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Abstract 

The laying hen sector has multiple issues concerning the animal’s welfare. One crucial factor 

negatively impacts chicken welfare is stress. The conventional way of measuring and assessing 

chicken stress is time-consuming and subjective to the assessor. On the other hand, sensing and 

sensor technologies can be used to obtain objective, continuous and non-invasive/contactless 

measures of animal behavioural and physiological welfare indicators. The present study aims to 

investigate the use of thermographic imaging and microphones (sound) in obtaining objective 

indicators for acute stress in laying hens. During this study, 40 laying hens were stressed by 

opening an umbrella as a stressor starting from one day age until nine-weeks old. The birds were 

stressed every other day. Another 12 birds were housed in another cage. These birds were not 

stressed and served as a control group. The surface temperatures of the bird’s comb and beak 

decreased (1°C and 2.5°C respectively) in response to the applied stressor. This effect was only 

seen in the treatment group and not in the control birds. The number of vocalisations the birds 

produced significantly decreased shortly after stress. The number of calls in the stressed group 

decreased from 39.5 to 12.1 calls/minute, where the control group decreased from 27.8 to 22.5 

calls/minute. It was hypothesized that the number of vocalisations would increase after stress. This 

difference could be due to the daily behavioural rhythm performed by the birds. The birds might 

naturally produce more calls at certain hours of the day because of certain behaviours they perform. 

Three different neural network algorithms were employed to differentiate between the vocalisation 

of stressed and the control group. This was done by converting the audio files to images and 

feeding them to the pretrained convolutional neural networks (CNN).  The Resnet CNN had the 

highest categorising accuracy with an overall accuracy of 86 percent. The changes in surface 

temperature of the beak, comb, eye, and head, as well as the results from the audio analysis could 

serve as potential indicator for acute stress in laying hens. Future research is warranted to validate 

the methodologies and findings under different environmental conditions and stressors.  

Keywords: Chicken vocalizations; poultry welfare; thermal imaging; laying hens; precision 

poultry science; Welfare measurement methods 

Introduction  

The concern for the welfare of the animals that we keep has risen over the past years. This growing 

concern comes mainly from a differing outlook on animal ethics (Wise, 2003). However, assessing 

animal welfare status is difficult because welfare is multifactorial. Furthermore, animal welfare 
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can be measured using both positive and negative indicators. Understanding these aspects of 

animal welfare is essential in developing and researching the effects of poor or good welfare 

(Mellor and Beausoleil, 2015). 

The laying hen sector has multiple problems concerning the welfare of the animals. A major 

problem in poultry is feather pecking (FP), which is the act of a bird pecking at or removing the 

feathers of conspecific birds (Vizzier Thaxton et al., 2016). Such behaviour causes pain and stress 

in the conspecific animal. While FP is a multifactorial problem and thus can have multiple 

causations, stress does play a role in a bird becoming a feather pecker (Cronin et al., 2020). Stress 

can result from multiple sources and can have varied negative effects on poultry. Heat stress in 

adult laying hens causes a drop in performance and health (Star et al., 2008). Furthermore, chickens 

subjected to social stressors in the form of unstable hierarchy, produced fewer eggs and performed 

more agonistic behaviours (Carvalho et al., 2018). This is why, freedom from stress is one of the 

main points used in the five freedoms assessment (FAWC, 2009). 

Measuring stress in chickens can mostly be done by looking at the behavioural and physiological 

indicators. The problem with conventional techniques of measuring stress is that the results are 

subjective to the assessor. Therefore, objective measures are needed to have reliable estimate of 

the stress levels and the response to different stressors in poultry (Banhazi et al., 2012). 

Physiological measures, such as stress hormones in the blood are of the objective type. However, 

measuring stress hormones is invasive and time-consuming. The invasiveness of these measures 

can also stress the birds making the measures unreliable. Non-invasive measurements for stress 

hormones in chickens exist but are still in development (Weimer et al., 2018). 

Precision livestock farming (PLF) is a possible solution to these problems. PLF is the process of 

automatically recording and managing animals using different sensor technologies. In some 

animals, such as cows, sensors can be attached to the animal’s body to record its behaviour (e.g., 

accelerometer). However, this is impractical in chickens due to the size of the available sensors 

and the number of animals within poultry production systems (Li et al., 2020). Thus, in the poultry 

sector it is more favourable to use remote and contactless sensors. While most research has been 

conducted in only experimental settings, some experiments have been done on commercial farms 

with different sensors (Li et al., 2020). This research focused on using microphones, RFID (Radio 

Frequency Identification), and image processing to gain information on the birds’ activity, weight, 

and health.  

