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Abstract—We propose a biologically inspired attentional
search model for target search in a 3D environment, which
has two separate channels for object classification, analogous
to the “what” pathway in the human visual system, and
for prediction of the next location of the camera, analogous
to the “where” pathway. We generated 3D Cluttered Cube
datasets that consist of an image on one vertical face, and
clutter images on the other faces. The camera goes around
each cube on a circular orbit centered on the cube and
determines the identity of the image and the face on which
it is located. The images pasted on the cube faces were drawn
from three: MNIST handwriting digit, QuickDraw, and RGB
MNIST handwriting digit datasets. The attentional input of
3 concentric cropped windows resembling the high-resolution
central fovea and low-resolution periphery of the retina, flows
through a Classifier Network and a Camera Motion Network.
The Classifier Network classifies the current view into one of
the classes or clutter. The Camera Motion Network predicts
the camera’s next position on the orbit (varying the azimuthal
angle or ‘0’). Here the camera performs one of three actions:
move right, move left, or don’t move. The Camera-Position
Network adds the camera’s current ¢ information into the
higher features level of the Classifier Network and the Camera
Motion Network. The Camera Motion Network is trained using
Q-learning where the reward is 1 if the classifier network gives
the correct classification, otherwise 0. Total loss is computed
by adding the mean square loss of temporal difference and
cross entropy loss. Then the total loss is backpropagated using
Adam optimizer. Results on two grayscale image datasets and
one RGB image dataset show that the proposed model is
successfully able to discover the desired search pattern to find
the target face on the cube, and also classify the target face
accurately.

Index Terms—Attention, Memory, Human Visual System,
What and Where pathway, Convolutional neural network,
Search in 3D, Flip-flop

I. INTRODUCTION

Human visual system (HVS) processes a restricted field
of view of about 150 degrees in the horizontal line and 210
degrees in the vertical line [1]. However, the eye orientates
itself in such a manner that the image of the region of
interest falls inside the central part of the retina or fovea
to obtain precise information from that part of the visual
field. Information from the fovea in high resolution and
periphery in low resolution is passed through the visual
hierarchy, and the features related to the form, color, and

motion are analyzed by respective visual cortical areas. Due
to this anatomical constraint, the eye does not process the
entire scene at once: the eye makes darting movements
called saccades and attends the salient parts of the scene
sequentially and integrates the pieces of the image to get a
more comprehensive understanding of the scene.

Visual attention is a popular topic in both computer vision
and visual neuroscience. A large number of computational
models of visual attention, proposed in the past couple
of decades: may be divided into two categories: Bottom-
up approaches [2], [3], and top-down approaches [4], [5],
[6]. The models are basically developed to predict the
saliency map where a brighter pixel has higher probability
of receiving human attention and vice versa. Bottom-up
attention is considered to be stimulus driven whereas top-
down attention is considered to be task driven which receives
human attention based on the explicit understanding of
the image content. Prior attempts in the field of top-down
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Fig. 1: Sample of image datasets are shown here.

attention mechanisms [4], [5], [6] have mainly used non-
deep networks such as a Bayesian approach [7] based on
limited knowledge of visual attention. One of the popular
study of the attention mechanism [8], Mnih et. al have
developed an recurrent attention model (RAM) which takes
a glimpse of the attention window as input and uses the
internal state of the network to find the next location to focus
on in a non-static environment. Their proposed network
processes multiple glimpses of windows to attend a part
of the image at different levels of resolutions. Training of
their model is done by using the reinforcement learning
approach for classification of MNIST dataset for modeling
task-driven visual attention. Design of their network is based
on fully connected layers, which leads to a rapid increase


https://doi.org/10.1101/2022.08.01.502278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502278; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Circular orbit path

Camera X Cube y

L)

Fig. 2: Simulated environment: ’r’ is the radius of the circular
orbit around the cube or the line connecting the camera position
and origin of the spherical coordinate system. Polar angle ’¢’ is
assumed to be fixed at 0, and azimuth angle ’6’ is varying.

in computational cost with image size, and therefore the
network is perhaps not feasible for more complex real world
tasks such as search in a 3D environment.

There is an extensive number of research studies that
demonstrate the application of attentional search methods
to solve real world problems in 2D space such as image
cropping [9], object recognition [10], object segmentation
[11], [12], [13], and video understanding [14], [15], [16],
[17], [18]. But the use of visual attention in a 3D environ-
ment is still relatively under-explored. Earliest work in 3D
target search is the Shape Nets [19] where the objective
was to voxelize the target and use deep belief networks
for training and prediction. Minut and Mahadevan [20] use
Q learning to identify the next movement of the camera
(action) out of the eight possible actions in order to focus
on the object of interest. At a lower level this approach
uses histogram back projection color maps and symmetry
map to identify the objects. Unlike reinforcement learning
based approaches, the model proposed by Kanezaki et. al,
named RotationNet [21], focuses on convolutional neural
networks (CNNs) based approaches where each view of the
object is taken into consideration for learning. The model
predicts the class and the pose (orientation) of the object of
consideration. This was an improvement over the previous
CNN based networks which failed to predict the pose. The
model yielded an accuracy of 94% on Modelnet40 dataset
[19] consisting of 40 categories including chair, airplane etc.
Multiview CNN [22] was one of the earliest attempts in 3D
object recognition that acts as a precursor of the RotationNet.
In the model known as the SaccadeNet [23], developed by
Lan et. al, a model closest in approach to ours, four module
classifiers are used to recognize objects. These modules are
- center attentive module, the corner attentive module, the
attention transitive module, and the aggregation attentive
module. Each module works on identifying the main key
points of the object of interest, perhaps the center, corners,
attend object centers and bounding boxes. This technique
works similar to the proposed saccade approach inspired by
human visual search. The drawback is that it works mainly
on 2D inputs. While performing a target search in a 3D
environment, the model needs to predict the next location of
the camera and identify the object that the camera is looking
for. To perform such search tasks in 3D space, time is one

