
Figure 7. Segment-wise along-tract MAE scores after controlling for age and sex with 95% confidence intervals per
diagnostic group for the AL L, OR R and MdLF R tracts and FDR-corrected − log10(p) values plot from the 2-tailed
independent sample t-test between control and AD are shown. The bundles are plotted on the atlas dataset colored by
significance.

4. DISCUSSION

Unsupervised representation learning methods have shown promise in learning embeddings from large datasets
that enable downstream analysis, and lend themselves naturally to whole-brain tractography datasets with up
to a million streamlines per subject. Applications include anomaly detection in individuals or groups, denoising,
and quality control, as well as producing a more compact representation of the data for clustering and labeling.
In this work using ConvVAE to encode bundle streamlines, we found that higher latent space dimensions lead
to poorer distance preservation, potentially due to overfitting, while latent spaces of lower than 6 dimensions
discard too much of the information needed to reconstruct tracts and their relative distances. Since our input
data consists of bundle streamlines, we also designed inter-bundle distance evaluations to test whether global
distances are preserved, using modality specific distance metrics.

We utilized our ConvVAE model to detect structural anomalies in white matter tracts of MCI and AD
subjects. In the current formulation, structural anomalies are measured by the discrepancy between brains of
people diagnosed with AD and MCI and normal brains using MAE scores computed over segments along the
length of the tract. ConvVAE performs well for bundle reconstruction, preserving their shapes, orientations
and locations in the brain, so we expect structural anomalies to be detected by MAE which uses reconstructed
streamlines in its calculation. In addition to group analysis of bundles, the ConvVAE reconstructs streamlines,
allowing us to compute along-tract measures. This approach help tease out significant group differences in points
with high inter-subject variations inherent to many tractography methods.35

One limitation of our method is that ConvVAE with 1D convolutional layers can only take in equal-length
inputs. Since not all streamlines have equal length, shorter streamlines are represented with more points, leading
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Figure 8. Segment-wise along-tract MAE scores after controlling for age and sex with 95% confidence intervals per
diagnostic group for the CC ForcepsMajor, CCMid and CC ForcepsMinor tracts and FDR-corrected − log10(p) values
plot from the 2-tailed independent sample t-test between control and AD are shown. The bundles are plotted on the atlas
dataset colored by significance.

to bias against long streamlines which can affect downstream anomaly detection tasks. We plan in future work
to adjust for streamline length and sampling to further improve reconstruction while preserving the quality of
the embeddings. A second limitation is that our current work only flags geometric distortions along tracts and
could be extended to map group differences in microstructural parameters, such as fractional anisotropy (FA)
and mean diffusivity (MD) measures, which may be more sensitive to groups differences in MCI and AD.13

Our framework could be extended in several ways. First, we plan to train the model on a larger cohort with
additional quality control on bundles, such as via the FiberNeat method.9 Evidently, the spikes in along-tract
MAE in the OR R tract (see Figure 7) are potentially due to outlier streamlines. Second, the current VAE
embedding model uses a standard multidimensional Gaussian to determine the log-likelihood of the training
data. Contrastive learning approaches, such as SimCLR36 and nearest-neighbor-based out-of-distribution based
method,37 could instead be used to encourage mappings that cluster specific fiber types together in the latent
space. In supervised embedding, labels (or numeric values) are leveraged so that similar points are closer together
than they otherwise would be, and contrastive learning or semantic embedding could be used to pull streamlines
from the same bundle together in the embedding space. This could allow direct multisubject registration and
labeling of the embeddings for population analyses of microstructural and geometric parameters. Finally, a
single VAE model for all tracts, used here, could be extended to a Gaussian mixture VAE38 to better capture
the hierarchical structure of the bundles.
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5. CONCLUSION