One sensor that can be promising in birds is the thermographic camera. Many studies have been 

conducted on using thermography in birds (Moe et al., 2012, 2017; Herborn et al., 2015; McManus 

et al., 2016; Tabh et al., 2021). The theory behind using infrared thermography (IRT) to detect 

stress is based on stress-induced hyperthermia and hypothermia. In rats, the core body temperature 

had risen between 1.5 and 2.0 degrees Celsius after being exposed to a social stressor (Oka, 2018). 

When an animal is exposed to stress the body (through stress hormones) will drop the body 

temperature in peripheral areas (such as the comb and wattle in chickens) through the 

vasoconstriction mechanisms (Moe et al., 2017; Ross et al., 2020). Consequently, the core body 

temperature will rise due to vasodilation This process is called stress-induced hyperthermia. After 

the stress event has occurred, the body will try to get rid of the excess heat through vasodilation in 
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the peripheral areas to cool the body back to a thermogenic stable state, which is called stress-

induced hypothermia (Moe et al., 2017). Detecting stress using this method has been attempted 

before with anticipation of feed, handling or change in atmospheric temperature (Giloh et al., 2012; 

Moe et al., 2012; Herborn et al., 2015; Tabh et al., 2021). However, to what extent minor stressors 

such as a startle response to a novel object elicited such a response has not been assessed. The 

current study aims to see whether the surface temperature of the beak, comb, eye, and head can be 

used as an indicator of stress in laying hens.  

Birds are very vocal animals and use their voice for many purposes. The acoustics of birds have 

been used to detect diseases in animals (Mahdavian et al., 2021). Furthermore, specific types of 

calls have been used to identify the difference between feather pecking and non-feather pecking 

flocks (Bright, 2008). A study was also conducted that was able to create an algorithm that could 

detect the type of stress and its intensity using bioacoustics (Lee et al., 2015). This study aims to 

see if a simple parameter (the number of vocalizations within set parameters) can be used to give 

insight in the stress response of laying hens.  

Material and Methods 

 

Experimental Setup 

52 Super Nick chickens were randomly divided into three cages in one stable at the experimental 

facilities CARUS (Wageningen University and Research). Two cages were 4x4x2m (n=20, 

treatment cages) and the last cage was 4x2x2m (n=12, control cage). The control cage was 

enclosed on three sides with cardboard for additional research done on the same animals. The 

chickens were brought in at three days of age after which they were given a week to acclimatize 

to their environment. These chicks were vaccinated before arriving as shown in Table 1. The 

experiment lasted until the chickens were 9 weeks old after which they were sacrificed. The 

chickens were provided ad libitum feed and water and a perch to sit on, which was introduced after 

4 weeks. Air temperature and humidity at the facility changed as the birds aged in accordance with 

the CARUS protocol for laying hens. Temperature and humidity sensors were hanged on the side 

of the control cage and in-between the treatment cages. Daily temperature and humidity were 

recorded to correct for the change in ambient air temperature (Appendix 1). The birds were kept 

at a day-night cycle of 16:8 hours, from 06:00 till 20:00. The chicks were exposed to different 

types of light-emitting diode (LED) lights as part of another ongoing research. Only the treatment 

cages were exposed to these LED lights. The birds in the control cage were always exposed to the 

same white light. During the measurement days of the present thesis, no light-colour manipulation 

was performed (Appendix 2).  

Table 1 The vaccinations the chicks received at day 1 of age 

Vaccination Disease 

Rispen marek 

Novamune infectious bronchitis 

Avinew newcastle disease 

Evalon coccidiosis 
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To induce stress in the birds an umbrella was used. The umbrella was opened in front of the birds to startle 

the birds and cause a flight response. Only the birds in the treatment cages were stressed during the stressing 

events. Measurements were done on 14, 16, 18, 22, 24, 28, 30, 32, 36, 38, 42, 44, 46, 50, 52, 56, 58, 60 and 

64 days of age (Appendix 2).  

Thermography 
To investigate the possibility of using thermography to assess the stress response of chickens a Flir1020 

thermal camera was used (1024x768 resolution, + 1°C accuracy, emissivity 0.95). Thermographic images 

were taken at three different moments: an hour before, just after and an hour after inducing the stress 

response. Per moment 40 pictures were taken of either the left or right side of the chickens’ face (fifteen in 

both large cages and ten in the small one). The pictures were taken between 0.5 and 1 meters away from 

the bird. For this study, the chicks were not marked and thus it was not possible to identify individuals. 

Therefore, when taking a picture, chicks were chosen at random. No pictures were taken of the same chick 

twice during the same measuring moment. Furthermore, no thermographic pictures were taken of any birds 

after they drank water or those with a soiled beak. 