of the constraints which depends on the network design and
input. We propose an Attentional Search Model in 3D space
(ASM-3D) that takes the attentional glimpse instead of the
entire image. The design of the model contains convolutional
layers instead of fully connected layers to extract features
and contains Elman and Jordan recurrence layers as well
as JK-flip-flop recurrence layer [24] instead of LSTM to
integrate the temporal attention history in the network. To
generate the attentional glimpse, a set of concentric attention
windows is used by taking the inspiration from [8], [25],
[26].

The proposed model has the following brain-inspired
features: 1) it has separate channels for image classification
and camera movement, analogous to the “What pathway”
and “Where pathway” in HVS; 2) it incorporates three types
of recurrence connections: a) Local recurrence connection
of Elman type [27], b) Global recurrence connection of
Jordan type [28], ¢) Flip-flop neurons [29] that are capable
of storing information for a long time. In this study, we
show that the ASM-3D is effectively able to learn task-
specific strategies and identify the targets. Our simulation
results successfully shows that an attention-based network
can be an efficient approach in dealing with target searching
tasks in a 3D environment, which is demonstrated by using
3D Cluttered MNIST Cube dataset, 3D Cluttered QuickDraw
Cube dataset, and 3D Cluttered RGB MNIST Cube dataset.

II. THE PROPOSED APPROACH
A. Environment Overview

The virtual environment used in this study is created
using OpenGL [30] (Fig.2). The environment contains a
cube placed at the origin of a spherical coordinate system
and a camera placed on a circular orbit around the cube.
On this orbit of radius ‘r’, the camera revolves around the
cube, always looking inwards towards the center of the cube
(Fig.3b). As the camera moves on the orbit, it processes the
views of the cube it captures and searches for the face that
has a target pattern displayed on it (Fig.4b). The possible
movements of the camera on the orbit are: “move right”
(07), “move left” (87), or “don’t move” () (Fig.3).

0" Circular orbit path
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Fig. 3: Direction of all 3 movements of the camera on the orbital
path supposed to be predicted by the model

B. Architecture Overview

The architecture design of the proposed attentional search
model in 3D space (ASM-3D) is depicted in Fig.4d. The
model takes two inputs: i) the attentional glimpse which
consists of the contents at different resolutions and sizes
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(e) Update the camera position using predicted 0
in the environment and get next camera captured view

(a) Simulated environment

i ]
4 4 ,—;q 1| a6 s2
L Attentional
Windows onthe cropped Resized glimpse
cameraview  windows windows 1gy16x9 —
(c) Preparing the attentional glimpse as input
3x3,16 S2

Convolutional flip-flop layer + ReLU
Fully connected flip-flop layer + ReLU
Convolutional layer + ReLU

Maxpool layer

Fully connected elman layer + ReLU
Concatenation layer

Circular orbit path

=>

wl

75x100
y
(b) Camera captured view
from the environment
Gax
F 10
3x3,32 S2 3x3,64 512

Pretrained Classifier Network

fﬂ

| e |Predict
3x3, 32 s2 33,64 s2 512 512/ 1088 Linear,3
Camera Motion Network
Camera position
sin@, cos@

Fully connected elman jordan layer + ReLU

128 64
Camera Position Network

(d) Attentional Search Model in 3D space

(ASM-3D)

Fig. 4: The design of the ASM-3D: (a) Simulated environment with the 3D Cluttered RGB MNIST cube and the camera,
(b) Camera captures the image from the environment, (c) the attentional glimpse generated from the camera captured view,
(d) the ASM-3D predicts the class of the target and position of the camera or ‘0’, and (e) Update the camera position

using the predicted ‘0.

of the attended region, where multiple concentric attention
windows are applied to the center location of the camera
view, and ii) the camera-position in the form of a point on
the unit circle at an angle 6 or the azimuth angle of the
camera movement in its circular orbit. The model predicts
two outputs at each timestep: i) the next location of the
camera on the orbit, and ii) the class of the object seen in the
camera view. The model consists of three parallel pipelines
(Fig.4d): 1) the upper pipeline processes the class information
of the object seen in the view, called the Classifier Network,
ii) the middle pipeline processes the location of the target

object over the cube, called the Camera Motion Network,
and iii) the lower pipeline, which incorporates the camera
position into the high level features of the Classifier Network
and the Camera Motion Network, is called the Camera-
Position Network. Outputs of all the three pipelines are
concatenated in one flatten layer which connects with a
fully connected layer and the output of the fully connected
layer passes through one linear output layer and one softmax
output layer in parallel. Linear output layer computes the
Q-values corresponding to the movements in all three direc-
tions that can be taken by the camera and softmax output


https://doi.org/10.1101/2022.08.01.502278
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.08.01.502278; this version posted August 3, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

