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Abstract  

For people with post-traumatic stress disorder (PTSD), recalling traumatic memories often 

displays as intrusions that differ profoundly from processing of ‘regular’ negative memories. These 

mnemonic features fueled theories speculating a qualitative divergence in cognitive state linked 

with traumatic memories. Yet to date, little empirical evidence supports this view. Here, we 

examined neural activity of PTSD patients who were listening to narratives depicting their own 

memories. An inter-subject representational similarity analysis of cross-subject semantic content 

and neural patterns revealed a differentiation in hippocampal representation by narrative type: 

Semantically similar sad autobiographical memories elicited similar neural representations across 

participants. By contrast, within the same individuals, semantically thematically similar trauma 

memories were not represented similarly. Furthermore, we were able to decode memory type from 

hippocampal multivoxel patterns. Finally, individual symptom severity modulated semantic 

representation of the traumatic narratives in the posterior cingulate cortex. Taken together, these 

findings suggest that traumatic memories are a qualitatively divergent cognitive entity.  
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Main 

The involuntary re‐experiencing of the traumatic autobiographical memory, often following 

exposure to trauma‐related stimuli, is a hallmark feature of post-traumatic stress disorder 

(PTSD)1,2. Although personal memory is at the core of PTSD symptoms, research on the neural 

mechanism of PTSD has largely focused on non-personal basic learning and memory paradigms3. 

It is yet unclear whether traumatic memories differ from negative non-traumatic autobiographical 

memories in a qualitative or a quantitative manner. Is a traumatic memory an exceptionally strong 

manifestation of autobiographical memory or a divergent neural representation of memory?  

To examine this, we need to factor-in differences across individual traumatic narratives and the 

idiosyncratic experiences they evoke, and extract from them the common markers operating in 

trauma-driven state. With this in mind, we designed a study that examines PTSD patients’ neural 

responses to their own personal traumatic memory in the form of a structured, fully annotated, 

audio narrative. We compared traumatic memory, within each participant, to a negatively-valenced 

non-traumatic sad memory, and a calm positive memory. 

Previous research has widely established the role of the hippocampus in the construction of 

relational cognitive maps, onto which events are bound across space and time to form episodic 

memories4–6. It is through this tracking of sequences of events that the hippocampus generates a 

narrative from discrete events7,8. In turn, the hippocampus also governs the ensuing retrieval of 

such events9,10. The hippocampus is in fact so central to maintenance of episodic memory that 

lesioning it results in grave deficits in mnemonic abilities, to the point of global anterograde 

amnesia in humans11.  

Impairments to hippocampal processes are at the heart of PTSD pathophysiology12. A solid body 

of evidence suggests that PTSD is associated with structural abnormalities (predominantly a 

reduction in volume), as well as reduced functional connectivity between the hippocampus and 

other regions of the default mode network during rest13,14. In the context of encoding of the 

traumatic memory itself, peri-traumatic aberrations in hippocampal functions are thought to 

contribute to the paradoxical mnemonic sequalae commonly observed in PTSD – difficulty in 

voluntary coherent recall alongside with detailed involuntary intrusions of the traumatic 

memory15,16. All in all, our understanding of the impact of PTSD on the spectrum of hippocampus-

mediated mnemonic processes, is still murky17 
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Emotional memories—episodic memories that elicit emotions at retrieval—often engage the 

amygdala18. Functionally, the amygdala is considered one component in a broader neurocircuitry 

model implicated in PTSD, comprised of interactions with the hippocampus and medial prefrontal 

cortex19. Generally, the amygdala shows hyperresponsivity to both non-specific threat-related 

stimuli20 and personal trauma reminders in PTSD (Rauch et al., 1996; Shin et al., 2004; also see 

meta-analysis by Etkin and Wager, 2007). Amygdala-hippocampus connectivity during 

construction of negative autobiographical memories has also resulted in conflicting findings 

demonstrating decreased3,24, but also increased functional connectivity25 between these two 

structures.  

 Amygdala activation during memory encoding modulates the memory’s explicit subsequent 

strength26, evaluated through its persistence, accuracy, and vividness27. Amygdala activity can also 

be driven by hippocampal inputs during the reinstatement of an aversive memory. Such 

hippocampal input is typically based on episodic retrieval, however, semantic information may 

also induce fear (e.g., ‘Cobra snakes are dangerous’). In fact, amygdala responses may even arise 

from imagined stimuli, as in the case of experiences conveyed through narrative (e.g., horror or 

suspense fiction)28. Whether the amygdala itself serves as an ‘auxiliary’ site to support the storage 

of emotional memory is still debated29–31. 

Considering this evidence, we examined whether and how the hippocampus and amygdala 

differentiate between traumatic and sad autobiographical memories. We hypothesized that across 

PTSD patients, semantic similarity would correspond to neural similarity: if the personal memories 

of two participants are semantically close, their patterns of neural responses while listening to the 

audio recording of these memories should be similar as well. If traumatic and sad memories are 

just different cases of autobiographical memories, we should observe semantic-to-neural 

correspondence across pairs of traumatic memories and pairs of sad memories alike. However, if 

traumatic autobiographical memories diverge from—rather than being a version of—sad 

autobiographical memories, then we would observe the semantic-to-neural relationship only for 

sad, but not traumatic memories. Our hypothesis further suggests that a shared neural 

representation will allude to a shared underlying neural mechanism. If the effect does not extend 

to pairs of traumatic memories across participants, despite their semantic similarity, this may imply 

traumatic memories diverge from the neurotypical mechanisms of other sad, non-traumatic, 

autobiographical memory.  
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We hypothesized that if such mechanistic difference between traumatic and sad memories exists, 

it would be detected in hippocampal neural patters. In contrast, and as a control comparison, we 

did not expect such differentiation, or any pattern representation related to the semantic content of 

memories in the amygdala, given the role of this region primarily in signifying emotional valence.  

 

Results 

Twenty-eight participants (age = 38.2 ± 10.4 years, 11 females) diagnosed with PTSD (CAPS 

score = 41.2 ± 8.3), underwent reactivation of autobiographical memory through script-driven 

imagery while undergoing functional magnetic resonance imaging (fMRI).  First, in order to 

generate stimuli which are based on participants’ autobiographical memory, we used an imagery 

development procedure. Participants elaborated on three types of autobiographical memories: 1) 

the ‘PTSD’ condition: the traumatic event associated with their PTSD (DSM-5 criterion A; 

common examples were combat, sexual assault, domestic violence), 2) the ‘Sad’ condition: a sad 

meaningful, but non-traumatizing experience (common examples were death of family member or 

pet) and 3) the ‘Calm’ condition: a positive, calm event (common examples were memorable 

outdoor activities). These highly personal and variable depictions of autobiographical memory 

were then systematically arranged into an approximately 120-second audio clip (referred to 

henceforward as ‘script’ or ‘narrative’, interchangeably), narrated by a member of the research 

staff. All scripts were composed with ample attention to a common rigid structure, into which the 

individual autobiographical memory was incorporated. Notably, ‘PTSD’ and ‘Sad’ narratives were 

scripted to maximize their structural similarity to control for content and arousal (see Methods). 

Participants listened to this novel rendition of their autobiographical memory for the first time 

while undergoing functional magnetic resonance imaging (fMRI) (Figure 1A). 

Basic group inference in cognitive neuroscience, and neuroimaging in particular, relies on the 

detection of shared stimulus-induced signals of greater amplitude than the noise or idiosyncratic 

signals in these systems32. Autobiographical memories are rarely generated in a controllable lab 

setting, and therefore differ in their content. However, at the same time, autobiographical 

memories recall may elicit common cognitive states (e.g., mental time travel) that are potentially 

subserved by common neural substrates across individuals. In this study, the sensory stimuli used 

for reactivation were based on idiosyncratic experiences in order to invoke a common cognitive 
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state – the reexperiencing of a traumatic autobiographical memories.  During recruitment 

participants were not screened for a specific trauma type. This enabled us to span a wide range of 

themes, some of which were present in ‘PTSD’ and ‘Sad’ conditions. For example, a narrative 

describing the death of a loved one can meet PTSD criterion A classification for one participant 

and thus be associated with a traumatic autobiographical narrative yet be regarded as ‘Sad’ 

autobiographical memory (i.e., non-traumatizing) for another. This granted the opportunity to 

measure similarity of autobiographical memories in a parametric and continuous manner, and 

critically – to compare the representation of relatable autobiographical memories in light of their 

clinical outcomes – ‘PTSD’ or non-traumatizing. 

