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Summary 

Protein turnover is a critical regulatory mechanism for proteostasis. However, proteome-
wide turnover quantification is technically challenging and, even in the well-studied E. 
coli model, reliable measurements remain scarce. 
Here, we quantify the degradation of ~3.2k E. coli proteins under 12 conditions by 
combining heavy isotope labeling with complement reporter ion quantification and find 
that cytoplasmic proteins are recycled when nitrogen is limited. Furthermore, we show 
that protein degradation rates are generally independent of cell division rates, and we 
used knockout experiments to assign substrates to the known ATP-dependent 
proteases. Surprisingly, we find that none are responsible for the observed cytoplasmic 
protein degradation in nitrogen limitation, suggesting that a major proteolysis pathway in 
E. coli remains to be discovered. Thus, we introduce broadly applicable technology for 
protein turnover measurements. We provide a rich resource for protein half-lives and 
protease substrates in E. coli, complementary to genomics data, that will allow 
researchers to decipher the control of proteostasis. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502339doi: bioRxiv preprint 

mailto:wuhr@princeton.edu
https://doi.org/10.1101/2022.08.01.502339
http://creativecommons.org/licenses/by/4.0/


Introduction 

Protein degradation is central to protein homeostasis (proteostasis) and is critical in most 
cellular pathways (Cohen-Kaplan et al., 2016; Mahmoud and Chien, 2018). As environments 
change, modification of degradation rates can rapidly adapt protein abundances to desired 
levels. Even if protein levels are modulated via transcription or translation, a protein’s response 
time is set by its replacement rate (Alon, 2006; Rosenfeld and Alon, 2003). Unsurprisingly, 
many signaling and transcriptional regulatory proteins exhibit short half-lives (Auld and Silver, 
2006; Liu et al., 2012; Pahl and Baeuerle, 1996; Wettstadt and Llamas, 2020). Protein 
degradation is important in health and disease, for example in cancer and neurodegenerative 
disorders (Jang, 2018; Labbadia and Morimoto, 2015). Additionally, protein degradation plays 
an important metabolic role. It has been shown that bacteria and yeast cells increase their 
proteome turnover rates under starvation conditions, presumably generating and recycling 
scarce amino acids (Borek et al., 1958; Halvorson, 1958; Kuroda et al., 2001; Mandelstam, 
1957). 

Quantitative models have been developed to describe the dependence of global protein 
expression on cells’ physiological characteristics, most notably cell doubling times. These 
models are probably the most well-developed in the model bacterium E. coli (Erickson et al., 
2017; Klumpp et al., 2009). The cell cycle time in E. coli varies from 20 minutes in rich media to 
the cessation of division under starvation. Transcription rates typically increase with cell division 
rates, while translation rates remain constant (Liang et al., 1999; Liang et al., 2000). Knowing 
how global parameters scale with physiological cell states allows for remarkable quantitative 
predictions for gene expression changes across different growth conditions (Erickson et al., 
2017; Klumpp et al., 2009). However, active protein degradation is typically ignored in these 
models. Instead, proteins are assumed to be completely stable and only diluted via cell growth 
and division. This simplification is likely due to a lack of reliable genome-wide degradation rate 
measurements under varying growth conditions. It is still unclear how active degradation rates 
scale with changing cell cycle times and how this affects global gene expression regulation. 
Presumably due to the lack of reliable genome-wide turnover resources, most systems biology 
studies have ignored the contribution of protein degradation rates in modeling protein 
homeostasis or dynamics (Balakrishnan et al., 2021; Belliveau et al., 2021; Scott et al., 2010). 
Knowledge of protein degradation rates and how they scale with the physiological 
characteristics of cells would improve predictive models of protein expression across various 
cell states. 