[—————1 Convolutional layer + ReLU
1 Maxpool layer
I Fully connected recurrent layer + ReLU

5 § o=
T - L4 F\
I 5/ o
; i Attention 3x3,16 S2 3x3,32 s2 3x3,64 S2 512 Softmax
Camera image Cropped Resized  jnput 10
75x100 fvindows windows {gy1 6x, L )
Camera baptured p . M . . M ™
image from the reparing the attention Pretraining the classifier
windows network

environment

Fig. 5: Pretrained classifier network

layer computes the class probabilities of the object present
inside the attentional glimpse. Deep Q-learning algorithm is
applied to train the model and learn the optimal policy for
camera control. As the model takes the sequential input, the
network requires memory to store the past information of the
following details: i) the extracted features of the attentional
glimpse, ii) its corresponding location on the cube, and iii)
the camera position. For storing this input history, the model
uses 3 recurrent neural features: the flip-flop neuron layer
[29], Elman and Jordan recurrence layers.

C. The ASM-3D

The proposed attention model is a deep neural network,
which has three pipelines: Classifier Network, Camera Mo-
tion Network, and Camera-Position Network. The classifier
network consists of three convolutional layers (Convs), three
maxpool layers, and one fully connected (FC) Elman Jor-
dan recurrence layer (FCEJ). The camera motion network
consists of three convolutional flip-flop layers (ConvJKFF),
three maxpool layers, one FCEJ layer, and one FC flip-
flop layer (FCJKFF). The camera-position network consists
of one FCEJ layer, and one FCJKFF layer. This network
encodes the revolving direction of the camera. The afore-
mentioned layers are discussed in greater detail in the
following paragraphs.

Convolutional layers (Convs) are used to extract feature by
sharing the weights across different spatial locations. Input
and output to the Conv layer are 3D tensors, called feature
maps. The output feature map is calculated by convolving
the input feature map with 3D linear filters. Then a bias
term is added up into the convolved output. If X'~ is the
input feature map of /** Conv layer and W' and b’ are filter
weights and bias terms respectively, then the output feature
map X' of I*" layer is calculated via equation-1:

X! = XTW 4 b, (1)

1=1,..,L,
X0 =1,

In the above equation, L is the total number of layers, X0 is
the input image I to the first Conv layer. The output feature
maps from each Conv layer are passed through a non-linear
ReLU activation function [31] (equation-2).

f (X) = max (0,X) )

The output feature maps from the activation function, get
normalized using local response normalization (LRN) [32].
LRN normalizes the feature maps within the channels that
also implement lateral inhibition (equation-3).

6
(X],)?

min(C—1,f+c/2)

>

j=maz(0,f—c/2)

o o_xf
NS, =XI,/|k+a 3)

where X(z,y) and N(z, y) are the pixel values at (z, y) po-
sition before and after normalization respectively, f denotes
the filter. C' stands for the total number of channels. The
constants k, «, 3, and c¢ are hyper-parameters. k is used to
avoid “division by zero”, « is a normalization constant, while
[ is used as a contrasting constant. The constant ¢ is used
to define the length of the neighborhood, that is the number
of consecutive pixel values need to be considered while
calculating the normalization. (k, o, 3,¢) = (0,1,1,C') case
is considered as the standard normalization. Normalized
features from the Conv layer are passed through the maxpool
layer [33]. Several convolutional layers and pooling layers
are assembled alternately across depth in the first three Conv
or ConvJKFF layers in both classifier and camera motion
networks (Fig.4d).

To implement the Elman recurrence layer [27], the output
vector of the FC layer at time ‘¢ — 1’ is stored in a context
layer and the content of the context layer is fed back to the
same FC layer at time ‘¢’, named as FC Elman recurrence
layer which is a short range storage connection. The Elman
recurrence layer has been implemented only in the first
FC layer of all three networks. Similarly, to implement the
Jordan recurrence layer [28], the output vector of the last
FC layer at time step ‘¢ — 1’ is stored in a context layer and
this context layer is fed back to the first FC layer at time
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step ‘¢’ in their corresponding pipeline, named as FC Jordan
recurrence layer which is a long-range storage connection. In
this way the first FC layer in Classifier and Camera Motion
Networks has both Elman and Jordan recurrences; so we call
this layer a FCEJ layer. The computation of FCEJ is shown
in the following equation-4

X! = f(Xéfl w4 xt w4 XE WL 4 bz)

“)
In equation-4, Xi_l is the output of the [ — 1th layer at time
’t’ and going as input to the [ layer at time ’t* (FC layer).
X! | is the output of the I*" layer at time *¢ — 1” and going
as input to the same I*" layer at time ’#> (Elman recurrence
layer). X%, is the output of the L layer at time "t —1" and
going as input to the I*" layer at time ’#’ (Jordan recurrence
layer). W's and b are the corresponding weights and bias
respectively. f is the ReLU activation function.