We propose a robust framework using Convolutional Variational Autoencoder (ConvVAE) to learn low-dimensional
embeddings from data-intensive tractography data. We investigate the effect of latent space dimension on the
quality of embeddings, and found that streamline distances as well as inter-bundle distances are strongly cor-
related with embedding distances at Nz = 6. The generative model allows for inference on new data, and the
smooth ConvVAE latent space enables meaningful decodings that can be used for downstream tasks. We trained
our ConvVAE on data from healthy control subjects to detect structural anomalies in white matter tracts in
patients with Alzheimer’s disease. The flexibility of ConvVAE facilitates group analysis of bundle difference. We
identified 6 tracts with statistically significant group differences and specific locations along the length of the
tracts with anomalies after controlling for age and sex effect despite large inter-subject variations. Given the
increasing scale of neuroimaging studies and numerous tractography methods, our framework offers a robust,
unsupervised method to study structural features of white matter tracts and conduct population analyses.
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[7] Manjón, J. V., Coupé, P., Concha, L., Buades, A., Collins, D. L., and Robles, M., “Diffusion Weighted
Image Denoising Using Overcomplete Local PCA,” PLoS ONE 8, e73021 (Sept. 2013).

[8] Detlefsen, N. S., Hauberg, S., and Boomsma, W., “Learning meaningful representations of protein se-
quences,” Nature Communications 13, 1914 (Dec. 2022).

[9] Chandio, B. Q., Chattopadhyay, T., Owens-Walton, C., Villalon Reina, J. E., Nabulsi, L., Thomopoulos,
S. I., Garyfallidis, E., and Thompson, P. M., “FiberNeat: unsupervised streamline clustering and white
matter tract filtering in latent space,” preprint, Neuroscience (Oct. 2021).

[10] Zhong, S., Chen, Z., and Egan, G., “Auto-encoded Latent Representations of White Matter Streamlines for
Quantitative Distance Analysis,” Neuroinformatics (June 2022).

[11] Steck, H., “Autoencoders that don’ t overfit towards the Identity,” in [Advances in Neural Information
Processing Systems ], Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., eds., 33, 19598–
19608, Curran Associates, Inc. (2020).

[12] Feng, Y., Chandio, B. Q., Chattopadhyay, T., Thomopoulos, S. I., Owens-Walton, C., Jahanshad, N., Gary-
fallidis, E., and Thompson, P. M., “Deep generative model for learning tractography streamline embeddings
based on convolutional variational autoencoder,” in [International Society for Magnetic Resonance Imaging
(ISMRM) ], (2022).

[13] Zavaliangos-Petropulu, A., Nir, T. M., Thomopoulos, S. I., Reid, R. I., Bernstein, M. A., Borowski, B.,
Jack Jr., C. R., Weiner, M. W., Jahanshad, N., and Thompson, P. M., “Diffusion MRI Indices and Their
Relation to Cognitive Impairment in Brain Aging: The Updated Multi-protocol Approach in ADNI3,”
Frontiers in Neuroinformatics 13, 2 (Feb. 2019).

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.31.502227doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.31.502227
http://creativecommons.org/licenses/by-nc-nd/4.0/


[14] Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., Nimmo-Smith,
I., and Dipy Contributors, “Dipy, a library for the analysis of diffusion MRI data,” Frontiers in Neuroin-
formatics 8 (Feb. 2014).

[15] Veraart, J., Fieremans, E., and Novikov, D. S., “Diffusion MRI noise mapping using random matrix theory:
Diffusion MRI Noise Mapping,” Magnetic Resonance in Medicine 76, 1582–1593 (Nov. 2016).

[16] Veraart, J., Novikov, D. S., Christiaens, D., Ades-aron, B., Sijbers, J., and Fieremans, E., “Denoising of
diffusion MRI using random matrix theory,” NeuroImage 142, 394–406 (Nov. 2016).

[17] Kellner, E., Dhital, B., Kiselev, V. G., and Reisert, M., “Gibbs-ringing artifact removal based on local
subvoxel-shifts: Gibbs-Ringing Artifact Removal,” Magn. Res. Medicine 76, 1574–1581 (Nov. 2016).

[18] Andersson, J. L. and Sotiropoulos, S. N., “An integrated approach to correction for off-resonance effects
and subject movement in diffusion MR imaging,” NeuroImage 125, 1063–1078 (Jan. 2016).

[19] Andersson, J. L. R., Graham, M. S., Zsoldos, E., and Sotiropoulos, S. N., “Incorporating outlier detection
and replacement into a non-parametric framework for movement and distortion correction of diffusion MR
images,” NeuroImage 141, 556–572 (Nov. 2016).