Even for the proteins we know to be degraded, it is often unclear how these proteins are marked 
for destruction and which protease is responsible. Cells have developed sophisticated 
mechanisms to recognize and degrade specific proteins. In bacteria, selective proteolysis is 
executed by ATP-dependent proteases (Mahmoud and Chien, 2018). While many proteases 
can digest unfolded proteins and peptides, unfolding a protein for degradation requires energy. 
In E. coli, four ATP-dependent proteases are known: ClpP, Lon, HslV, and FtsH. Pulldown 
experiments with proteolytic-dead mutants or protein-array studies have allowed the proteome-
wide identification of putative substrates (Arends et al., 2018; Flynn et al., 2003; Tsai et al., 
2017; Westphal et al., 2012). Orthogonally, individual substrates have been assigned to the four 
proteases by measuring the degradation of individual proteins in protease knockout strains or 
via in vitro assays (Camberg et al., 2009; Schweder et al., 1996). Several proteins (e.g., RpoH, 
LpxC, and SoxS) have been shown to be degraded by multiple proteases, demonstrating 
remarkable redundancy (Biernacka et al., 2020; Griffith et al., 2004; Kanemori et al., 1997). On 
a proteome-wide scale, it is unclear which proteases degrade which substrates and to what 
extent those substrates might overlap. 
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In most biological systems, protein degradation is balanced by the synthesis of new protein, 
making measurements of degradation rates challenging. An easy way to overcome this 
complication is by using translational inhibitors like cycloheximide or chloramphenicol (Belle et 
al., 2006; Biran et al., 2000; Li et al., 2021). Assuming that the addition of the drug does not 
perturb the cells aside from blocking the translation of new proteins, protein degradation can be 
conveniently measured by assaying changes in protein abundances over time via western blots 
or quantitative proteomics. However, when we performed such experiments in E. coli, we found 
that many proteins that seemed to be rapidly degraded were periplasmic (Fig. S1). Further 
investigation revealed that these periplasmic proteins were not degraded, but rather the addition 
of chloramphenicol led to the accumulation of periplasmic proteins in the bacterial growth 
medium (Fig. S1). Presumably, this was due to protein leakage through the outer membrane. 
We concluded that translation inhibitor experiments in E. coli could lead to major perturbations 
and interpreting such studies might be challenging. 

A classic method to measure the unperturbed turnover of biological molecules is using 
radioactive isotope tracking or the combination of heavy isotope labeling and quantitative mass 
spectrometry (Arias et al., 1969; Foster et al., 1939). Isotopic labels can be introduced with 
heavy nutrients (e.g., ammonia, glucose, or amino acids) or by incubation in heavy water. 
Heavy ammonia, glucose, and water are comparatively cheap but result in overly complex MS1 
spectra, which are difficult to interpret, particularly for lower abundance proteins (Cargile et al., 
2004; Helbig et al., 2011; O’Brien et al., 2020). Most proteomic turnover studies have been 
performed with heavy amino acid labeling (dynamic SILAC) (Boisvert et al., 2012; 
Schwanhausser et al., 2011), but the small number of labeled residues limits sensitivity for 
short-time SILAC labeling, and missing values can hinder the coverage of multiple time points in 
complex systems. A further advance has been the combination of SILAC experiments and 
isobaric tag labeling (Savitski et al., 2018). However, these measurements tend to suffer from 
the inherent ratio compression of multiplexed proteomics (Pappireddi et al., 2019; Ting et al., 
2011; Wenger et al., 2011). For a more detailed discussion of the advantages and limitations of 
various global protein turnover measurement techniques, please see the recent review by Ross 
et al., particularly Table S1 (Ross et al., 2021). Despite the central role of protein degradation in 
nearly every aspect of biological regulation, reliable and large-scale measurements are still 
scarce. Even fewer studies have compared degradation rates between multiple conditions 
(Christiano et al., 2020; Rao et al., 2008).  

Here, we measure protein turnover in E. coli by combining heavy isotope labeling via 15N 
ammonia with the accurate multiplexed proteomics method TMTproC (Johnson et al., 2021). 
We provide a rich resource of protein degradation rates for ~3.2k E. coli proteins (77% of all 
proteins in E. coli) measured across 12 different growth conditions with replicates. We find that 
active degradation rates typically are constant irrespective of changing cell division rates. When 
comparing degradation rates among various nutrient limitations, we find that E. coli recycles its 
cytoplasmic proteins when nitrogen-limited, and we assign substrates to proteases by 
measuring the change of protein turnover in knockout strains.  
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Results 

Combining heavy isotope labeling with complement reporter ion quantification enables 
high-quality measurements of protein turnover. 
 