Memory of the past information in the layers of the
proposed network is stored using a third mechanism — the
flip-flop neurons [29]. A flip-flop is a digital electronic
circuit to store state information. There are 4 types of dig-
ital implementations of flip-flops: D flip-flops, Toggle flip-
flops, SR flip-flops, and JK flip-flops [34]. In the proposed
network, JK flip-flop neurons have been used in place of
LSTM neurons because of the performance advantage shown
in [24], and [29]. In both of these papers, the experiment
conducted on the sequential data shows that flip-flop neurons
outperform the LSTM neurons, using only half the number
of training parameters in comparison to LSTM. Likewise, to
get the advantage of less parameters and better performance,
in the current study we used the JK flip flop neuron. The
JK flip-flop neuron uses 2 gating variables with “J and
K” nodes whereas LSTM uses 4 gating variables. In this
paper, the term flip-flop will be used to refer to JK-flip-flop.
Furthermore, the flip-flop neurons are considered similar to
the UP/DOWN neurons found in the prefrontal cortex (PFC),
responsible for working memory [35].

In the proposed model, the flip-flop layer is designed in
two ways: flip-flop neurons in convolutional layer (named as
“convolutional flip-flop layer” or ConvJKFF), and flip-flop
neurons in the FC layer (named as “fully connected flip-flop
layer” or FCJKFF). Training rules of these flip-flop neurons
in the network were also developed. The two gate outputs
‘J’ and ‘K’, the hidden state of the JK flip-flops, and the
final flip-flops output are computed by using eqns (5, 6, and
7 respectively) below.

J=0(Un.W;),K=0(In;.Wy) (5)
H,=J1-H;1)+(1-K)H; (6)

O; = tanh (H;. W ;1) @)

In eqns (5 & 7), . stands for the matrix multiplication in

case of FCJKFF layer whereas the convolve operation in
case of ConvJKFF layer. In; = (X;;H;) is the input to
the flip-flop layer, where X, is the output from previous
layer and H, is the hidden state at time ’¢’, which initialize
with ones at time 0. J and K are the gate variables, which

has weight parameters W and W, respectively. O, is the
output of the flip-flop layer at time ’¢’. To train the flip-flop
neurons, the partial derivatives w.r.t J and K were used to
backpropagate the corresponding J and K nodes (equation-
8).
OH,
oJ

D. Implementation Detail

oH
=1-H,_;— =-H,_,

0K ®

1) Camera Motion Network: The camera motion network
takes the attentional glimpse of size h x w X a as input, where
‘h’ is the height, ‘w’ is the width, and ‘a’ is the number of
the cropped attention windows. Here, the number of attention
windows is chosen to be 3 (i.e, a = 3). The size of one
attention window is twice the previous attention window’s
size. Similar multi-scale concentric attention windows were
used in other models [8], [36], [37]. All of the attention
windows, except the smallest one, get resized to the size of
the smallest attention window. For example, to generate the
attentional glimpse where i = 16, w = 16, and a = 3 from
location y = 35 and x = 50 in the given image of size
75 x 100, the first, second, and third attention windows are
cropped out of size 16 x 16, 32 x 32, and 50 x 50 from
pixel location (y,x) = (27 to 43, 42 to 58), (y,x) = (19 to
51,34 to 66), and (y,x) = (10 to 60,25 to 75) respectively.
The second and third cropped attention windows are resized
into the size of the first cropped attention window, which is
16 x 16. After resizing, all of the three attention windows
are stacked together which finally becomes an attentional
glimpse of size 16 x 16 x 3. This type of attentional glimpse
having a size of h X w x a shown in Fig.4c is passed to
the first ConvJKFF layer of 16 kernels, each of size 3 x 3,
of the classifier network (shown in the top pipeline of the
ASM-3D in Fig.4d). The spatial dimension of the features
generated from the first ConvJKFF layer is h x w X 16,
which are normalized using LRN, and passed into ReL.U
activation function. Output from ReLU activation function
is passed to the maxpool layer with a window of size
2 x 2 and stride by 2, which translates the feature’s spatial
dimensions into h/2 x w/2 x 16. The translated feature
maps are passed as input to the second ConvJKFF layer
of 32 kernels, each of size 3 x 3, to extract the higher level
features of size h/2x w/2x 32. Then, similar to the previous
layer, features generated from the second ConvJKFF layer
are passed through the LRN layer, ReLU activation function,
and maxpool layer with a window of size 2 x 2 and stride 2.
After passing into the maxpool layer, feature maps of size
h/4 x w/4 x 32 are generated, which further goes to the
flattened layer to reshape the 3D features into 1D vectors.
The flattened vectors are passed through one FCEJ layer of
512 neurons, which is followed by one FCJKFF layer of
512 neurons. Output from the FCJKFF layer of the camera
motion network is concatenated with the output vectors of
the last layer of the other two channels.