[20] Andersson, J. L., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., and Bastiani, M., “Towards a
comprehensive framework for movement and distortion correction of diffusion MR images: Within volume
movement,” NeuroImage 152, 450–466 (May 2017).

[21] Tournier, J.-D., Calamante, F., and Connelly, A., “Robust determination of the fibre orientation distribution
in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution,” NeuroImage 35, 1459–
1472 (May 2007).

[22] Girard, G., Whittingstall, K., Deriche, R., and Descoteaux, M., “Towards quantitative connectivity analysis:
reducing tractography biases,” NeuroImage 98, 266–278 (Sept. 2014).

[23] Kingma, D. P. and Welling, M., “Auto-Encoding Variational Bayes,” (May 2014). arXiv: 1312.6114 [cs,
stat].

[24] Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic Optimization,” (Jan. 2017). arXiv:1412.6980
[cs].

[25] Mikolov, T., “Statistical language models based on neural networks,” (2012).

[26] Garyfallidis, E., Brett, M., Correia, M. M., Williams, G. B., and Nimmo-Smith, I., “QuickBundles, a
Method for Tractography Simplification,” Frontiers in Neuroscience 6, 175 (2012).

[27] Garyfallidis, E., Wassermann, D., and Descoteaux, M., “Direct native-space fiber bundle alignment for
group comparisons,” in [International Society for Magnetic Resonance Imaging (ISMRM) ], (2014).

[28] Kantorovich, L. V., “Mathematical Methods of Organizing and Planning Production,” Management Sci-
ence 6, 366–422 (July 1960).

[29] Mantel, N., “The detection of disease clustering and a generalized regression approach,” Cancer Research 27,
209–220 (Feb. 1967).

[30] Zhang, W., Xue, X., Sun, Z., Guo, Y.-F., and Lu, H., “Optimal dimensionality of metric space for classifi-
cation,” in [Proceedings of the 24th international conference on Machine learning - ICML ’07 ], 1135–1142,
ACM Press, Corvalis, Oregon (2007).

[31] Baur, C., Denner, S., Wiestler, B., Albarqouni, S., and Navab, N., “Autoencoders for Unsupervised Anomaly
Segmentation in Brain MR Images: A Comparative Study,” (Apr. 2020). arXiv:2004.03271 [cs, eess].

[32] Siddalingappa, R. and Kanagaraj, S., “Anomaly Detection on Medical Images using Autoencoder and
Convolutional Neural Network,” Int. J. Advanced Computer Science and Applications 12(7) (2021).

[33] Chamberland, M., Genc, S., Tax, C. M. W., Shastin, D., Koller, K., Raven, E. P., Cunningham, A.,
Doherty, J., van den Bree, M. B. M., Parker, G. D., Hamandi, K., Gray, W. P., and Jones, D. K., “Detect-
ing microstructural deviations in individuals with deep diffusion MRI tractometry,” Nature Computational
Science 1, 598–606 (Sept. 2021).

[34] Ardekani, B. A., Bachman, A. H., Figarsky, K., and Sidtis, J. J., “Corpus callosum shape changes in early
Alzheimer’s disease: an MRI study using the OASIS brain database,” Brain Structure & Function 219,
343–352 (Jan. 2014).

[35] Rheault, F., Poulin, P., Valcourt Caron, A., St-Onge, E., and Descoteaux, M., “Common misconceptions,
hidden biases and modern challenges of dMRI tractography,” J. Neural Engineering 17, 011001 (Feb. 2020).

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.31.502227doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.31.502227
http://creativecommons.org/licenses/by-nc-nd/4.0/


[36] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G., “A Simple Framework for Contrastive Learning of
Visual Representations,” arXiv:2002.05709 [cs, stat] (June 2020). arXiv: 2002.05709.

[37] Sun, Y., Ming, Y., Zhu, X., and Li, Y., “Out-of-Distribution Detection with Deep Nearest Neighbors,”
(June 2022). arXiv:2204.06507 [cs].

[38] Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H., “Variational Deep Embedding: An Unsupervised and
Generative Approach to Clustering,” in [Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence ], 1965–1972, International Joint Conferences on Artificial Intelligence Organization,
Melbourne, Australia (Aug. 2017).

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.07.31.502227doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.31.502227
http://creativecommons.org/licenses/by-nc-nd/4.0/