We wanted to measure protein degradation rates and evaluate how these rates vary across 
growth conditions. To simplify our measurements, we grow E. coli in chemostats, where we can 
control the cell doubling time and enforce steady state (Fig. 1A). After cells reach steady state, 
we change the medium from unlabeled nutrients to 15N-labeled ammonia. Over time, the 15N-
ammonia concentration in the medium increases, and newly synthesized proteins incorporate 
more heavy isotopes. We used 15N-ammonia rather than labeled amino acids because of the 
higher signal we obtain with a low labeling fraction. For example, when 10% of the nutrient pool 
is labeled: If using heavy arginine, 90% of newly synthesized tryptic peptides ending in arginine 
are unlabeled. In contrast, when using heavy ammonia, a peptide having 15 nitrogens, only 
(90%)15=21% will be unlabeled. Over time the isotopic envelope of peptides will shift towards 
heavier forms (Fig. 1B). With the knowledge of a peptide’s chemical composition and the 
fraction of heavy isotopes over time, we can calculate the degradation rate of the corresponding 
protein. However, in practice obtaining such measurements of isotopic envelopes in the MS1 
spectrum is quite challenging, particularly at later time points when all the isotopic envelopes 
spread out and overlap with others. Additionally, missing values between measurements of 
various time points are a severe limitation of such approaches (O’Brien et al., 2020). To 
overcome these limitations, we labeled each of the acquired eight time-points with TMTpro 
isobaric tags and combined them for co-injection into the mass spectrometer (Johnson et al., 
2021; Thompson et al., 2019). Analyzing these extremely complex samples with standard low 
m/z reporter ion quantification would lead to severe ratio distortion and measurement artifacts 
(Ow et al., 2009; Pappireddi et al., 2019; Ting et al., 2011). We overcame this limitation by 
programming the instrument to isolate the pseudo-monoisotopic peak (M0) and quantify the 
complement reporter ions in the MS2 (Fig. 1C). Figure 1D shows quantification for peptides 
from the expected stable protein OmpF and the expected degrading protein RpoS from carbon-
limited chemostats with 6h doubling times (Schweder et al., 1996). Proteins without active 
degradation are expected to follow the theoretical dilution curve (dotted curve) based on the 
chemostat dilution rate. Fitting the measured signal of OmpF peptides with a model for the 
expected decay of the M0 peak (solid curve) results in a turnover half-life similar to this 
expected value. In contrast, the fit and deduced half-life for RpoS is much shorter than the cell 
doubling time. We obtain half-lives for ~2.6k E. coli proteins with a median standard deviation of 
0.3 h (Fig. 1E, Table S1). Having established this technology, we acquired similar 
measurements for 12 different growth conditions, each with two biological replicates (Table 1, 
Table S1). We then used this resource to investigate how E. coli adapts protein turnover under 
various growth conditions. 
 
Active protein degradation rates typically do not scale with division rates. 

 
With a method to measure protein degradation among various conditions, we determined how 
protein degradation scales with cell cycle time. The total turnover rate (ktotal) is a combination of 
active degradation (kactive) and dilution (kdilution) due to cell division (Fig. 2A). We consider two 
simple and reasonable models of the relationship between these two parameters. In the first 
model, kactive scales with kdilution, i.e., the protein half-life remains a constant fraction of the cell 
cycle time. In the second model, active degradation rates are independent of growth rate, i.e., 
the active degradation rate of each protein remains constant regardless of cell doubling time. 
The two models have distinct predictions on how the total protein replacement half-time (T1/2, 
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total) should scale with changing cell cycle times. In the scaled model, T1/2, total for each protein 
linearly increases with cell cycle time (Fig. 2B). In contrast, in the constant model, the dilution 
rate dominates for rapidly dividing cells while the contribution from active degradation becomes 
more relevant for slower dividing cells. To test the models' predictions, we grew E. coli cells with 
a range of doubling times, including rapidly doubling cells with unlimited growth in minimal 
medium (0.7h) and slower doubling cells in carbon-limited chemostats (3h, 6h, and 12h). We 
asked how T1/2, total changes among these conditions (Fig. 2C). The likelihood-ratio test clearly 
favors the constant model regardless of which cell-cycle times we compare. This indicates that 
active protein degradation rates typically remain constant regardless of cell division rates. 
However, while we are confident that this model describes most of the proteome well, we noted 
interesting exceptions, particularly when comparing slower-growing cells in the chemostat to 
cells growing without nutrient limitation. For example, RpoS degrades faster in unlimited growth 
condition than the non-scaled model would predict based on chemostat measurements. This is 
consistent with the previous finding that RpoS is rapidly degraded in exponentially growing cells 
but becomes stabilized when nutrient-limited (Zhou and Gottesman, 1998). Because kactive rates 
are generally constant across cell division rates, we can more accurately measure kactive when 
kdilution is small. For the remainder of this study, we will focus on measurements with 6h doubling 
times. These conditions are experimentally easy to access, provide good resolution for active 
degradation, and can be extrapolated to other conditions using our insight into the constant 
scaling of active degradation rates. 
 