2) Classifier Network: The classifier network gets the
same attentional glimpse as input which has been passed to
the camera motion network. This network predicts the class
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of the object present in the attentional glimpse. The object
present in the attentional glimpse may belong to one of the
‘n+1’ classes, where ‘n’ classes are the object or target class
and one is the nontarget or clutter class. The network consists
of 3 Conv layers followed by one FCEJ layer. The first Conv
layer of 16 kernels of size 3 x 3 generates the feature maps of
spatial dimension h x w x 16. Generated features are passed
through the LRN layer and ReLU activation function. After
this, the maxpool layer with a window of size 2 x 2 and
stride by 2 has been applied to the output of ReLLU activation
function, which gives the feature maps of spatial dimension
h/2 x w/2 x 16. Then, the feature maps are passed through
a second Conv layer of 32 kernels, each of size 3 x 3, LRN
layer, ReLU activation function, and maxpool layer with a
window of size 2 x 2 and stride by 2. Feature maps of spatial
dimension h/4 x w/4 x 32 are passed through a third Conv
layer of 64 kernels each of size 3 x 3 with ReLU activation
function, which further generates the feature maps of size
h/4 x w/4 x 64. Then the flattened layer reshapes the 3D
tensor of feature maps into vectors and these vectors are
input to the FCEJ layer of 512 neurons. Output of the FCEJ
layer gets concatenated with the output vectors of the last
layer of the camera motion network and the camera position
network.

3) Camera Position Network: Camera’s position in the
environment is inferred from the spherical coordinates,
where the camera is assumed, as described before, on a
circular object centered on the origin, and the center of the
cube is located at the origin. The camera’s position is defined
from using three variables: (’r’, ’0’, ’¢’), where 'r = R’
is the radius of the sphere or line connecting the camera
point and the origin of the spherical coordinate system, *6’
is the azimuth angle and ’¢’ is polar angle of the spherical
coordinate system. In the current simulated environment,
the camera moves only in one degree of freedom, that is
’0’. Therefore, 'r = R’ and ¢ = 0’ are considered to
be constant. Since only ’6’ varies as the camera moves on
a circular orbital path around the origin of the spherical
coordinate system or the cube. In the camera position
network, sinusoidal waves of *6’ are passed as input to the
first FC Elman (FCE) layer having 128 neurons followed by
one FCJKFF of 64 neurons. Output from the FCJKFF layer
is concatenated to the output vectors of the last layer of the
classifier network and the camera motion network.

Outputs from three pipelines are concatenated in one com-
mon flattened layer, which further connects with 2 output
layers in parallel. One output layer with linear activation
function is responsible to predict one direction out of the
3 considered directions in which the camera will move on
the orbit to look and locate the target face present in the
given cube. The other output layer with softmax activation
function is responsible to predict the class of the object seen
on the view of the camera.

4) Training and Testing: Tensorflow framework is used
to implement the proposed attention model. Xavier initial-
ization [38] (equation-9) with random normal distribution is

used to initialize the weights for each layer of the three
networks. The Xavier initialization is able to avoid the
exploding or vanishing gradients [39] problem by fixing the
variance of the activations across each layer as the same.

2
I __
W/ =N (o, T ml) )

where, N stands for the normal distribution. m!~! and m/!

is the number of neurons in the previous layer and current
layer respectively. W' denotes the weights at [*” layer with
Xavier initialization.

Before training the model, the classifier network is pre-
trained on the camera captured views. To pretrain the classi-
fier network, we collect views of the simulated environment
by explicitly revolving the camera from —180 to +180
degree where 0 degree is assumed to be exactly at the
front of the face containing the target object. Advancing
in steps of 9 degrees over the range of —180 to +180
degree, a total 40 views are collected for each cube in the
dataset. Views between —45 to +45 range are labeled as
one of the ‘n classes’ and views between +46 to +180
and —46 to —180 range are labeled as ‘background class’.
Therefore, total number of classes present in the dataset is
n + 1. To make the views data uniform, the same number of
views of the background class are chosen randomly as the
number of views of the other class. The classifier network
is pretrained on such views of targets and background or
nontarget class so that the classifier network in the model
has the knowledge to differentiate between the target class
and nontarget class. We assume that the camera’s focus
is always fixed on the center of the view. Therefore, we
create a glimpse of three concentric windows from the
center location of the camera view. Detailed architecture
of the pretraining classifier network is shown in Fig.5. The
classifier network without recurrent layers in the ASM-3D
is pretrained on the glimpse of the camera views. Total loss
of the model is calculated in two parts: one is classification
loss, calculated using the cross-entropy loss function [40]
and the other one is prediction loss, calculated using mean
square error of temporal difference [41]. Equations of the
both loss functions are shown in equation-10 and 13.

n+1

Lee =— Y dilog (pi) (10)
i=1

In equation-10, d; denotes the desired class probability and
p; denotes the predicted class probability of i*" class. ‘n+1’
is the total number of classes that are present in the dataset.
Here, the camera is assumed as an agent and the agent
learns a defined policy of the reward function (equation-
11) [42]. When the agent is in the current state, Q-values of
all three actions are predicted by passing the information
of the current state (like the attention input and the 6
value of the camera) into the deep neural network. Based
on the predicted Q-value of all the actions in the current
state, the agent makes an action decision using a softmax
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action selection policy [43]. In this policy, the predicted Q-
values are passed through a softmax activation function to
produce the action probabilities. The action with the highest
probability is selected and performed by the agent in the
current state of the environment. After performing the action,
the current state is updated to the next state and then the
agent receives a reward, either 1’ or ’0’ depending on the
reward policy shown in equation-11.