The thermographic images were analysed 

using FlirResearch software. During the 

analysis regions of interest were drawn in 

the program and the maximum, minimum 

and average temperatures within these 

regions of interest were extracted (Figure 

1). The selected regions of interest were 

the beak (from the nostril to the tip of the 

beak back to the base of the beak), the eye 

(an oval in around the inner eye), the comb 

(from the nostril up to the end of the comb 

excluding the parts sticking out at the top 

or hair covering at the base), and the head 

(an oval circling the head from the beak up 

to the comb around the ear canal and back 

to the beak).  

To assess the effect on temperature in the 

regions of interest (beak, eye, head and 

comb) during stress a general linear model 

was performed in IBM SPSS statistics 27. 

The model had the time of measuring (during, before and after stress) and whether the birds where from 

the control or treatment (stressed) group as main effects. Furthermore, the interaction between the treatment 

and time of measuring was included in the model. The cage's ambient temperature and the cage the birds 

were in (1,2 or 3) were included in the model as covariances. In total 2280 photos were analysed (Table 2). 

However, since the comb of the birds did not develop until a later age this region of interest could not 

always be analysed. Since the ambient temperature changed as the chicks were growing up (as per protocol) 

the age of the birds could not be used in assessing the effects of stress on the temperature of the different 

regions of interest. The data was checked for a normal distribution on the residuals. Normality was assumed 

when the kurtosis and skewness were within -2 and 2. 

Figure 1.  Thermal image of closeup view of the laying hen 

from this study. The regions of interest used in the analysis 

are shown in circles. The red color circle represents the 

beak. The brown circle represents the comb region of the 

body. The green color circle represents the eye. The blue 

circle represents the head. 
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Table 2 Frequency table of the thermographic pictures 

Treatment group Timing Frequency 

Control Prestress 190 

Stress 190 

Post-stress  190 

Treatment Prestress 570 

Stress 570 

Post-stress  570 

 

Audio signal analysis 
Recordings were taken from the sounds in the cages for one hour before and one hour after stress. During 

the first three weeks, these measurements were taken from the second and third cage (both treatment cages). 

After week three, they were taken from the control (cage 1) and treatment cage (cage 3). Two microphones 

were used in this study. The first is a Tascam microphone, and the second is a Rode Video Micro which 

was connected to a GoPro video camera. Both microphones were suspended two meters high in the middle 

of the cage. In total 42 hours of audio data was collected, and two approaches were taken in this study.  

First approach looked at single call expressions from the birds, and the second looked at determining group 

level audio vocalizations signals which are the current practical reality in rearing the birds in commercial 

production floor. 

Variety in the Amount of Calls 
After collecting the audio files, the hour-long recordings were cut with Audacity© (Audacity team, 2022). 

For the post-stress condition, the first 10 minutes were used for analysis. For the prestress condition, the 

time between 10-20 minutes and 40-50 minutes were averaged and used for the analysis. The cut files were 

analysed using a customised MATLAB-based sound processing algorithm. The algorithm extracts and 

counts the number of vocalisation events based on predefined energy and frequency ranges. The energy 

and frequency ranges is defined by specific hyper-parameters for the algorithm. These parameters are 

determined based on visual investigation and trial and error approach. The defined parameters are the 

frequency of the sound (3-4.5 kHz), the duration of the call (2+ 0.5 seconds) and the minimal energy of the 

call (500). The number of occurrences within the file was counted and converted to number of calls per 

minute per cage.   

From day 28 onwards, the data were complete for the control cage and one treatment cage. Therefore, the 

number of calls was analysed with a general linear model in which treatment (control or stressed birds) and 

the stress condition (prestress and post-stress) and their interaction were included as explanatory variables. 

The age of the birds in days was included as a covariate in the analysis. The data was checked for a normal 

distribution on the residuals. Normality was assumed when the kurtosis and skewness were within -2 and 

2. 

Recognition of stress calls 
Convolutional Neural Networks (CNN) are feature extractors and are deployed for image analysis. CNN 

are deep forward neural networks and made of interconnected neurons that have inputs with biases, 

learnable weights, and activation functions. In this study, audio signals were converted to images and the 

CNN were used for extracting information regarding the image (Figure 2). Upon extracting the features, 

the CNN Models helped as a preprocessor of the data before feeding it to the network architecture. The 

network consisted of three layesr as follows, a convolutional layer, pooling layers and connected layers 
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(Singh and Manure, 2019). In this study, 3 types of networks were used for the audio data analysis namely 

ResNet, AlexNet and GoogleNet. 