Escherichia coli recycles its cytoplasmic proteins under nitrogen-limitation. 
 
Next, we wanted to compare protein degradation rates under various nutrient limitations. We 
compared carbon (C-lim), phosphorus (P-lim), and nitrogen (N-lim) limitation measurements 
from chemostats with 6h doubling times. A histogram of C-lim protein half-lives indicates that 
most proteins are stable with a measured total half-life close to the theoretical dilution time (Fig. 
3A). Using biological replicates to identify confidently degrading proteins (Fig. 3B), we found that 
15% of the proteome is actively degraded in C-lim (p-values < 0.05). The histogram of protein 
half-lives under P-lim shows a similar distribution and percentage of proteins that confidently 
degrade as in C-lim. However, the N-lim measurements indicate that many proteins shift from 
stable to slowly degrading (Fig. 3A). Consistent with this, the number of confidently degrading 
proteins increases to 43% (Fig. 3B, p-value < 0.05). We found that the proteins’ subcellular 
localization is a major predictor of the differential half-lives between N-lim vs C-lim or P-lim (Fig. 
3C, D). Histograms and scatter plots of half-lives for the proteins partitioned by subcellular 
localization indicate that the mode for membrane and periplasmic proteins in all three conditions 
is very close to the theoretical dilution limit. In contrast, the mode of half-lives for cytoplasmic 
proteins is similar to the dilution half-life in C-lim and P-lim but is significantly shorter under N-
lim, indicating that most of the cytoplasm is actively degrading under N-lim. It is difficult to 
confidently identify active degradation for the proteins with half-lives close to the dilution half-life. 
Therefore, our estimates of 43% (containing 56% of cytoplasmic, 13% of membrane, and 4% of 
periplasmic proteins) of the proteome actively degrading in N-lim is a very conservative 
estimate.  
 
We then tested whether our finding of cytoplasmic recycling under N-lim chemostats extends to 
the more physiologically relevant case of batch starvation. We grew E. coli cells in minimal 
medium and switched the exponentially growing cells into medium depleted of nitrogen (Fig. 
3D). Once again under nitrogen starvation, cytoplasmic proteins are degraded, and 
membrane/periplasmic proteins are stable. Thus, we find that E. coli cells slowly degrade their 
cytoplasmic proteins when nitrogen is scarce in both chemostats and batch culture. About 2/3 of 
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the cell's nitrogen is stored in proteins (Milo and Phillips, 2016). The slow degradation of 
proteins upon nitrogen starvation likely allows the regeneration and recycling of scarce amino 
acids and enables E. coli to produce new proteins to adapt to new environments. 
 

Measuring protein turnover in knockout mutants allows the identification of protease 
substrates. 
 

Next, we wanted to investigate protease-substrate relationships on a proteome-wide level. We 
were particularly interested in discovering the protease(s) responsible for the large-scale 
turnover of cytoplasmic proteins in N-lim. Since unfolding and degrading stably folded 
cytoplasmic proteins requires energy, we focused on assigning substrates to the ATP-
dependent proteases. In E. coli, there are four known ATP-dependent protease complexes: 
ClpP (in complex with ClpX or ClpA), Lon, HslV (in complex with HslU), and FtsH (Mahmoud 
and Chien, 2018). We can identify putative substrates for these proteases by comparing the 
protein half-lives in protease knockout (KO) with wild-type (WT) cells (Fig. 4A). For example, the 
unfoldase ClpA is completely stabilized on knocking out clpP. ClpA’s C-terminus has previously 
been shown to be a signal for degradation by ClpP (Maglica et al., 2008). Similarly, Tag and 
UhpA are identified as the substrates of Lon and HslV because their half-lives confidently 
increase upon knocking out the respective proteases. However, many proteins still degrade in 
the three protease KO lines, e.g., the phosphatase YbhA required in Vitamin B6 homeostasis 
still rapidly turns over with a half-life of ~1 h in each knockout strain (Sugimoto et al., 2018). 
Surprisingly, even the proteins that increase their half-lives in single KOs often do not get 
completely stabilized. Additionally, bulk cytoplasmic proteins are still degraded in all three single 
KOs. 
 