Semantic analysis of similarity in autobiographical memory 

To quantify similarity between autobiographical memory based narratives across individuals and 

conditions we applied a word embedding approach – a computational linguistic tool used to 

quantify distances between text-based semantics33. In brief, words are pre-sampled from gigantic 

text corpora and are then embedded in a high-dimensionality space according to local co-

occurrences. The derived semantic space allows to infer relational structure between concepts 

according to their distance. Such tools were previously used to uncover neural representations of 

semantic spaces34 both with functional imaging35 and invasive recordings36. 

We used MATLAB’s word2vec with a pre-trained embedded space for one  million words in the 

English language37. Each word was assigned a 300-dimensional vector representation. In our 

analytical hierarchy, sentence vectors were represented as the average of word vectors comprising 

them. Similarly, scripts represent as the average representation of their sentences (Figure 1B). The 

high dimensionality of the semantic dataset is difficult to interpret visually. We therefore applied 

t-distributed Stochastic Neighbor Embedding (t-SNE), a method for dimensionality reduction, to 

the data to cluster narratives based on the semantic similarity of their content and projected this 

dimensionality-reduced dataset onto a three-dimensional space.  

We observed that both types of negatively-valenced narratives – ‘PTSD’ and ‘Sad’ – formed 

overlapping clusters in semantic space, whereas ‘Calm’ narratives were grouped in a separate part 

of the space (Figure 2A). Additional 2D projections of the semantic space are available in (Figure 

S1). This qualitative visualization affirmed that semantic content of ‘PTSD’ and ‘Sad’ 
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autobiographical memories are comparable and thus ‘Sad’ scripts are poised to provide a valid 

control for the ‘PTSD’ scripts. 

 

 

Figure 1: 

(a) Experimental paradigm for script-based autobiographical memories reactivation. At some 

point prior to enrollment, an event was perceived, and an autobiographical memory was formed. 

This memory has since then undergone an unknown number of recalls and reconsolidation 

iterations. During the study, participants once again recalled this memory, this time while 

verbalizing it as part of the imagery development procedure. These recollections were 

incorporated into a novel narrative-form rendition of the autobiographical memory, which was 

played to the participants for the first time while undergoing functional imaging, in order to 

reactivate this autobiographical memory once again.  
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(b) Semantic similarity of autobiographical narratives using word embedding. Each indexable 

word in the script was assigned a 300-dimensional vector representation (e.g., ‘apartment’, ‘lay’ 

etc.). Sentence vectors were represented as the average of word vectors comprising them (e.g., 

tokenized e.g., ‘apartment lay couch watch television’) and scripts represented as the average of 

the sentences in them. Pairwise semantic similarity across participants was calculated. 

We next measured semantic similarity using the cosine distance between the 300-dimension 

vectors representing the scripts. The resulting semantic similarity matrix was comprised of the 

three script types (‘PTSD’, ‘Sad’, ‘Calm’) of 28 participants yielding a 84 X 84 matrix in total. 

Script types were grouped to aid in visualization of ‘type’ clusters off the diagonal (Figure 2B). 

In addition to dimensionality reduction, we calculated cross-category similarity and observed that 

the ‘PTSD’ and ‘Sad’ narratives showed a higher cross-category semantic similarity than other 

cross-category comparisons (Similarity (r): ‘PTSD’:’Sad’ = 0.059 ± 0.159, ‘Calm’:’Sad’ = -0.274 

± 0.147 ‘Calm’:’PTSD’ = -0.224 ± 0.150; ANOVA: F(2,2351) = 1094.75, p < 1E-300. ηp
2 = 0.325) 

(Figure 2C). This semantic resemblance can be attributed to the themes shared by both negatively 

valenced scripts, as well as the systematically controlled structure and the shared phrases that were 

used.  

In a complementary analysis we quantified pairwise similarity within each of the three script 

categories. As expected, we observed that within-category scripts displayed high semantic 

similarity (Similarity (r): ‘PTSD’ = 0.164 ± 0.139, ‘Sad’ = 0.237 ± 0.174 ‘Calm’ = 0.413 ± 0.174; 

1-sample t-test vs 0: , all p < 1E-300). Further, an ANOVA conducted on script types revealed a 

main effect of ‘script’ (ANOVA: F(2,1133) = 231.80, p = 4.29E-85, ηp
2 = 0.225). Post-hoc t-tests 

further demonstrated that ‘Calm’ scripts had higher within-category similarity than ‘Sad’, and 

‘Sad’ scripts had higher with-category similarity than ‘PTSD’ (both p < 0.0001, corrected with 

Tukey’s HSD). 

These results suggest that sad and traumatic memories in the cohort overlapped in themes and 

semantic content. This analysis laid foundations for asking whether the neural patterns associated 

with these memories will differ by their clinical classification - traumatic or sad. Thus, any ensuing 

neural differences between ‘PTSD’ and ‘Sad’ reactivations may present themselves on top of a 

maximally identical pool of stimuli. We note that given their autobiographical nature and the use 

of a naturalistic paradigm, such stimuli may never be identical. However, establishing a “handle” 
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on the differences and commonalities of the narratives enables us to leverage those differences in 

a quantifiable manner to provide neural insight. 
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Figure 2: 

(a) Clustering of semantic similarity across script types using t-SNE. t-SNE embedding of scripts. 

Each dot represents a single script, projected onto a 3D space. Colored volumes are continuous 

areas in space occupied by each script type. Color denotes script type (‘PTSD’: red, ‘Sad’: blue, 

‘Calm’: gray). Note overlap of ‘PTSD’ and ‘Sad’ semantic content. Text adjacent to data points 

are general titles of narrative content, generated by the researchers (abbreviations: Fam.: family, 

Sex. sexual. Mil. military). Some titles were omitted to prevent clutter. 

(b) Pairwise similarity of semantic content of scripted narratives. Semantic pairwise similarity 

(Pearson’s correlation coefficient, r) presented for all scripted narratives. Within-category 

similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: 

gray). Across-category similarity is marked in colored circles in distinct square sectors of the 

matrix (‘PTSD:Sad’: yellow, ‘Calm:Sad’: magenta, ‘Calm:PTSD’: teal). Text labels next to matrix 

rows are general titles of narrative content, generated by the researchers. 

(c) Semantic similarity across script types. Raincloud plots illustrating the distribution of pairwise 

semantic similarity between pairs of script types (‘PTSD:Sad’: yellow, ‘Calm:Sad’: magenta, 

‘Calm:PTSD’: teal). *** p < 0.001 

 

Intersubject Representational Similarity Analysis (IS-RSA) 

All participants listened to each script type three times during the functional scan. Given our a-

priori interest in the involvement of the hippocampus and amygdala in the processing of traumatic 

autobiographical memories in PTSD, we extracted signals from these structures using the Harvard-

Oxford probabilistic atlas to conduct region-of-interest (ROI) analyses. In order to enhance signal 

to noise for the detection of the common pattern elicited by the repeated stimuli, the time courses 

were averaged across the three repeats of the script per ROI. The voxel time course of this average 

run was collapsed across time to generate a spatial pattern associated with the reactivation of each 

autobiographical memory. Finally, we generated a neural similarity matrix by calculating the 

pairwise Pearson correlation coefficient between the spatial patterns of all scripts. The dimensions 

of this matrix were identical to the one storing the narratives’ semantic similarity (28 participants 

X 3 script types) (Figure 3A). To account for the idiosyncratic nature of autobiographical 
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memories, we used intersubject representational similarity analysis (IS-RSA) to relate the 

personalized semantic content of the scripts with neural representations acquired during script 

reactivation. In IS-RSA, the neural and semantic similarity matrices were vectorized and correlated 

(Spearman’s correlation) within each category of script type, yielding three correlation coefficients 

(‘rho’, ρ) per ROI, one for each script type (Figure 3B). The first IS-RSA we conducted related 

between-participant neural similarity of hippocampal patterns (Figure 3C) with the between-

participant semantic similarity matrix computed before (Figure 3D). 
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Figure 3: 

(a) Extraction of spatial patterns. Each script narrative (‘PTSD’, ‘Sad’ , ‘Calm’) was played 

three times in the scanner. spatial patterns were extracted from regions of interest and 

averaged across repeated presentations to generate an average pattern associated with 

each script reactivation. 