AlexNet CNN is the winner of the ILSVRC competition in 2012 and is made of connected and stacked 

layers and includes 5 convolutional layers followed by 3 fully connected layers and max-Pool layers in the 

middle in the form of a sandwich. For achieving faster training and classification, AlexNet uses rectified 

linear unit non-linearity process (Krizhevsky et al., 2012; Iandola et al., 2016). 

GoogleNet CNN is the winner of the ImageNet ILSVRC competition in 2014 and introduces a novel 

'Inception' module and is made of 22 layers for training and 5 POOL layers (Szegedy et al., 2015). This is 

composed of a subnetwork of parallel convolutional filters and their outputs are concatenated.  

Resnet is the winner of the ILSVRC 2015 challenge award and used a 152 layered (He et al., 2016), deep 

CNN. The niche of ResNet in comparison to other deep CNN, is that it uses shortcut connections and skip 

connections (network-in-network architecture). To simply put, the residual learning process was shortened 

by allowing the input data to 'bypass' through the layers. ResNet offers a faster and more efficient way to 

solve problems the deep neural network faces (Glorot and Bengio, 2010; Khan et al., 2020).   

These three pre trained neural networks were provided the collected audio data from this study converted 

to spectrograms. These spectrograms were analysed by the CNNs and categorised into either prestress or 

post-stress and control or treatment. The CNNs learned how to categorise these images into the correct 

category over time based on differences in the spectrogram. The accuracy with which it was able to 

categorise these files was used as an indicator of its use in recognizing stress calls in laying hens.  

Figure 2  Flow diagram visualizing the process of classifying audio files using convolutional neural networks 
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Results  

Thermographic imaging 
The correlation between the maximum ambient temperature and the average temperature of all the regions 

of interests was found to be significant (p<0.001) 

Right after applying the stressor, the average temperature in all investigated body areas declined 

significantly (p=0.00) when compared to the prestress and post-stress condition. No significant differences 

in surface temperature were found between the prestress and the post-stress conditions. Furthermore, it was 

found that the maximum daily air temperature had a significant (p=0.00) influence on the average surface 

temperatures of all regions of interest.  

This change in temperature was different in intensity for the different regions of interest. In the beak area 

the average temperature decreased by 2.5°C when the chicken was exposed to stress (Figure 3). When 

exposed to stress, the eye temperature decreased by 1.0°C (Figure 4). The temperature in the head region 

decreased the least with a 0.8°C (Figure 5). The average comb temperature decreased the most during stress 

with a 3.4°C degree drop (Figure 6). After an hour the temperature in all regions did not differ from the 

prestress temperature.  
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Figure 3 The average beak temperature (°C) before, during and after stress. The results are split between 

the control and treatment group. The error bars represent the standard deviation (n=2258)  

Figure 4 The average eye temperature (°C) before, during and after stress. The results are split between the 

control and treatment group. The error bars represent the standard deviation (n=2254) 

P= 0.01 P= 0.01 P= 0.06 P= 0.31 
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Figure 5 The average head temperature (°C) before, during and after stress. The results are split between the control 

and treatment group. The error bars represent the standard deviation (n=2264) 

Figure 6 The average comb temperature (°C) before, during and after stress. The results are split between the 

control and treatment group. The error bars represent the standard deviation (n=995) 

P= <0.01 

P= 0.19 P= 0.053 
P= <0.01 
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Sound analysis  

Variety in the number of calls 

The interaction between treatment and timing was significant(p=0.021). Only in the treated (stressed) group 

the number of calls was significantly lower after stress compared to prestress, the calls decreased from 39.5 

to 12.1 calls/minute (p=0.001), while this was not significant in the control group (27.8 to 22.5 calls/minute; 

p=0.85). No significant effect of age on the number of vocalisations was found (p=0.221). 

 

Figure 7 The average calls per minute produced by the control and treatment (stressed) chicks before and 

after the stressor was applied stress. The dots represent outliers in the analysis. The whiskers represent the 

minimum and maximum and the middle line  

Recognition of stress calls 

After 300 iterations of the three CNNs, the Resnet gave the best classification (Appendix III) result with 

85.7% validation accuracy (Figure 8) compared to 55.6% for Alexnet (Figure 9) and 74.6% for GoogleNET 

(Figure 10).   

 

P= <0.00 

P= 0.85 
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Figure 9 The accuracy of the Alexnet CNN over the iterations during training. The dark blue line represents 

a smoothed version of the training of the CNN, while the light blue line represents the accrual result from 

the training. The black striped line represents the accuracy results from the validation after 20 iterations. 