Deleting ftsH is more complicated than the other protease genes. One of its substrates, LpxC, 
catalyzes the committed step in the lipid A synthesis pathway. Lipid A is the hydrophobic anchor 
of lipopolysaccharides (LPS), a key outer membrane component. Deletion of ftsH leads to 
increased levels of LpxC, causing an accumulation of LPS, making the cells nonviable (Ogura et 
al., 1999). ftsH null mutant cells can be rescued with a mutation of FabZ (L85P), which slows 
LPS synthesis and compensates for the increased LpxC levels (Ogura et al., 1999). These 
ΔftsH fabZ (L85P) cells are viable, though unfortunately they grow too slowly on minimal media 
and are washed out of the chemostat. We therefore could not measure protein turnover in a ftsH 
mutant similar to the other proteases. Rather, we repeated the batch nitrogen starvation 
experiments (Fig. 3E). Similar to the WT cells, cells lacking ftsH degrade cytoplasmic proteins. 
In contrast, membrane proteins are mostly stable (Fig. 4B). This indicates that none of the four 
known ATP-dependent proteases in E. coli are individually responsible for the large-scale 
cytoplasmic recycling under nitrogen scarcity. 
 
We then asked if proteases might act redundantly, i.e., multiple proteases share a substrate, 
which could mask the effects of deleting individual proteases. To this end, we measured protein 
turnover in a triple KO line (ΔhslV Δlon ΔclpP). We observe that many more proteins get 
stabilized in the triple KO than in any individual KO line (Fig. 4C). Strikingly, YbhA is almost 
completely stabilized in the triple KO, indicating that at least two of these proteases act 
redundantly. Nevertheless, many proteins still degrade even in the triple KO. LexA, a SOS 
repressor, cleaves itself under stress and unperturbed growth (Jones and Uphoff, 2021; Little, 
1991). Consistent with this, LexA is still degrading in the triple KO. YoaC, an uncharacterized 
protein, is the shortest-lived protein in the triple knockout with a half-life of 1.2 h. It will be 
interesting to investigate if YoaC and many other proteins with short half-lives in the triple KO 
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are auto-degrading, degraded by FtsH, or if other mechanisms are at play. Furthermore, we find 
that the bulk of cytoplasmic proteins is slowly degraded in the triple KO under nitrogen limitation. 
 
A quantitative comparison of protein degradation rates between the triple KO and the individual 
KOs allows us to assign the contribution of each protease in turning over a substrate (Fig. 4D). 
We can classify the substrates into six groups: those being degraded predominantly by an 
individual protease, those where the effects of the individual proteases are additive, those that 
are stabilized more in the triple KO than the combined effect of individual KOs, and those that 
are still actively degraded in the triple KO. We identified 64 and 14 substrates to be 
predominantly degraded by ClpP and Lon, respectively. We only assigned one substrate to 
HslV: UhpA, a transcriptional regulator that activates the transcription of genes involved in 
transporting phosphorylated sugars (Weston and Kadner, 1988). 81 proteins are degraded 
additively, a notable example of which is IbpA, a small chaperone. Previous studies have 
proposed that Lon either degrades free Ibps or both Ibps and bound client proteins (Bissonnette 
et al., 2010). We find that both ClpP and Lon contribute approximately equally to the 
degradation of IbpA, and their contribution is additive. We classify 59 proteins as degraded 
redundantly. Interestingly, 72 proteins are still confidently degraded in the triple-protease-KO 
line (Fig. 4E).  
 
To validate our classifications, we compared our protease-substrate relationships with previous 
proteome-wide measurements. We see a large overlap (p-value = 6E-9) of our identified ClpP 
substrates when compared with the previous annotation of substrates via trap mutants (Fig. 
4F)(Feng et al., 2013). However, we do not observe an overlap of our putative Lon-substrates 
with a previous Lon-trap experiment (p-value = 0.22) (Arends et al., 2018). This lack of overlap 
is most likely caused by separating the Lon trap substrates into the different classifications, 
indicated by a larger overlap with the substrates from all the categories combined (p-value = 
0.05). Interestingly, the putative substrates of HslV identified through a microarray study show a 
strong overlap with the proteins we classify as additive or redundant (p-value = 0.002) (Tsai et 
al., 2017). This is consistent with the previous reports that HslV substrates are shared with other 
proteases (Kanemori et al., 1997; Seong et al., 1999). We also find mild enrichment (p-value = 
0.08) between substrates identified in a previous FtsH trap (Arends et al., 2016) study and 
additive or redundant substrates, consistent with findings that FtsH often degrades proteins that 
are also substrates for other proteases (Biernacka et al., 2020). The lack of overlap between the 
proteins still degrading in the triple KO and FtsH trap substrates implies that FtsH is likely not 
involved in the degradation of these substrates.  
 
