Abstract
Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points towards sizeable individual differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions. The method consists of computing the within-subject reliability and subject-to-group similarity of brain activations and submitting these values to a computational model that quantifies the relative strength of group- and subject-level factors. We apply this method to a perceptual decision-making task (N=50) and find that activations related to task, reaction time (RT), and confidence are influenced equally strongly by group- and subject-level factors. Both group- and subject-level factors are dwarfed by a noise factor, though higher levels of smoothing increases their contributions relative to noise. Overall, our method allows for the quantification of group- and subject-level factors of brain activations and thus provides a more detailed understanding of the idiosyncrasy levels in brain activations.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
We have made changes following reviewer comments.