(b) Intersubject representational similarity analysis (IS-RSA). We carried out three 

independent IS-RSA in which intersubject variability during script reactivation was 

captured using two subject by subject matrices: one depicting neural pattern pairwise 

similarity, and the other depicting semantic pairwise similarity. Spearman rank correlation 

was calculated for each pair of vectorized similarity matrices to provide a correlation 

coefficient tying semantic and neural representation of either ‘PTSD’, ‘Sad’ or ‘Calm’ 

narratives.  

(c) Hippocampus – neural similarity matrix. Script-by-script neural similarity matrix for 

spatial patterns extracted from the hippocampus during script reactivation. Within-

category similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: red, 

‘Sad’: blue, ‘Calm’: gray). 

(d) Semantic similarity matrix Script-by-script semantic similarity of scripted narratives. 

Within-category similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: 

red, ‘Sad’: blue, ‘Calm’: gray).  

(e) Hippocampus – semantic-to-neural IS-RSA. Intersubject representational similarity 

analysis conducted on pairwise similarity of semantic content and neural patterns in the 

hippocampus. Each datapoint is one pairwise comparison. Analysis was iterated per script 

type (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). Histograms along axes depict similarity 

distribution, thick trace depict estimated density, colors correspond to main legend. 

Regression lines are approximate visualization of Spearman correlation rho coefficients 

for IS-RSA in ‘PTSD’ and ‘Sad’ scripts (red and blue resp.). * p < 0.05; *** p < 0.001. 
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In the hippocampus, the IS-RSA uncovered a differentiation in semantic representation: semantic 

similarity scaled positively with neural similarity for ‘Sad’ narratives (‘Sad’, ρ = 0.177, p(FDR 

corrected) = 0.0034) but not for ‘PTSD’ narratives (‘PTSD’, ρ = -0.117, p(FDR corrected) = 0.069) (Figure 

3E). (We further verified the strength of link between semantic and neural matrices in the ‘Sad’ 

condition using Mantel’s test for matrices correlation38,39 which suggested a strong effect, p = 

0.001). 

We then tested whether the two correlation coefficients of IS-RSA conducted on ‘PTSD’ and ‘Sad’ 

scripts, and associated hippocampal patterns differed significantly. The correlation coefficients 

underwent a z-score transformation and the absolute difference between them was assigned with 

a p value (se Methods). We observed that indeed hippocampal IS-RSA representations of semantic 

content significantly differed as a function of script type (Coefficient comparison (two-tailed) 

PTSD’ vs. ‘Sad’, hippocampus: p(FDR corrected) = 0.0003. 

 

Control Analyses 

We verified that the difference in semantic-to-neural mapping is not due to differences in mean 

amplitude between the conditions. To this end we conducted general linear modeling (GLM) on 

the functional imaging data in which regressors related to all event types were created. The GLM 

included three separate regressors denoting the full duration of the three types of scripts – ‘PTSD’, 

‘Sad’ and ‘Calm’. We extracted univariate parameter coefficients from the hippocampus and 

compared them using a repeated-measures ANOVA (rmANOVA) which uncovered no differences 

between script types (rmANOVA F(2,27) = 0.67, p = 0.528).  

To control for possible habituation over the course of script playback, we repeated this approach 

while modeling the early and late parts of the script separately (roughly one minute each). Focusing 

on the early part, we again observed comparable parameter estimates across script types 

(rmANOVA F(2,27) = 1.59, p = 0.212). Taken together, these results mitigate concerns regarding 

confounding effects of different arousal levels across conditions. 
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We also sought to rule out a possible confounding factor in narrative similarity that may have been 

driven by similarity of low-level acoustic properties of the auditory stimuli. To this end we 

generated an acoustic similarity matrix (see Methods) and conducted an IS-RSA using the acoustic 

and neural similarity matrices. We did not observe any significant representation of acoustic 

features in the hippocampal patterns, both in ‘PTSD’ and ‘Sad’ conditions (‘PTSD’: ρ = 0.042 p 

= 0.41 , ‘Sad’: ρ = -0.037, p = 0.48) (Figure S2). 

 

Investigation of hippocampal subregions involvement in representation 

Evidence suggests hippocampal subregions along its longitudinal axis are recruited differently 

during tasks involving recall autobiographical memory and scene construction40,41 with particular 

implications in PTSD42–44. With this in mind we conducted an exploratory analysis to further 

delineate the differences in patterns of hippocampal representation of traumatic autobiographical 

memory narratives. We conducted IS-RSA on neural patterns extracted separately from the 

anterior and posterior extremities of the hippocampus (split into three segments: anterior, middle, 

and posterior, see Methods). 

We observed the semantic representations were more pronounced in the posterior part of the 

hippocampus (Posterior hippocampus: ‘PTSD’, ρ = -0.0506, p = 0.327; ‘Sad’, ρ = 0.169, p(FDR-

corrected) = 0.0004; Coefficient comparison (two-tailed) ‘PTSD’ vs. ‘Sad’ p(FDR-corrected) = 0.0005 ; 

anterior hippocampus: ‘PTSD’, ρ = -0.0503, p = 0.329; ‘Sad’, ρ = 0.065, p = 0.204; Coefficient 

comparison (two-tailed) ‘PTSD’ vs. ‘Sad’ p = 0.112) (Figure S3). 
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No evidence for semantic-to-neural patterns in the amygdala 

To examine whether the lack of semantic representation of traumatic autobiographical memories 

was specific to the hippocampus, we repeated the same IS-RSA with neural patterns extracted 

from the amygdala. Signals from the amygdala did not demonstrate a significant link between 

semantic content and neural patterns for either ‘Sad’ (ρ = 0.066, p(FDR corrected) = 0.323) or ‘PTSD’ 

narratives (ρ = -0.057, p(FDR corrected) = 0.323) (Figure S4). In addition, a univariate analysis of 

GLM-derived parameter estimates suggested comparable levels of activation across script types 

(rmANOVA F(2,27) = 1.21, p = 0.307).  

 

We verified that this null effect is not a result of averaging left and right amygdala signals. We 

conducted IS-RSA and univariate analysis left and right amygdala separately and observed no 

differences between ‘PTSD’ and ‘Sad’ conditions (IS-RSA: Left amygdala: ‘PTSD’, ρ = -0.03, p 

= 0.56, ‘Sad’, ρ = 0.024, p = 0.643; Coefficient comparison (two-tailed) ‘PTSD’ vs. ‘Sad’ p = 

0.46); Right amygdala: ‘PTSD’, ρ = -0.064, p = 0.21, ‘Sad’, ρ = 0.078, p = 0.129; Coefficient 

comparison (two-tailed) ‘PTSD’ vs. ‘Sad’ p = 0.051); parameter estimates: Left amygdala (F(2,27) 

= 1.36, p = 0.265; Right amygdala (F(2,27) = 0.78, p = 0.463).  