 

Figure 10 The accuracy of the Googlenet CNN over the iterations during training. The dark blue line 

represents a smoothed version of the training of the CNN, while the light blue line represents the accrual 

result from the training. The black striped line represents the accuracy results from the validation after 20 

iterations. 

Figure 8 The accuracy of the Resnet CNN over the iterations during training. The dark blue line represents a smoothed 

version of the training of the CNN, while the light blue line represents the accrual result from the training. The black 

striped line represents the accuracy results from the validation after 20 iterations.  
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Discussion 
 

The aim of the present study was to investigate the use of thermographic imaging and microphones (sound) 

in obtaining objective indicators for acute stress in laying hens. The results showed a decrease in average 

surface temperature when the birds were stressed. This decrease was most apparent in the beak and comb 

region. Various research has looked at the use of thermography in heat stress (Giloh et al., 2012; Marelli et 

al., 2012; Kim et al., 2021). Less research has been done on acute behavioural stress. One study found a 

decrease in temperature in the comb region after the birds were restricted (Herborn et al., 2015). Meanwhile, 

in this study, the eye and the head region also decreased in temperature. This decrease was still within the 

margin of error of the thermographic camera (+ 1°C). Thus, this research can not decisively conclude that 

a decrease in temperature is occurring in these regions.  

The beak of a bird has an important thermoregulatory function. Research in several tropical birds has shown 

that the larger beak these animals possess serves to cool the body down in higher temperatures (Ven et al., 

2016). Like these tropical birds, the beak of a chicken is also highly vascularized and thus most likely serves 

a thermoregulatory function (Iqbal and Moss, 2021). From the results of the present study, it can be 

concluded that function extends to stress-induced thermoregulatory changes.  

During acute stress the activation of the HPA-axis causes animals’ core temperature to rise (Oka, 2018). 

This is done by increasing vasodilation in the muscles and vasoconstriction in the skin’s blood vessels and 

peripheral regions such as digits. The allocation of more blood away from the skin increases muscle 

function in time of distress. From the results of the present study, it can be concluded that this reaction also 

takes place in younger chicks. The metabolic rate in older birds is higher, thus they will produce more heat. 

This makes a direct comparison between chicks and fully grown adult unreliable. Also, the stressor used in 

this study has not been used in conventional research in poultry stress. The pro of using this acute stressor 

over for example the tonic immobility test is that the chicken does not have to be separated from its pen 

mates. However, the con is that taking controlled measurements is more difficult, since the birds move 

around.  

A recent study found similar results in the beak when the birds were exposed to tonic immobility (Soroko 

and Zaborski, 2021). The decrease observed in the present study was higher than the increase seen in the 

study by Soroko and Zaborski. This can be attributed to several reasons. The birds used in the study by 

Soroka and Zaborski used birds tat were 396 days old. Many environmental and physiological factors 

influence an animal’s thermoregulation, like the age, sex, ambient temperature and humidity (Oka, 2018). 

The way the regions of interest were drawn differed from the study by Soroko and Zaborski. A temperature 

difference was observed between the nostril and the beak. Both regions were included in the beak area for 

this research. Furthermore, the ambient temperature during the current study changed over time as the birds 

aged. The results show that the ambient temperature had a significant correlation with the temperature of 

the regions of interest.  

Although the thermographic imaging showed potential technique for contactless monitoring of stress there 

are number of limitations should be addressed here. The angle at which a thermal image is taken relative to 

the target has an influence on the results that are collected (Tabh et al., 2021). During the current research, 

the birds were not restricted in their movement since this would have influenced the stress levels in the 

birds. The effect of this was that the birds were not always at the same distance or angle as the camera. 

Whilst the results were significant, large variations were found within the data. This can be attributed to a 

difference in the metabolism of the birds, a process already observed in mice (Lecorps et al., 2016). A major 

factor in this variability comes from the individual energy expenditure during physical activity. More active 
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animals will produce a higher basal core temperature and this will influence their thermal stress response 

(Lecorps et al., 2016). Furthermore, individual chickens might react differently when exposed to a stressor, 

based on how they perceive the threat (Travain and Valsecchi, 2021). Further research should include some 

kind of identification to control for these individual differences.  

The current price of the infrared technology used in this study is high. Research has shown that there is 

definitely a difference in readings between the different cameras (Cândido et al., 2018). However, if 

appropriate corrections were made to the data from the lower quality camera, it could be used as well as the 

higher quality camera. Although, this correction could not always be used. At higher skin temperatures 

(35°C), the low quality camera could not provide adequate results (Cândido et al., 2018). The problem with 

lower quality is also the subtlety that is lost with a lower resolution. In the present study, the eye was often 

small due to the size of the younger birds and the distance to the object. If this accuracy is lost, it could 

mean that influence from the body temperature, which is significantly higher than the eye temperature, 

could interfere with the true temperature in the smaller body parts. As was seen in the present study, the 

different areas of the body have a differing intensity in the reaction to stress. It is important to focus on 

these body parts to get an accurate assessment of the animals’ thermogenic reactions to stress.   