1 argmax;c,(pi) == arg max;e, (d;)
b maz(p) > A (11
0 otherwise

Apart from the softmax action selection policy, we used a
race model [44] which ensures that the selected action is
correct. Race models have been applied in many behavioral,
perceptual, and oculomotor decisions and such decisions are
based on trial-to-trial modifications in a race among all the
responses [45]. Race model works based on two neuro-
physiological evidences to show the relatedness. Firstly, if
monkeys are trained to make their decision on coherently
moving direction of dots, accumulating neuronal activity
is formed that mirrors the decision even when there is no
coherent motion. Here, both choices are equally rewarded
[46]. Secondly, the decision threshold is considered constant
for a selected action, regardless of its being a specifically
cued action [47]. We have taken the motivation to apply
the race model based on the second evidence. The action
predicted by the network is the action which crosses the
threshold A, first and if the action predicted is correct, the
agent gets reward ‘1’; it otherwise gets reward ‘0’.

The Q-values of the actions in the next step are estimated
by passing the next state information into the target network,
where the target network is the separate copy of the networks
of the model. Target Q-value is calculated by adding the
current state reward and maximum of the next state Q-values
multiplied with a discount factor . Discount factor defines
how much the current state Q-value depends on the future
reward. Now the temporal difference (TD) is calculated by
calculating the difference between the target Q-value and the
predicted Q-value (equation-12).

TD = (I‘ + 7 * Qmax (St+1)) - Q (St) (12)
1 n
Lms*e = - TD2 1
se =~ Z; (13)
ltotal = Lce + Lane (14)

where, r is the reward which the agent gets while going
from the state S; to the state S;y1. Q (Si+1) and Q (Sy) is
the Q-value of the state S;y; and S; respectively. y is the
discount factor. Then these two losses, the cross-entropy loss
of the classifier network (equation-10), L., and the mean
square error of temporal difference of the camera motion
network (equation-13), L,,s., are added up to get the total
loss (equation-14). The total loss is back propagated into
the network [48]. The network parameters are updated by

using the mini-batch Adam optimizer [49]. L2 regularization
[50] has been used to avoid the overfitting problem of the
network. During inference, the camera starts from a random
location and moves towards the target face of the cube. Once
it finds the target face, the camera continues to fixate around
that face. The model achieves a processing speed of 0.0187
seconds per input image on a workstation with a NVIDIA
GeForce GTX 1080Ti 11GB GPU and 32GB RAM.

ITII. SIMULATION RESULTS

We evaluate our model on “painted cube” data, where
each cube has a target object on one vertical face and
nontarget objects on the other three vertical faces. The model
is supposed to move the camera around the cube on a
circular orbit and search the target object image present
on one of the four vertical faces of the cube. For target
object image, we have used image datasets. Totally three
3D Cluttered Cube datasets have been considered in the
experiment. Each of the cube datasets has been generated
using their related image data. Grayscale MNIST digit image
dataset, QuickDraw image dataset, and RGB MNIST digit
image dataset were used to generate cube datasets like 3D
Cluttered Grayscale MNIST Cube dataset, 3D Cluttered
QuickDraw Cube dataset, and 3D Cluttered RGB MNIST
Cube dataset respectively. First two of these are cube datasets
with grayscale images and the last one is a cube dataset
with RGB images. Based on the grayscale and RGB cube
datasets, we have designed the experiments in two parts: one
part of the experiment shows the target search capability of
the proposed model on the cubes which has all 4 vertical
faces of grayscale images (called grayscale cubes) and
the other part of the experiment shows the target search
capability of the model on the cubes which has all vertical
faces of RGB images (called RGB cubes).

A. Searching on Grayscale Cubes

In the first part of the experiment, we evaluated our model
on 2 datasets of Grayscale cubes. For that we used 2 different
datasets of grayscale images: MNIST handwritten digits [51]
and QuickDraw [52]. Both datasets with 10 different classes
contain 48,000 examples in the training set, 12,000 exam-
ples in the validation set, and 10, 000 examples in the testing
set. We have generated a 3D Cluttered MNIST Cube dataset
using MNIST dataset. To generate such a cube dataset, each
of the cubes were created with a 28 x 28 MNIST digit
image (target) on one vertical face and 28 x 28 random
clutter image (non-target) on the other three vertical faces.
In this experiment, the bottom and top faces of the cube
are not considered for searching. Similarly, a 3D Cluttered
QuickDraw Cube dataset was generated using QuickDraw
image dataset.

Once the cube datasets are generated, we place the cube
in the environment in such a way that the center of the cube
is at the origin of the spherical coordinate system. Then
the camera is placed at a random value of azimuth angle
’0’ at initial time (¢ = 0). The polar angle ’¢’, and radius
r’ are set to 0, and 2.5 respectively. The camera placed at
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Fig. 6: Illustrates the camera movements around the cube to search the target face in the view of size 75 x 100, predicted by our
model in 3D Cluttered Grayscale MNIST Cube dataset. For each class at time ¢, there is a movement (shown in the row of camera
view images) and corresponding classification probabilities (shown in the row of plots). In the row of camera view images, the three
concentric red windows depict the glimpse at the center of the view image. In the plot corresponding with the above view image, green

curve is the desired class probabilities and dotted dashed-blue curve is the predicted class probabilities at time .