 

Autobiographical memory type can be decoded from hippocampal patterns 

To further validate that spatial patterns in the hippocampus, but not the amygdala, carry 

meaningful information about the condition associated with these negative autobiographical 

memories, we trained a regularized linear discriminant analysis (rLDA) model to decode narrative 

conditions (‘PTSD’ or ‘Sad’) from the multivoxel spatial patterns extracted from the hippocampus 

during script reactivation. Using 25-fold cross-validation we were able to decode at 66.2 % 

accuracy whether hippocampal spatial patterns belonged to a ‘PTSD’ or ‘Sad’ narrative. To assess 

the power of this predictive ability, we iterated the procedure with shuffled labels (N = 2,500) to 

obtain a surrogate distribution of decoding accuracy (mean ± SD = 52.7 % ± 4.9). Nonparametric 

testing confirmed that decoding accuracy for the empirical data was well above chance (p = 

0.0028) (Figure 4A). To further validate our finding , we then attempted to decode ‘PTSD’ from 

‘Calm’ scripts, expecting those to be teased apart more easily given their different mental state. 

Indeed, we were able to decode these conditions at 80.9 % accuracy, which was well above chance 
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(mean ± SD = 54.2 % ± 5.0, p < 0.0001) (Figure 4B). For comparison, spatial patterns derived 

from the amygdala could not be used as robustly to distinguish between ‘PTSD’ and ‘Sad’ scripts 

(decoding accuracy for empirical data: 58.2 %, surrogate: mean ± SD = 52.2 % ± 4.7, p = 0.097) 

(Figure 4C-D). These findings provide additional support to the idea that hippocampal activity 

during traumatic autobiographical memory recall represents elements of the narrative, and these 

patterns are observably different from activity during non-traumatizing autobiographical memory 

recall. 
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Figure 4: 

(a) Decoding accuracy of scripted narrative type from neural patterns. Vertical black line 

denotes decoding accuracy of ground truth script type (‘PTSD’ vs. ‘Sad’) from 

hippocampal spatial patterns in the empirical condition. Colored histogram is a surrogate 

distribution comprised of decoding accuracy for the same neural data with shuffled labels. 

p value is derived non-parametrically through a permutation test (N = 2,500). 

(b) Same as (a) but for decoding accuracy of ‘PTSD’ vs. ‘Calm’ from hippocampal spatial 

patterns. 

(c) Same as (a) but for decoding accuracy of ‘PTSD’ vs. ‘Sad’ from amygdala spatial patterns. 

(d) Same as (a) but for decoding accuracy of ‘PTSD’ vs. ‘Calm’ from amygdala spatial 

patterns. 

Semantic representation for the ‘PTSD’ narratives in the posterior cingulate cortex 

Having observed that hippocampal representations for narratives of traumatic autobiographical 

memory are diminished, compared to non-traumatizing events, we expanded our investigation to 

ask whether any brain regions will show better semantic representation for the ‘PTSD’ narratives 

over ‘Sad’ ones. We hypothesized that the posterior cingulate cortex (PCC), a hub of the default 

mode network known to be heavily implicated in both narrative comprehensive and 

autobiographical memory processing32,45, and particularly in emotional memory imagery 46, will 

be a candidate region sensitive to script reactivation. 

To define the PCC functionally, we generated a contrast comparing neural activity during narrative 

playback (all three script types were included) to inter-trial interval baseline. This contrast 

therefore factored activations for both positive and negative valence scripts. When we applied IS-

RSA to neural patterns extracted from the PCC functional ROI we found an overall lack of 

semantic representation in that ROI (‘PTSD, ρ = 0.077, p(uncorrected) = 0.136, ‘SAD, ρ = 0.017, 

p(uncorrected) = 0.745).  

Since our patient cohort was heterogenous in terms of symptoms severity and background, we 

asked whether PTSD severity, operationalized as CAPS-5 score evaluated during screening, will 

explain the between-subject variability in the extent by which narratives will be represented in the 

PCC. To this end, we split the cohort into two sub-groups (both N  = 14) labelled ‘High’ and ‘Low’ 
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according to their CAPS-5 score. The total scores in the study ranged between 26 – 60 (mean ± 

SD = 41.2 ± 8.3). Setting a cutoff CAPS  score of 38 (inclusive), the two resulting sub-groups 

significantly differed in their CAPS score (‘High’ = 47.8 ± 3.4, ‘Low’ = 34.7 ± 6.5 t(26) = 6.68, p 

< 0.0001).  

First, we verified that univariate BOLD responses in these ROIs were comparable. We used a 

whole-brain two-sample t-test design to compare the ‘High’ and ‘Low’ symptoms groups’ 

response across script types. In both ‘PTSD’ > ‘Calm’ and ‘PTSD’ > ‘Sad’ contrasts we were not 

able to detect differences between the groups using cluster size threshold corrected with pFWE < 

0.05. Next, we verified that semantic similarity within these sub-groups was comparable, that is, 

that script similarity within each script category did not differ between the groups. In ‘PTSD’ 

scripts, the average semantic similarity did not differ between the ‘High’ and ‘Low’ symptoms 

groups (two-sample t-test, t(180) = -0.73, p = 0.46); ‘Sad’: t(180) = -2.03, p = 0.043 (non-

significant after Bonferroni correction for multiple comparisons 0.05 / 3 = 0.0167)). In ‘Calm’ 

condition, scripts similarity was significantly higher in the ‘Low’ group than the ‘High’ one 

(‘Calm’: t(180) = -3.18, p = 0.0017. We therefore applied ensuing IS-RSA only to the ‘PTSD’ and 

‘Sad’ conditions.  

 

We conducted IS-RSA separately for each subgroup, using its corresponding semantic and neural 

similarity matrices. Matrix dimensions were 14 X 14, which when vectorized, resulted in 91 

values. We compared the resulting Spearman coefficient that were derived for each of the two 

symptom groups using a nonparametric test. We split the full cohort into two random sub-groups 

iteratively (N = 25,000) and computed a surrogate distribution to which the statistics of the true, 

CAPS-5-based split, were compared. 

The PCC displayed a strong discriminative utility where higher symptom severity was associated 

with stronger semantic representation of ‘PTSD’ scripts (Figure 5A). Representation of the ‘Sad’ 

scripts also showed stronger representation in the ‘High’ symptoms group, however to a much 

lesser extent (Figure 5B). (PCC ‘PTSD’: ‘High’: ρ = 0.266; ‘Low: ρ = 0.0687; ‘Sad’: ‘High’: ρ = 

0.0756; ‘Low: ρ = -0.0537). By contrast, in the hippocampus, the extent of the link between neural 

patterns and semantic representations of both ‘PTSD’ and ‘Sad’ scripts did not differ by symptom 

severity (hippocampus ‘PTSD’: ‘High’: ρ = -0.254; ‘Low: ρ = -0.163; ‘Sad’: ‘High’: ρ = 0.199; 
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‘Low: ρ = 0.206). Nonparametric permutation tests asserted the Spearman coefficients 

significantly differed by symptom severity in the IS-RSA based on PCC, but not the hippocampal 

neural patterns (PCC coefficient difference(High - Low) = 0.197, nonparametric permutations p = 

0.0001; ‘Sad’: coefficient difference(High - Low) = 0.129, nonparametric permutations p = 0.0036; 

hippocampus ‘PTSD’: coefficient difference(High - Low) = -0.074, nonparametric permutations p = 

0.729; ‘Sad’: coefficient difference(High - Low) = -0.007, nonparametric permutations p = 0.885) 

(Figure 5C). A summary of IS-RSA correlation coefficients per ROI and symptoms group 

conveys a differentiation by symptoms that is present in the PCC signals but is almost entirely 

absent in the hippocampus (Figure 5D). This result suggests that the severity of PTSD symptoms 

is linked to the semantic representation of the traumatic narrative in the PCC, whereas the 

differentiation in representation observed in the hippocampus persisted regardless of symptoms 

severity.  
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Figure 5: 

(a) Intersubject representational similarity analysis  in the PCC differed by symptom 

severity IS-RSA conducted on pairwise similarity of semantic content of ‘PTSD’ 

narratives and neural patterns in the PCC on subgroups differing in symptom severity 

(‘Low’ and ‘High’). Each datapoint is derived from a pairwise comparison. Analysis 

was iterated per subgroup. Regression lines are approximate visualization of 

Spearman correlation rho coefficients for IS-RSA in ‘Low’ and ‘High symptoms (light 

and dark red, respectively.).  