Chickens would become unrestful from exposure to stress (Curtin et al., 2014). This unrestful state would 

have resulted in more vocalisations produced by the birds. In the present study, during the recording, the 

chickens did respond to the opening of the umbrella audibly, and this did not represent itself in the results. 

It could be a possibility that after the initial flight response described by Curtin et al. 2014, the chickens go 

into a state of more vigilant behaviour. This can result in so-called freezing behaviour (Amorim and Dias, 

2021). However, freezing behaviour is often categorised as a short interruption of movement followed by 

unrest. Thus, it is unsure whether the decrease in calls resulted from this. Another reason for the decrease 

in calls might be other behaviours performed by the chicks. Since the prestress and post-stress recording 

were always taken at the same time of day, the daily behaviours of the birds could have had an influence. 

Birds might perform certain behaviours at certain times. These behaviours could correlate with various 

vocalisations and thus change the intensity and amount of calls. Other research on birds has shown that the 

amount of calls songbirds produce will fluctuate over the day (Mishra et al., 2020). Since the time of 

measuring the prestress situation was in the morning, it could also be concluded that the birds were more 

active during this time and thus produced more sounds. This could mean that the stress event had less of an 

influence on the number of calls. However, since a significant interaction between the exposure to stress 

and the treatment was found it could be a combination of the daily rhythm and the effect of acute stress that 

dictates the number of vocalisations. Future study could focus on mapping the daily behaviours related to 

their calls for chickens specifically.  

During the observations, the birds in the different cages could not be separated from the other cages with a 

soundproof barrier. Thus, it cannot be excluded that some calls of the birds from the treatment cages 

appeared on the control audio file and vice versa. The MATLAB algorithm created for this research did not 

work properly for noisy environments. At times where the moisturizer or heaters were on the sound from 

the machines was overlapping with the calls from the chicks. While techniques exist that can filter these 

sounds it was out of the scope for this research to implement. This is also the case for neural network 

analysis. While the categorisation was able to be done at an 86 percent accuracy, it is unsure whether this 

comes from the stress condition of the birds or because of the proximity of the microphones to certain 

machinery. The points previously mentioned like the daily behavioural rhythm could also have influenced 

this method.  

The use of audio measurements in birds does show a potential in detecting stress responses. Research has 

been done on small groups of birds, but more research should be done on large flocks to see what the 
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challenges are in implementing audio measurement on a larger scale. The use of machine learning showed 

promise as a potential tool in this regard. Automatic recognition of specific calls could give great insight 

into chickens’ behaviour and physiological state. Future studies are warranted to further investigate the 

classification of vocalizations datasets from laying hens for complete validation. These datasets could be 

comprised of laying hens or broilers with health challenges along with control healthy bird’s audio signals. 

 

Conclusions 

This research aimed to quantify the response to an acute stress factor in laying hens using two different 

kinds of sensors, namely, thermographic imagery and microphones. The results have shown that the skin 

temperature decreased significantly shortly after acute stress. This was most apparent in the beak and comb 

regions. Post-stress it was found that the number of vocalisations the birds produced decreased. This could 

be attributed to a freezing response or because of daily behavioural rhythm of the birds. Chickens might be 

more active during certain parts of the day and thus produce more sounds. In this study, the application of 

deep learning methods for automated laying hen’s vocalization classification was investigated. The results 

from the experiments of our study demonstrate that an ensemble of deep learning-based CNN approaches 

achieved a maximum accuracy of 85.7% in the laying hen vocalization classification. The results and 

methods for both thermographic imaging and audio analysis emphasise the importance of more research 

into the validation of these sensors with different ages, environmental conditions, and other stressors.  
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Appendix 

Appendix I: Daily Maximum Air Temperature 

 

Table 3 The maximum daily air temperature (°C) for the control cage (1) and the treatment cages (2) 

Date Age of birds (days) Cage Max Temperature (°C) 