(r,0, ¢) captures the view of size 75 x 100. Then a glimpse
is extracted from the center location of the captured view.
To extract the glimpse, three concentric windows of size
16 x 16, 32 x 32, and 50 x 50 are cropped out from the
center of the view. After cropping out, windows of size 32 X
32 and 50 x 50 are resized into the size of 16 x 16. Then
resized windows with the smallest window of size 16 x 16
are arranged together across depth to generate attentional
glimpse of dimension 16 x 16 x 3. Since the image size in
the QuickDraw image dataset is same as the image size in
the MNIST dataset, the same dimensions of the camera view
and attentional glimpse were considered in case of the 3D

Cluttered QuickDraw Cube dataset.

The proposed model takes the attentional glimpse of size
16 x 16 x 3 from the center location of the image view of
the camera of size 75 x 100. Achieved accuracy on both
grayscale datasets are listed in Table-I. The results of the
camera’s movement predicted by our model in the testing
set are shown in Figs.6, and 7. In this figure, images of the
camera view of dimension 75x100 are shown in one row and
their corresponding plots for predicted class probabilities for
that view (dotted dashed-blue curve) and ground truth target
class probabilities (green curve) are shown in the row just
below. At the bottom of the plots, timestep and ground truth
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Fig. 7: Illustrates the camera movements around the cube to search the target face in the view of size 75 x 100, predicted by our
model in 3D Cluttered Grayscale QuickDraw Cube dataset. For each class at time ¢, there is a movement (shown in the row of camera
view images) and corresponding classification probabilities (shown in the row of plots). In the row of camera view images, the three
concentric red windows depict the glimpse at the center of the view image. In the plot corresponding with the above view image, green
curve is the desired class probabilities and dotted dashed-blue curve is the predicted class probabilities at time .

target class labels are denoted by using variables ’¢’ and ’¢’
respectively. In the row of images of the camera view, three
concentric red windows depict the glimpse.

The model has the ability to move the camera in the
position where the target face of the cube is visible from
the camera. For example, in Fig.6, the class of digit 2 in
the fourth image of the first row has the view of nontarget
or clutter face at timestep ¢ 0 and its corresponding
predicted class probabilities shown in the plot just below
to that image is low for all classes. But at timestep ¢ = 1
(6 is decided by the model), the camera has moved towards
the right and has seen some part of the target face that has

the digit 2. At the same time, the highest of the predicted
class probabilities is for digit 2. The camera is again moved
towards the right direction at timestep ¢ = 2 and maximum
value of predicted class probabilities is close to 1. The search
for the target face ends when an adequate part of the digit 2
on the face is visible to the camera. Similarly for the other
digits, the camera starts moving appropriately and searches
for the target. The camera stops moving when an adequate
part of the target is visible and the maximum value of the
predicted class probabilities crosses a threshold of value
0.95. Threshold is set based on the feature complexity of
the image datasets.
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Fig. 8: Illustrates the camera movements around the cube to search the target face in the view of size 75 x 100, predicted by our model
in 3D Cluttered RGB MNIST Cube dataset. For each class at time ¢, there is a movement (shown in the row of camera view images)
and corresponding classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red
windows depict the glimpse at the center of the view image. In the plot corresponding with the above view image, green curve is the

desired class probabilities and dotted dashed-blue curve is the predicted class probabilities at time ¢.

In the case of the 3D Cluttered QuickDraw Cube dataset,
we can observe the same search behavior of the camera. For
example, in Fig.7, class 5 (bicycle) in the second image
of the seventh row has the camera view showing non-
target objects on the cube face at timestep ¢ = 0 and its
corresponding predicted class probabilities shown in the plot
just below to that image is low for all classes. At the next
timestep (¢ = 1), the camera has moved towards the left
and the camera continues to move in the left direction 3
more times even though the target is not visible. At timestep
t = 4, a very small part of the bicycle is visible and at this
time the class probability for class 5 or bicycle becomes

the highest. The camera stops moving once the maximum
value of the predicted class probabilities crosses a threshold
of value 0.85.

B. Searching on RGB Cubes

In the second part of the experiment, we evaluated our
model on RGB cubes to investigate that the model is able to
search for the target object on the cube face even in the case
of color images. To this end, we generated a cube dataset
using RGB MNIST image dataset. Here, we first create
the RGB MNIST digit image dataset by assigning different
colors to the digits and the background of the images
available in Grayscale MNIST digit image dataset [51]. The
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Fig. 9: Illustrates the camera movements around the cube to search the target face in the view of size 75 x 100, predicted by our model
in 3D Cluttered RGB MNIST Cube dataset. For each class at time ¢, there is a movement (shown in the row of camera view images)
and corresponding classification probabilities (shown in the row of plots). In the row of camera view images, the three concentric red
windows depict the glimpse at the center of the view image. In the plot corresponding with the above view image, green curve is the
desired class probabilities and dotted dashed-blue curve is the predicted class probabilities at time ¢.

dataset with 10 different classes contains 48,000 examples Table-1. The results of the camera’s movement predicted by
in the training set, 12,000 examples in the validation set, our attention model in the testing set are shown in Figs.8,
and 10,000 examples in the testing set. Once the image and 9. Plots for accuracy, and reward vs. epoch is shown in
dataset is ready, we generate a 3D Cluttered RGB MNIST  Fig.10.