(b) Same as (a) but conducted on semantic content of ‘Sad’ narratives and neural patterns 

in the PCC on subgroups differing in symptom severity (‘Low’ and ‘High’ are light and 

dark blue, respectively). 

(c) Permutation test for differences in IS-RSA by symptom severity. Vertical black line 

denotes z transformed difference (High-Low) in correlation coefficients in semantic-

to-neural IS-RSA Colored histogram is a surrogate distribution comprised of randomly 

generated with shuffled severity labels. p value is derived non-parametrically (N = 

25,000). Top left: Hippocampal patterns during ‘PTSD’ narratives. Top left: 

Hippocampal patterns during ‘PTSD’ narratives. Top right: PCC patterns during 

‘PTSD’ narratives. Bottom left: Hippocampal patterns during ‘Sad narratives. Bottom 

right: PCC patterns during ‘Sad narratives 

(d) Comparison of correlation coefficients across regions and symptom subgroups. Bars 

reflect semantic-to-neural correlation coefficients (single values) for patterns in the 

hippocampus and PCC, shown for the ‘PTSD’ scripts across symptoms group (‘Low’: 

light red , ‘High’: dark red) and ‘Sad scripts (‘Low’: light blue , ‘High’: dark blue). 

Significance was assessed through permutation tests. HC – hippocampus, ** p < 0.01; 

*** p < 0.001, N.S – non-significant. 
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Discussion 

Despite continuous effort, the nature of intrusive traumatic autobiographical memories and the 

mechanisms underlying their unique perceptual attributes in PTSD remain largely unknown47. 

Here we used individualized traumatic autobiographical memory narratives in a script reactivation 

paradigm, in which PTSD patients listened to a novel rendition of their traumatic memory. We set 

out to ask whether, and how the hippocampus and amygdala differentiate traumatic 

autobiographical memories from sad ones. Given the duration and richness of the stimuli, our 

paradigm was at the intersection of autobiographical memory retrieval and naturalistic narrative 

comprehension tasks. 

We leveraged the variance between idiosyncratic memories by quantifying their semantic 

similarity to ask whether their neural representations are altered during the processing of personal 

trauma narratives, compared to negative non-traumatic narratives of the same individuals (‘Sad’). 

Using intersubject representational similarity analysis, we found that hippocampal patterns 

showed a differentiation in semantic representation by narrative type; ‘Sad’ scripts which were 

semantically similar (e.g., death of a loved one) across participants, elicited similar neural 

representations. Conversely, thematically-similar traumatic autobiographical memories (of DSM-

5 Criterion A event) did not elicit similar representations. This effect was more pronounced in the 

left hippocampus and its posterior regions. Unlike the hippocampus, the amygdala did not 

represent semantic information in a significant manner, suggesting a poorer representational space 

for semantic content. 

Semantic-to-neural mapping has been demonstrated comprehensively, both in the 

hippocampus48,49 and cortex50,51. Therefore, we expected to observe a link between narratives’ 

semantic similarity and elicited neural similarity. That said, here we make two advances: First – 

we extend this understanding into an underexplored domain: real-life traumatic autobiographical 

memories in PTSD. Second – we observe that within the same brains, hippocampal representations 

differed considerably between two types of autobiographical memory of comparable content and 

valence.  

In a complementary approach, we decoded condition identity from the hippocampal patterns. The 

fact that we were able to tease the two negative conditions apart suggests that these signals hold 
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some shared high-dimensional pattern implying a common cognitive state shared across 

participants. 

Finally, we focused on the PCC to ask whether unlike the hippocampus, this region recently 

thought of as a cognitive bridge between the world events and representation of the self45,52, will 

demonstrate a positive relation between semantic content and neural patterns  of the traumatic 

narratives. We indeed observed such a relation in the PCC, with individual symptom severity 

mediating the extent of semantic-to-neural representation. Conversely, this differentiation by 

PTSD severity was not evident in the hippocampus. 

Our key findings therefore are twofold: first – that the emotional content of autobiographical 

memories is represented differently in the two major systems subserving autobiographical memory 

- the hippocampus and the PCC. Second – that traumatic autobiographical memories undergo a 

parallel, or a dissociable mode of representation suggesting they profoundly differ from 

neurotypical autobiographical memories of comparable content and valence. 

We also observed stronger semantic representation in the posterior subregion of the hippocampus, 

highlighting its function in the task’s demand for narrative imagery and memory retrieval of distant 

past53, rather than general PTSD symptomatology, in which the anterior hippocampus is generally 

assumed to take a greater role54,55.  

Why would traumatic autobiographical memories be represented differently than non-traumatic 

ones? We discuss several explanations; We speculate that dysfunctions in peritraumatic memory 

encoding, an impairment thought to lead to mnemonic sequelae collectively referred to as ‘memory 

fragmentation’56,57 (but see 58 for an opposing view), may be the culprit of the poorer semantic 

representation of the traumatic memory. The weak semantic-to-neural mapping of traumatic 

narratives observed in our study resonates with reports of memory impairment attributed to the 

traumatic experience – memory disorganization, difficulty in voluntary retrieval and lack of 

narrative coherence59,60.  

We stress that although the scripts were directly portraying participants’ autobiographical 

memories, participants were naïve to these audio renditions. Basing off theories of memory 

fragmentation, it is possible that while for non-traumatic memories, script playback met some sort 

of a preexisting mental episodic structure of the events, in traumatic autobiographical memories 
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they did not. In other words, to some extent, although extremely personal in nature, hippocampal 

signals imply that the traumatic narratives can be likened to non-personal stimuli. Another 

intriguing possibility is that patients attempted to block or suppress the reactivation of the 

traumatic content, and by doing so, exhibited brain activity that was incongruent with the semantic 

content presented to them61,62. That said, we have no empirical way to test this alternative 

explanation. Re-examining the nature of these memories after successful trauma-focused 

psychotherapy may shed further light on the observed results.  

The PCC (predominantly its left part) is known to be engaged during retrieval of autobiographical 

memory63,64 and emotional narrative imagery46. Our data support these finding as well as the 

laterality difference. Moreover, two meta-analyses reported higher PCC activity during retrieval 

of autobiographical memory in PTSD compared to non-trauma exposed controls64,65. The extent 

to which the PCC represented semantic content of the traumatic memory was dependent on 

individual symptom severity – the subgroup with elevated symptoms showed a closer relation 

between semantic content and neural signals. This was in contrast with hippocampal activity, 

where symptom severity had no explanatory power. 

Copious reports tied alterations in PCC-hippocampus coupling to PTSD66–68, and demonstrated 

that individual changes in this link were associated with symptom severity43,69. We speculate that 

both aforementioned explanations, namely lack of a preexisting narrative, and attempts at 

suppression, may have contributed to striking a balance in mentalization of the audio scripts by 

these two regions supporting autobiographical memory. 

Finally, in light of the global alterations in brain structure and connectivity in PTSD, our within-

subject design, where the traumatic narratives were compared to sad ones within the same 

individuals, controlled for these between-cohort effects.  

Our study complements previous investigations of basic learning and memory mechanisms in 

PTSD by adding to our understanding of the processes that render a traumatic memory deviant 

from other non-traumatic memories. Moreover, we suggest that in addition, or in parallel, to the 

disturbance of fundamental learning and memory processing, high-level representation of meaning 

and content also undergo changes in PTSD. 
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In clinical settings, the evaluation of traumatic memory organization is often reliant mostly of 

meta-memory: the patient’s self-report about memory coherence of the traumatic experience 58. 