16-nov 1 1 33.4 

16-nov 1 2 34.9 

17-nov 2 1 34 

17-nov 2 2 34.5 

18-nov 3 1 34.2 

18-nov 3 2 34.5 

19-nov 4 1 34 

19-nov 4 2 34 

20-nov 5 1 33 

20-nov 5 2 33 

21-nov 6 1 32.6 

21-nov 6 2 32.1 

22-nov 7 1 32.2 

22-nov 7 2 32.5 

23-nov 8 1 31.5 

23-nov 8 2 31.8 

24-nov 9 1 31 

24-nov 9 2 31.2 

25-nov 10 1 30.8 

25-nov 10 2 31 

26-nov 11 1 30.5 

26-nov 11 2 30.9 

27-nov 12 1 31.7 

27-nov 12 2 30 

28-nov 13 1 30.5 

28-nov 13 2 28.4 

29-nov 14 1 30.5 

29-nov 14 2 28.4 

30-nov 15 1 31.3 

30-nov 15 2 30.2 

1-dec 16 1 31.4 

1-dec 16 2 30.5 

2-dec 17 1 31.3 

2-dec 17 2 30.3 

3-dec 18 1 28.5 

3-dec 18 2 28.8 

4-dec 19 1 27.9 

4-dec 19 2 27.9 
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5-dec 20 1 27.2 

5-dec 20 2 27.3 

6-dec 21 1 27.5 

6-dec 21 2 27.5 

7-dec 22 1 28 

7-dec 22 2 28.7 

8-dec 23 1 27.2 

8-dec 23 2 27.8 

9-dec 24 1 26.6 

9-dec 24 2 27.2 

10-dec 25 1 27 

10-dec 25 2 27.2 

11-dec 26 1 28.9 

11-dec 26 2 27.5 

12-dec 27 1 27.6 

12-dec 27 2 26 

13-dec 28 1 28.2 

13-dec 28 2 26.3 

14-dec 29 1 27.9 

14-dec 29 2 26.5 

15-dec 30 1 27.9 

15-dec 30 2 26.4 

16-dec 31 1 25.2 

16-dec 31 2 24.9 

17-dec 32 1 25.8 

17-dec 32 2 28.5 

18-dec 33 1 25.4 

18-dec 33 2 26 

19-dec 34 1 25.2 

19-dec 34 2 24.8 

20-dec 35 1 24.9 

20-dec 35 2 24 

21-dec 36 1 24.8 

21-dec 36 2 25.1 

22-dec 37 1 23.1 

22-dec 37 2 26.2 

23-dec 38 1 23.9 

23-dec 38 2 25.3 

24-dec 39 1 23.8 

24-dec 39 2 25.1 

25-dec 40 1 23.6 

25-dec 40 2 24.8 

26-dec 41 1 23.8 

26-dec 41 2 25.4 

27-dec 42 1 23 
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27-dec 42 2 25.7 

28-dec 43 1 23.4 

28-dec 43 2 25.3 

29-dec 44 1 23.7 

29-dec 44 2 24.4 

30-dec 45 1 24 

30-dec 45 2 24.5 

31-dec 46 1 24.5 

31-dec 46 2 24.8 

1-jan 47 1 24.2 

1-jan 47 2 24.9 

2-jan 48 1 23.7 

2-jan 48 2 24.7 

3-jan 49 1 24 

3-jan 49 2 24.9 

4-jan 50 1 23.7 

4-jan 50 2 24.3 

5-jan 51 1 22.9 

5-jan 51 2 23.8 

6-jan 52 1 22.4 

6-jan 52 2 23.6 

7-jan 53 1 22.6 

7-jan 53 2 22 

8-jan 54 1 22.9 

8-jan 54 2 22.1 

9-jan 55 1 22.8 

9-jan 55 2 23.7 

10-jan 56 1 22.8 

10-jan 56 2 23.7 

11-jan 57 1 22.3 

11-jan 57 2 23 

12-jan 58 1 22 

12-jan 58 2 22 

13-jan 59 1 22 

13-jan 59 2 22.7 

14-jan 60 1 22.2 

14-jan 60 2 22.8 

15-jan 61 1 22.2 

15-jan 61 2 21.7 

16-jan 62 1 22 

16-jan 62 2 21.8 

17-jan 63 1 22.5 

17-jan 63 2 22.7 

18-jan 64 1 22.2 

18-jan 64 2 22.8 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.31.502171doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.31.502171
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