Cube dataset using RGB MNIST image dataset. To generate

a 3D Cluttered RGB MNIST Cube dataset, each of the cubes The hyperparameters of the model are tuned and chosen
is created with a 28 x 28 x 3 RGB MNIST image (target) S follows: 0.0001 learning rate, 0.43 discount factor, 0.85

on one vertical face and 28 x 28 x 3 random clutter image lambda, and 0.1 regularization factor with the best perfor-
(non-target) on the other three vertical faces. mance in case of 3D Cluttered Grayscale MNIST Cube

dataset. The model explores the actions with € equal to 0.99
The model is evaluated by placing the RGB cube in the and the exploration gets reduced by a decay factor of 0.999
environment in the same way of grayscale cube datasets. The ~ while training. The minimum value of ¢ is set with 0.1. The
camera captures the view of size 75x 100 of the 3D Cluttered model is trained for 25 epochs and 50 timesteps, per cube
RGB MNIST Cube. The camera extracts the glimpse from in case of 3D Cluttered Grayscale MNIST Cube dataset. In
the center of the captured view. To extract the glimpse, three the case of the 3D Cluttered QuickDraw Cube dataset, the
concentric windows of size 16 x 16, 32 x 32, and 50 x 50 model is trained for 20 epochs and 50 timesteps. During the
are cropped out from the center of the view to generate inference, time-steps are varied depending upon the class
attentional glimpse of size 16 x 16 x 9. The proposed model probabilities. Prediction is considered to be done as soon
takes the attentional glimpse of size 16 x 16 x 9 from the as the maximum value of the class probabilities crosses a
center location of the image view of the camera of size 75 x  certain threshold (= 0.95). A slight variation in values of the
100 in case of 3D Cluttered RGB MNIST Cube dataset. hyperparameters is used for the 3D Cluttered RGB MNIST
The achieved accuracy on the RGB cube dataset is listed in  Cube dataset after tuning.
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Fig. 10: Column (a), (b), and (c) shows the plots of Accuracy (1°* and 3"¢ row) and Reward (2" and 4" row) vs Epochs of 3D
Cluttered Grayscale MNIST Cube dataset, 3D Cluttered Grayscale QuickDraw Cube dataset, and 3D Cluttered RGB MNIST Cube
dataset respectively.
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TABLE I: Accuracy on testing set of all three datasets

Dataset Testing Accuracy
3D Cluttered Grayscale MNIST Cube dataset 95.6%
3D Cluttered Grayscale QuickDraw Cube dataset 83%
3D Cluttered RGB MNIST Cube dataset 91.5%

Jump length is the displacement from one location to the
next location. The jump length of the camera from one
location to the next location on the orbit is considered as
a predefined parameter. The jump length of the camera is
12 in case of Grayscale 3D Cluttered MNIST Cube dataset,
and 20 in case of 3D Cluttered QuickDraw Cube dataset and
3D Cluttered RGB MNIST Cube dataset.

IV. DISCUSSION

To search for the entrance of a building, where there is
neither a boundary wall, nor a clear path leading to the
entrance, we usually move on the circular path around the
building in either clockwise or anticlockwise direction until
we find the entrance. While performing such a task, we
also take care that the movement should not involve rapid
alternation between the two directions, and must progress
continuously in one direction. The best application of the
current model can be in space. For example, geostationary
satellites and spy satellites revolving around the earth in a
circular orbit require a searching capability of one specific
large area of the earth to collect bird’s eye view or to obtain
the information about various weather, natural calamities,
deforestation, and similar activities. From the results of
camera movement shown in Figs.6, 7, 8 and 9, the proposed
model is able to avoid alternative movements and is always
able to follow the continuous movements to search the
target face of the cube. There are three major components
to consider the proposed model biologically inspired. First,
the model takes the input of multiple concentric windows
of different scales which resembles the differential spatial
resolution of the central fovea and the peripheral regions
of the retinal. Second, the model processes the view and its
corresponding functions of the camera’s location, 6, which is
analogous to determining the position using path integration
and using it to navigate the world. The classifier and camera
motion networks are analogous to the processing of visual
information along the “what and where/how” pathways [53]
respectively. Third, the model uses Elman, Jordan, JK-flip-
flop recurrence layers as memory to store the history of
the view and corresponding location, which resemble the
feedback loops present among the visual cortical areas [54].
The output layers of the classifier and the camera motion
network are used to attribute a specialized role to both of the

networks for classification and searching tasks, by feeding
the outputs back into the first fully connected Elman and
Jordan layers in their corresponding channels. The output
vector of the camera motion network (Q-values) which has
information about the action to be taken by the camera is fed
back into the fully connected Elman and Jordan layer and the
output vectors of this layer passed through fully connected
flip-flop layer and gets concatenated with the output of the
last layer of the camera position network, this wide loop is
responsible for storing the history of location and view.

V. CONCLUSIONS

In the proposed model, we have shown how the “classi-
fier” and “camera motion” networks coordinate with each
other to perform the 3D visual search task. The ASM-
3D successfully performed the classification task on a 3D
environment on three datasets (Table-I). As shown in the
results, movements generated by the model to search a target
in the given cube always aim at the target face and take
meaningful movements so that the camera looks at the target
and classifies it correctly. Based on the results described
herewith, we want to extend the model to more complicated
full 3D searches in a 3D environment, like for example,
searching for defects on the surface of a 3D structure. The
model can then be applied to full scale object detection and
recognition in 3D space.
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