Semantic representation of idiosyncratic autobiographical memories using IS-RSA may allow a 

more objective neural marker for PTSD, and intriguingly, to amelioration of the disorder over the 

course of therapy. Importantly, to assign “coherence” to discrete memories, we must rely on the 

relational structure of semantic similarity generated from multiple memories of different 

individual. This way, semantic ‘anchors’ may be established, upon which an individual’s neural 

patterns can be evaluated. 

We would like to acknowledge several limitations and shortcomings of our study: some semantic 

themes appeared more often in one narrative condition than the others (e.g., combat scenes were 

never regarded as a ‘Sad’ narrative). That said, we believe that the careful use of the same pool of 

sentences as well as the somatic induction, aided in rendering the scripts as comparable as possible. 

The IS-RSA did not uncover a significant representation of the ‘Calm’ narratives, which was 

unexpected since there is no reason to assume these kind of scripts were encoded in a different 

way. The variance in semantic content across ‘Calm’ narratives was much smaller than both 

‘PTSD’ and ‘Sad’, and this may have obscured the relation to the neural patterns evoked by them. 

Given that positive autobiographical memories are more ubiquitous than traumatic ones, future 

studies should perhaps gently direct patients into recall of more diverse schemas during imagery 

development.  

Ending with our initial question, the very nature of PTSD phenomenology remains an open 

question: is PTSD an extreme case of ‘standard’ negative emotional processing or a divergent 

cognitive entity altogether? Our main finding, that hippocampal patterns of PTSD patients showed 

a differentiation in semantic representation by narrative type during memory reactivation, supports 

the idea of a profoundly separate cognitive experience in the reactivation of traumatic memories.  
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Tables 

Participant Race Ethnicity Gender Age CAPS-5 

1 White Hispanic or 

Latino 

M 51 47 

2 Native Hawaiian or 

Other Pacific Islander 

Hispanic or 

Latino 

M 31 26 

3 Black or African American Non-Hispanic M 27 42 

4 White Non-Hispanic F 30 37 

5 White Non-Hispanic F 41 34 

6 White Non-Hispanic F 45 56 

7 White Non-Hispanic M 52 42 

8 White Non-Hispanic M 63 37 

9 Unknown Non-Hispanic F 34 60 

10 White Non-Hispanic M 30 38 

11 White Non-Hispanic F 55 29 

12 Unknown Unknown F 27 54 

13 White Non-Hispanic M 49 46 

14 White Non-Hispanic M 29 40 

15 White Non-Hispanic M 39 38 

16 White Non-Hispanic F 27 49 

17 White Non-Hispanic M 37 36 

18 White Non-Hispanic M 38 36 

19 White Non-Hispanic M 30 32 

20 Asian Non-Hispanic F 27 38 

21 White Non-Hispanic M 24 34 

22 Black or African American Non-Hispanic M 27 59 

23 White Non-Hispanic M 42 35 

24 White Unknown F 49 45 

25 American Indian or Alaska Native Non-Hispanic M 37 36 

26 White Non-Hispanic M 31 43 

27 White Non-Hispanic F 48 45 

28 White Non-Hispanic F 51 N/A 

 

Table 1: Cohort demographics 
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Methods 

Experimental paradigm 

Twenty-eight participants (mean age = 38.1 ± 10.5 years, range = 24 – 63; females (n = 11), males 

(n = 17) took part in this study. All participants had chronic PTSD (see Table 1 for cohort 

demographics). PTSD diagnosis was established using the Clinician-Administered PTSD Scale 

(CAPS-5)1. The cohort in this study is part of a larger, longitudinal study focused on effects of 

ketamine-aided extinction in PTSD. Our data are based on the baseline session assessment, with 

no drugs being administered. 

Exclusion criteria included a diagnostic history of bipolar disorder, borderline personality disorder, 

obsessive-compulsive disorder, schizophrenia or schizoaffective disorder, dementia, current 

psychotic features, or suicide risk, moderate or higher severity of substance use disorder and 

history of traumatic brain injury. Participants who were currently engaged in trauma focus therapy 

were also ineligible to participate in the study. Lastly, patients were excluded for acute medical 

illness. Psychotic features were determined by the Structured Clinical Interview for DSM-IV 

(SCID)70. 

Participants completed an imagery-development procedure in which they were asked to describe 

the traumatic event associated with their PTSD, as well as a significant sad, but not traumatizing 

event (‘Sad’) and a positive, low-arousal, event in which they felt relaxed (referred to as ‘Calm’). 

The imagery scripting procedure followed a procedure presented by Sinha et al.71 Participants were 

asked to describe the events in as much detail as possible. They were then asked to select at least 

three physiological responses corresponding to each specific event to be later embedded in the 

narrative. Using this information, we developed audio scripts, approximately 120-second long for 

each event (Duration (sec): ‘PTSD’ = 120.19 ± 1.20; ‘Sad’ = 119.64 ± 1.48; ‘Calm’ = 118.69 ± 

2.72), narrated by a male member of the research staff. The narratives were all in second-form 

pronouns (‘you’/’your’), mostly in the present tense. 

 

The scripts were comprised of three main elements – the episodic unfolding of events (time and 

place, scenery description, actions, dialogues), description of mental state (e.g., ‘you feel helpless’, 

‘a feeling of peace comes over you’), and a vocabulary of sensory and somatic phrases used to 
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promote reexperiencing (e.g., ‘your heart beats faster’). The somatic vocabulary consisted of 

references to heartbeat, respiration, muscle tone, perspiration, tearing etc. Both negatively-

valenced script types – ‘PTSD’ and ‘Sad’ – were conveyed using the same vocabulary, to control 

and maximize the similarity of reactivation between these conditions. The positive scripts (‘Calm’) 

often mentioned similar autonomic functions, but with opposite reactions (e.g., muscle relaxation, 

slow breathing).  

Semantic analysis  

For the purpose of semantic analysis some names, for example places with greater geographical 

resolution than a US state, commercial brands or firms and specialized military jargon or acronyms 

were removed. Sentences were defined according to full stops, question, and exclamation marks 

as they appear in the text read by the narrator. As part of the reactivation procedure aimed to 

heighten autonomic arousal, the pace (words per script) of both negatively valenced scripts was 

intentionally higher and their duration slightly longer than the ‘Calm’ ones.  

During preprocessing of the semantic input, punctuation marks were erased, texts were 

transformed to lower-case and tokenized. Stop words, defined by MATLAB R2020a’s default 

NLP vocabulary, were removed. Words underwent lemmatization and were then assigned a 300-

dimension vector representation. The semantic space we used was a pre-trained embedding for 1M 

English words (16B tokens) available through MATLAB’s word2vec NLP tools. Vector 

representations were calculated for each single word. Words in the scripts which were not indexed 

in the pre-trained space were not included in the analysis. The semantic representation of the next 

level in text hierarchy – the sentence – were calculated as the average representation of words in 

it. Similarly, the semantic representation of each entire script was calculated by averaging the 

representation of its sentences.  

Before computing similarity between scripts, we scaled the vector representations by subtracting 

the average norm of all words embedding in the entire vocabulary that was used in the study (based 

on all script types), following a normalization procedure described in72. The semantic similarity 

was derived from a transformed distance matrix of pairwise cosine distances of the vectorial 

representations. We used cosine distance as it is considered a better fit for semantic analysis than 

Euclidean distance because it does not consider vector magnitude, which is often biased in datasets 

involving text corpora due to differences in word occurrence73,74. 
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Dimensionality reduction  

Dimensionality reduction of the semantic information was done using t-distributed stochastic 

neighbor embedding (t-SNE)75. Similarly to principal component analysis (PCA), t-SNE also 

reduces dimensionality of the input data set. It is superior however to PCA, in its ability to preserve 

local structure. Projection of t-SNE clusters to 3-dimensional space was carried out in MATLAB, 

with an intermediate step of a PCA into 100 components. Learning rate was set to 1000 and 

perplexity was set to 30.  

