ‘PTSD’ and ‘Sad’ scripts (red and blue resp.). 
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Supplementary Figure 3: 

(a) semantic-to-neural IS-RSA in posterior hippocampus. Intersubject representational 

similarity analysis conducted on pairwise similarity of semantic content and neural 

patterns in the posterior hippocampus. Each datapoint is one pairwise comparison. 

Analysis was iterated per script type (‘PTSD’: red, ‘Sad’: blue). Regression lines are 

approximate visualization of Spearman correlation rho coefficients for IS-RSA in ‘PTSD’ 

and ‘Sad’ scripts (red and blue resp.). * p < 0.001. 

(b) Same as (a) but for the anterior hippocampus. 
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Supplementary Figure 4: 

(a) Amygdala – neural similarity matrix. Script-by-script neural similarity matrix for spatial 

patterns extracted from the amygdala during script reactivation. Within-category similarity is 

marked in colored triangles off the matrix diagonal (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). 

(b) Semantic similarity matrix. Semantic similarity (Pearson’s correlation coefficient, r) of 

scripted narratives. Within-category similarity is marked in colored triangles off the matrix 

diagonal (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray).  

(c)Amygdala – semantic-to-neural IS-RSA. Intersubject representational similarity analysis 

conducted on pairwise similarity of semantic content and neural patterns in the amygdala. Each 

datapoint is one pairwise comparison. Analysis was iterated per script type (‘PTSD’: red, ‘Sad’: 

blue, ‘Calm’: gray). Histograms along axes depict similarity distribution, thick trace depict 

estimated density, colors correspond to main legend. Regression lines are approximate 

visualization of Spearman correlation rho coefficients for IS-RSA in ‘PTSD’ and ‘Sad’ scripts (red 

and blue resp.). 
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Supplementary methods 

fMRIprep Preprocessing: 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.0 

(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 

based on Nipype 1.5.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); 

RRID:SCR_002502). 

Anatomical data preprocessing: 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.  The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008, 

RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference 

was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal 

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 

using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Volume-based spatial 

normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w 

reference and the T1w template. The following template was selected for spatial normalization: 

ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing: 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Susceptibility distortion correction (SDC) 

was omitted. The BOLD reference was then co-registered to the T1w reference using flirt (FSL 

5.0.9, Jenkinson and Smith 2001) with the boundary-based registration (Greve and Fischl 2009) 

cost-function. Co-registration was configured with nine degrees of freedom to account for 

distortions remaining in the BOLD reference. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and translation parameters) are 
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estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). 

BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 

RRID:SCR_005927). The BOLD time-series (including slice-timing correction when applied) 

were resampled onto their original, native space by applying the transforms to correct for head-

motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original 

space, or just preprocessed BOLD. The BOLD time-series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume 

and its skull-stripped version were generated using a custom methodology of fMRIPrep. Several 

confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS and three region-wise global signals. FD was computed using two 

formulations following Power (absolute sum of relative motions, Power et al. (2014)) and 

Jenkinson (relative root mean square displacement between affines, Jenkinson et al. (2002)). FD 

and DVARS are calculated for each functional run, both using their implementations in Nipype 

(following the definitions by Power et al. 2014). The three global signals are extracted within the 

CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were 

extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-series (using a 

discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable 

voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined 

CSF+WM) are generated in anatomical space. The implementation differs from that of Behzadi et 

al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are 

subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by 

thresholding the corresponding partial volume map at 0.05, and it ensures components are not 

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled 

into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 

Components are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from 

consideration. The head-motion estimates calculated in the correction step were also placed within 
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the corresponding confounds file. The confound time series derived from head motion estimates 

and global signals were expanded with the inclusion of temporal derivatives and quadratic terms 

for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardized DVARS were annotated as motion outliers. All resamplings can be performed with 

a single interpolation step by composing all the pertinent transformations (i.e., head-motion 

transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed using 

mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver: 

The above boilerplate text was automatically generated by fMRIPrep with the express intention 

that users should copy and paste this text into their manuscripts unchanged. It is released under the 

CC0 license. 
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