Appendix II: Data Collection Period / Schedule  

Table 4 The lighting and stressing schedule for the study. The chickens were also part of another study that researched the effects 

of different light colours 

Date 

Age 

days Day Name light color 

Stress or no 

stress 

15-nov-21 1 Monday     

16-nov-21 2 Tuesday     

17-nov-21 3 Wednesday     

18-nov-21 4 Thursday     

19-nov-21 5 Friday     

20-nov-21 6 Saturday     

21-nov-21 7 Sunday     

22-nov-21 8 Monday Blue   

23-nov-21 9 Tuesday  stressed 

24-nov-21 10 Wednesday     

25-nov-21 11 Thursday  stressed 

26-nov-21 12 Friday     

27-nov-21 13 Saturday  stressed 

28-nov-21 14 Sunday     

29-nov-21 15 Monday  stressed 

30-nov-21 16 Tuesday     

1-dec-21 17 Wednesday   stressed 

2-dec-21 18 Thursday Red   

3-dec-21 19 Friday  stressed 

4-dec-21 20 Saturday     

5-dec-21 21 Sunday  stressed 

6-dec-21 22 Monday     

7-dec-21 23 Tuesday  stressed 

8-dec-21 24 Wednesday     

9-dec-21 25 Thursday  stressed 

10-dec-21 26 Friday     

11-dec-21 27 Saturday   stressed 

12-dec-21 28 Sunday     

13-dec-21 29 Monday  stressed 

14-dec-21 30 Tuesday     

15-dec-21 31 Wednesday  stressed 

16-dec-21 32 Thursday     

17-dec-21 33 Friday  stressed 

18-dec-21 34 Saturday     

19-dec-21 35 Sunday  stressed 

20-dec-21 36 Monday     

21-dec-21 37 Tuesday   stressed 

22-dec-21 38 Wednesday     
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23-dec-21 39 Thursday  stressed 

24-dec-21 40 Friday     

25-dec-21 41 Saturday  stressed 

26-dec-21 42 Sunday     

27-dec-21 43 Monday  stressed 

28-dec-21 44 Tuesday     

29-dec-21 45 Wednesday  stressed 

30-dec-21 46 Thursday     

31-dec-21 47 Friday   stressed 

1-jan-22 48 Saturday     

2-jan-22 49 Sunday  stressed 

3-jan-22 50 Monday     

4-jan-22 51 Tuesday  stressed 

5-jan-22 52 Wednesday     

6-jan-22 53 Thursday  stressed 

7-jan-22 54 Friday     

8-jan-22 55 Saturday  stressed 

9-jan-22 56 Sunday     

10-jan-22 57 Monday   stressed 

11-jan-22 58 Tuesday     

12-jan-22 59 Wednesday  stressed 

13-jan-22 60 Thursday     

14-jan-22 61 Friday  stressed 

15-jan-22 62 Saturday     

16-jan-22 63 Sunday  stressed 

17-jan-22 64 Monday     

18-jan-22 65 Tuesday   stressed 
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Appendix III: Confusion Matrix for Convolutional Neural Network Analysis of 

Vocalizations Data  

  
Table 5 The classification accuracy for the Resnet method showing where the different files were 

categorised by the neural network. The true class is the actual class a file belongs to, and the predicted class 

is the place where the algorithm placed the file. The blue cells represent a correct classification, and the 

orange cells represent an incorrect classification  

 

Resnet Correct % False % 

T
ru

e 
cl

as
s Control 

post-stress 8     2 80 20 

prestress   8 2   80 20 

Treatment 
post-stress    20 2 90.9 9.1 

prestress     3 18 85.7 14.3 

  Correct % 100 100 80 81.8   

  False %     20 18.2   

   post-stress prestress post-stress prestress   

   Control Treatment   

   Predicted class   
 

 

Table 6 The classification accuracy for the Alexnet method showing where the different files were 

categorised by the neural network. The true class is the actual class a file belongs to and the predicted class 

is the place where the algorithm placed the file. The blue cells represent a correct classification and the 

orange cells represent an incorrect classification  

 

Alexnet 

Correct 

% False % 

T
ru

e 
cl

as
s 

Control 
post-stress 6 3   1 60 40 

prestress 7 3    30 70 

Treatment 
post-stress  1 6 15 27.3 72.7 

prestress     1 20 95.2 4.8 

  Correct % 46.2 42.9 85.7 55.6   

  False % 53.8 57.1 14.3 44.4   

   post-stress prestress post-stress prestress   

   Control Treatment   

   Predicted class   
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Table 7 The classification accuracy for the GoogleNET method showing where the different files were 

categorised by the neural network. The true class is the actual class a file belongs to, and the predicted class 

is the place where the algorithm placed the file. The blue cells represent a correct classification, and the 

orange cells represent an incorrect classification.  

 

GoogleNET 

Correct 

% False % 

T
ru

e 
cl

as
s 

Control 
post-stress 7     3 70 30 

prestress  7  3 70 30 

Treatment 
post-stress 1  14 7 63.6 36.4 

prestress     2 19 90.5 9.5 

  Correct % 87.5 100 87.5 59.4   

  False % 12.5   12.5 40.6   

   post-stress prestress post-stress prestress   

   Control Treatment   

   Predicted class   
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