Experimental Procedure 

All participants listened to each script type three times in the scanner. Participants were naïve to 

this new scripted rendition of their autobiographical memories and not familiar with the voice of 

the narrator. The order of scripts was fixed and identical across all participants but one. This order 

was chosen to prevent random occurrences of the same script consecutively. The order was: T-C-

S-C-T-S-C-T-S in all scans but one, whose order was S-C-T-C-S-T-C-S-T (T = Trauma, S = Sad, 

C = calm). Each script began with a slide instructing the participant to press a button to initiate the 

next playback and its type. No visual information was displayed during script playback.  

MRI Scan 

MRI data were collected with a Siemens 3T Prisma scanner, using a 32-channel receiver array 

head coil. High-resolution structural images were acquired by Magnetization-Prepared Rapid 

Gradient-Echo (MPRAGE) imaging (TΡ = 1 s, TE = 2.77 ms, TI = 900 ms, flip angle = 9°, 176 

sagittal slices, voxel size = 1 ×1 × 1 mm, 256 × 256 matrix in a 256 mm FOV). Functional MRI 

scans were acquired while the participants were listening to the narrated scripts, using a multi-

band Echo-Planar Imaging (EPI) sequence (multi-band factor =4, TR= 1000 ms, TE= 30 ms, flip 

angle = 60°, voxel size = 2 × 2× 2 mm, 60 2 mm-thick slices, in-plane resolution = 2 × 2 mm, FOV 

= 220 mm). 

MRI preprocessing  

Data were preprocessed with fMRIPrep, version 20.2.076. For a complete preprocessing procedure 

please refer to Supplementary Information. Functional images were motion- and slice-time 

corrected, aligned to T1 anatomical images, and then warped to MNI space.  Analysis of the 

functional data included the following regressors: 6 movement variables (translation and rotation), 
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framewise displacement, the first 6 anatomical components based noise correction (CompCor) and 

the 6 first discrete cosine regressors. Subsequent preprocessing and statistical contrasts were done 

using standard statistical parametric mapping (SPM12, Wellcome Department of Imaging 

Neuroscience) algorithms (fil.ion.ucl.ac.uk/spm) and custom MATLAB R2018a code.  

ROI analysis 

Given our a-priori interest in the function of amygdala and hippocampus in PTSD, we defined 

masks for ROI analysis of these structures, bilaterally using the probabilistic Harvard Oxford atlas 

77 thresholded at 25%78. Prior to ROI analysis, functional images underwent spatial smoothing 

using a Gaussian kernel of 1 mm full-width at half maximum (FWHM) to enhance signal-to-noise 

ratio and classification accuracy79. Time courses were extracted from the entire session and were 

applied with a discrete cosine transform high-pass filter (cutoff of 128 sec)80. ROI data were then 

normalized using z-score. Spikes in the data, exceeding 4 times the voxel’s standard deviation 

were applied de-spiking and were interpolated using the mean of one TRs engulfing each side of 

the outlier data point. In line with previous studies, functional data were shifted 5 seconds (5 TRs) 

to account for the delay in the hemodynamic response compared with the audio stimuli72,81,82. The 

segments containing the script narratives were extracted with time indices rounded to include the 

nearest TR interval to prevent omission of functional data.  

Each script was played three times during the scan. To enhance signal to noise in identifying the 

recurring pattern elicited by the script, the time course for each ROI was averaged across the three 

repeats of each script. The voxel time course of this average run was collapsed across time to 

generate a spatial pattern associated with the reactivation of the specific autobiographical memory. 

This approach also aided in circumventing the slight mismatches in script durations across 

participants that would have been detrimental for similarity based on temporal fluctuations.  

Intersubject representational similarity analysis (IS-RSA): 

To relate the semantic content with neural representation and to determine whether this 

representation differs in PTSD-related narratives, we conducted an intersubject representational 

similarity analysis (IS-RSA)73,83–85. The neural similarity matrix was derived from each ROI 

separately. The semantic similarity matrix was fixed in all analyses (for some analyses it was 

broken down to smaller matrices, for example, sub-cohorts differing in symptoms severity).  
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A neural similarity matrix was then generated by calculating pair-wise Pearson correlation for each 

pair of the 84 scripts. Metrics that are represented as distance by default (rather than similarity) 

were transformed to similarity using 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
1

1 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

Since this study comprised of 28 participants, who each listened to 3 different scripts, the narrative-

based similarity matrices (e.g., semantic, acoustic) consisted of the lower triangle of a 28 X 28 

matrix, extracted separately per narrative type (‘PTSD’, ‘Sad’, ‘Calm’). This corresponded to 378 

unique combinations when vectorized ((28 X (28 – 1)) / 2 = 378). Similarly, trait-based similarity 

matrices (e.g., CAPS) consisted of the lower triangle of a 28 X 28 matrix, corresponding to 378 

unique combinations. Of note, in our design both the neural responses and the naturalistic stimuli 

varied across individuals. 

We tested the significance of IS-RSA by subjecting p-values of Spearman’s correlation 

coefficients amassed across ROIs and conditions (e.g., 2 ROIs X 3 script types) by using a false-

discovery rate (FDR) at q = 0.05 implemented in MATLAB R2018a as function ‘fdr_bh’.  

To compare correlation coefficients between narrative types (e.g., ‘PTSD’ vs. ‘Sad’) we used two 

methods depending on groups’ dependency: In cases where one variable is shared (e.g., correlation 

between CAPS and neural similarity in ‘PTSD’ narratives compared with correlation between the 

same CAPS data and neural similarity in ‘Sad’ narratives) we used Steiger test86 as implanted in 

‘r_test_paired.m’ in MATLAB. Briefly, each correlation coefficient is converted into a z-score 

using Fisher's r-to-z transformation. Next the asymptotic covariance of the estimates is computed 

and are then used in an asymptotic z-test. We reported p-values from a two-tailed probability 

distribution. In contrast, in cases where the two comparisons had no shared components (e.g., 

correlation between semantic and neural similarity in ‘PTSD’ narratives and correlation between 

semantic and neural similarity in ‘Sad’ narratives), we used the ‘corr_rtest’ function in MATLAB 

to convert both correlation coefficient into z-score using Fisher's r-to-z transformation and 

calculate their absolute difference. This value was assigned a p value from a cumulative normal 

distribution function (‘normcdf’ in MATLAB). We report p-values from a two-tailed probability 

distribution.  
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IS-RSA visualization: 

IS-RSA is usually calculated using nonparametric tests (Spearman, Kendall). However, the 

limitation of Spearman, being a ranked test, is that it does not yield a regression in the same manner 

linear correlations do. Due to this technical limitations in visualizing the relationship between data 

matrices in the IS-RSA, we plotted slopes that are computed based on Pearson correlation. Note 

that despite this difference in visualization, throughout this study, the correlation coefficient 

reported and discussed are Spearman’s ρ values.  

Longitudinal parcellation of the hippocampus: 

To date, several definitions for segmentation of long axis of the human hippocampus exists.  

We followed a percentile-based segmentation of the hippocampus into three regions along its long 

axis, described by Poppenk et al.41. To avoid discrepancies between boundaries defined by the 

various segmentation methods, we omitted the medial part from our analyses and focused only on 

the two extremities – the most anterior and posterior thirds.  

Neural general linear modeling (GLM) and contrasts: 

We conducted general linear modeling (GLM) of the functional scans of each participant by 

modeling the observed BOLD signals and regressors to identify the relationship between the task 

events and the hemodynamic response. First, functional data underwent spatial smoothing using a 

6 mm FWHM kernel (note that a different kernel was used in IS-RSA). Next, regressors related to 

all events were created by convolving a train of delta functions representing the sequence of 

individual events with the default basis function in SPM12, which consists of a synthetic 

hemodynamic response function composed of two gamma functions. The GLM included three 

separate regressors for the onset of the three types of scripts – ‘PTSD’, ‘Sad’ and ‘Calm’. We 

carried out linear contrasts of parameter estimates to identify effects in each participant. Statistical 

maps from all participants were then entered into a second-level group analysis to implement a 

random-effects statistical model. 

Classification analysis: 

We decoded narrative conditions (‘PTSD’ or ‘Sad’ script) from multivoxel spatial patterns data 

using a rLDA (regularized linear discriminant analysis classifier, ‘fitdiscr’ function in MATLAB) 

which shows superior performance over LDA in high-dimensional imaging data which may 
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present issues of multicollinearity and overfitting. Data from all script repeats of the two 

negatively-valenced conditions, along with corresponding condition labels, were used to train the 

rLDA. Input data consisted of 28 participants X 2 conditions X 3 repeats yielding a 168-samples 

in total. To test the model’s performance on a testing data set we iteratively repeated this process 

with permuted data partitions (N = 2,500) per ROI and condition for cross validation and then 

applied cross-validation. 

 

Acoustic similarity analysis: 

Acoustic similarity of the scripts was computed based on acoustic landmarks envelope. We used 

a custom MATLAB script, adapted from Oganian et al.87 to extract the analytic envelope of the 

speech signal filtered within critical bands based on the Bark scale which is a psychoacoustical 

measure of loudness. 

Whole-brain investigation: 

The main contrast used in the whole-brain investigation was “All Scripts > Baseline” where all 

script event types (i.e., ‘PTSD’, ‘Sad’ and ‘Calm’) were contrasted with the baseline interval 

between scripts. Statistical inference was made based on whole-brain statistical maps corrected for 

multiple comparisons using cluster size threshold family-wise error rate of p(FWE) < 0.01 for the 

identification and extraction of regions of interest (ROIs).  

Symptom severity analysis: 

CAPS - PTSD diagnosis was established using the Clinician-Administered PTSD Scale (CAPS-5) 

1. CAPS was administered within one month of the imaging session. The questionnaire data of one 

participant were missing and were interpolated using the group’s mean per questionnaire item. 
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Code availability 

The scripts used for data analysis are available in https://osf.io/dc7jb/ 

fMRI preprocessing was done in fMRIPrep, analyses were conducted primarily in MATLAB 

R2018b and R2020a (MathWorks, Natick, MA) 

 

Data availability 

Data supporting the findings of this study are deposited in https://osf.io/dc7jb/ 
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Supplementary Figure 1: 

(a) projections of semantic space based on three principal dimensions. t-SNE embedding of 

scripts projected onto dimensions 1-2. Each dot represents a single script, Colored 

volumes are continuous spaces occupied by each script type. Color denotes script type 

(‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). Note overlap of ‘PTSD’ and ‘Sad’ semantic 

content. 

(b) Same as (a) but projected onto dimensions 1-3. 

(c) Same as (a) but projected onto dimensions 2-3. 
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Supplementary Figure 2: 

(a) Hippocampus – neural similarity matrix. Script-by-script neural similarity matrix for 

spatial patterns extracted from the hippocampus during script reactivation. Within-

category similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: red, 

‘Sad’: blue, ‘Calm’: gray). 

(b) Acoustic similarity matrix. Acoustic similarity of scripted narratives. Within-category 

similarity is marked in colored triangles off the matrix diagonal (‘PTSD’: red, ‘Sad’: blue, 

‘Calm’: gray). 

(c) Hippocampus – acoustic-to-neural IS-RSA. Intersubject representational similarity 

analysis conducted on pairwise similarity of acoustic and neural patterns in the 

hippocampus. Each datapoint is one pairwise comparison. Analysis was iterated per script 

type (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). Histograms along axes depict similarity 

distribution, thick trace depict estimated density, colors correspond to main legend. 

Regression lines are approximate visualization of Spearman correlation rho coefficients 

for IS-RSA in ‘PTSD’ and ‘Sad’ scripts (red and blue resp.). 
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Supplementary Figure 3: 

(a) semantic-to-neural IS-RSA in posterior hippocampus. Intersubject representational 

similarity analysis conducted on pairwise similarity of semantic content and neural 

patterns in the posterior hippocampus. Each datapoint is one pairwise comparison. 

Analysis was iterated per script type (‘PTSD’: red, ‘Sad’: blue). Regression lines are 

approximate visualization of Spearman correlation rho coefficients for IS-RSA in ‘PTSD’ 

and ‘Sad’ scripts (red and blue resp.). * p < 0.001. 

(b) Same as (a) but for the anterior hippocampus. 
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Supplementary Figure 4: 

(a) Amygdala – neural similarity matrix. Script-by-script neural similarity matrix for spatial 

patterns extracted from the amygdala during script reactivation. Within-category similarity is 

marked in colored triangles off the matrix diagonal (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray). 

(b) Semantic similarity matrix. Semantic similarity (Pearson’s correlation coefficient, r) of 

scripted narratives. Within-category similarity is marked in colored triangles off the matrix 

diagonal (‘PTSD’: red, ‘Sad’: blue, ‘Calm’: gray).  

(c)Amygdala – semantic-to-neural IS-RSA. Intersubject representational similarity analysis 

conducted on pairwise similarity of semantic content and neural patterns in the amygdala. Each 

datapoint is one pairwise comparison. Analysis was iterated per script type (‘PTSD’: red, ‘Sad’: 

blue, ‘Calm’: gray). Histograms along axes depict similarity distribution, thick trace depict 

estimated density, colors correspond to main legend. Regression lines are approximate 

visualization of Spearman correlation rho coefficients for IS-RSA in ‘PTSD’ and ‘Sad’ scripts (red 

and blue resp.). 
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Supplementary methods 

fMRIprep Preprocessing: 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.0 

(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 

based on Nipype 1.5.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); 

RRID:SCR_002502). 

Anatomical data preprocessing: 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.  The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008, 

RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference 

was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal 

fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 

using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Volume-based spatial 

normalization to one standard space (MNI152NLin2009cAsym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w 

reference and the T1w template. The following template was selected for spatial normalization: 

ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing: 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Susceptibility distortion correction (SDC) 

was omitted. The BOLD reference was then co-registered to the T1w reference using flirt (FSL 

5.0.9, Jenkinson and Smith 2001) with the boundary-based registration (Greve and Fischl 2009) 

cost-function. Co-registration was configured with nine degrees of freedom to account for 

distortions remaining in the BOLD reference. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and translation parameters) are 
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estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). 

BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 

RRID:SCR_005927). The BOLD time-series (including slice-timing correction when applied) 

were resampled onto their original, native space by applying the transforms to correct for head-

motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original 

space, or just preprocessed BOLD. The BOLD time-series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume 

and its skull-stripped version were generated using a custom methodology of fMRIPrep. Several 

confounding time-series were calculated based on the preprocessed BOLD: framewise 

displacement (FD), DVARS and three region-wise global signals. FD was computed using two 

formulations following Power (absolute sum of relative motions, Power et al. (2014)) and 

Jenkinson (relative root mean square displacement between affines, Jenkinson et al. (2002)). FD 

and DVARS are calculated for each functional run, both using their implementations in Nipype 

(following the definitions by Power et al. 2014). The three global signals are extracted within the 

CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors were 

extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-series (using a 

discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable 

voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and combined 

CSF+WM) are generated in anatomical space. The implementation differs from that of Behzadi et 

al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are 

subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is obtained by 

thresholding the corresponding partial volume map at 0.05, and it ensures components are not 

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled 

into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 

Components are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped from 

consideration. The head-motion estimates calculated in the correction step were also placed within 
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the corresponding confounds file. The confound time series derived from head motion estimates 

and global signals were expanded with the inclusion of temporal derivatives and quadratic terms 

for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardized DVARS were annotated as motion outliers. All resamplings can be performed with 

a single interpolation step by composing all the pertinent transformations (i.e., head-motion 

transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed using 

mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver: 

The above boilerplate text was automatically generated by fMRIPrep with the express intention 

that users should copy and paste this text into their manuscripts unchanged. It is released under the 

CC0 license. 
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