Surprisingly, 40% of the active protein degradation in WT remains upon knocking out the three 
canonical ATP-dependent cytoplasmic proteases (Fig. 4G). We could not generate a viable 
quadruple KO with ftsH deletion, so we cannot completely rule out the possibility that all four 
proteases act redundantly as an explanation of the remaining protein degradation. However, the 
results from the individual ftsH knockout (Fig. 4B) and the lack of overlap between degrading 
proteins and the FtsH-trap experiment (Fig. 4F) are evidence against FtsH being responsible for 
the remaining degradation. Regardless, a major pathway for degrading proteins in E. coli 
remains to be discovered: either FtsH has a much bigger role to play than is currently believed, 
or a completely new mechanism degrades cytoplasmic proteins under nitrogen starvation. 
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Discussion 
 
This paper introduces a technique for the global measurement of protein turnover on a gene-by-
gene basis by combining complement reporter ion quantification with heavy isotope-labeled 
nutrients (Fig. 1). When we compare protein turnover across E. coli growth rates, we find that 
active protein degradation remains constant (Fig. 2). Based on this finding, the relative 
contribution of active degradation compared to dilution due to cell division must change as a 
function of growth rate. Therefore, relative protein levels of actively degrading proteins must 
change with differing cell growth rates, or cells must compensate by adjusting transcription 
and/or translation rates. Protein expression regulation combines gene-specific effects with such 
global parameters changes (Klumpp et al., 2009). Our insight will help to improve genome-wide 
protein abundance regulation models and could help to better engineer gene expression circuits 
with desired properties. 
 
Applying our method to measure protein turnover across multiple nutrient limitations, we find 
that most cytoplasmic proteins slowly degrade in nitrogen-limited conditions (Fig. 3). However, 
in phosphorus-limited and carbon-limited conditions, proteins are mostly stable. We observe this 
phenomenon in both a nitrogen-limited chemostat and in nitrogen-starved batch culture. The 
slow degradation of cytoplasmic proteins is likely a strategy E. coli has developed to keep 
scarce amino acids available, which could be critical to various metabolomic processes, 
including the ability to synthesize new proteins and adapt the proteome to changing 
environments. Bulk protein turnover measurements in the 1950s showed that Saccharomyces 
cerevisiae also increases overall protein turnover when starved of nitrogen (Halvorson, 1958), 
suggesting that a similar strategy might apply even to eukaryotes. 
 
We could assign protein substrates to proteases by measuring the change in protein turnover 
rates of protease knockout strains (Fig. 4). We were surprised by how little protein degradation 
changed in the knockout strains, particularly when deleting the canonical proteases ClpP and 
Lon. We show that in these knockout strains, only a few proteins have a lower degradation rate, 
and the observed degradation of cytoplasmic proteins continues. Even when we knocked out 
clpP, lon, and hslV simultaneously, 40% of total protein turnover remains, including the 
cytoplasmic recycling and the degradation of many short-lived proteins. However, we observe 
remarkable additive and redundant effects when comparing protein turnover rates in the 
individual knockouts with the triple knockout. This suggests that many proteins are substrates 
for more than one protease. We could not extend these approaches to identify substrates for 
FtsH, as its deletion is lethal due to the accumulation of LPS. However, when combined with a 
fabZ mutation (Ogura et al., 1999), we could show that the degradation in nitrogen-starved 
batch culture continues when ftsH is deleted. So far, we have not been able to generate viable 
quadruple knockout cells for all four known ATP-dependent proteases in E. coli. We, therefore, 
cannot completely rule out that FtsH is responsible for the remaining cytoplasmic degradation 
when the other three proteases are deleted. Regardless, a major protein degradation pathway 
in E. coli still needs to be discovered: either FtsH plays a much bigger role than generally 
anticipated, or there is a completely different pathway outside the four known ATP-dependent 
proteases. While protein degradation itself is energetically favorable, unfolding a protein 
requires energy. E. coli encodes many non-ATP-dependent proteases (Rawlings et al., 2016), 
but the rapidly turning over proteins in the triple knockout line and the fact that most cytoplasmic 
proteins are structured, suggest that some ATP-dependent unfoldase is involved. Perhaps, an 
adapter like ClpX or a chaperone unfolds proteins and allows those substrates to be degraded 
by one of the proteases that are believed to be energy independent (Rawlings et al., 2016). 
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The discoveries in this manuscript have been enabled by introducing a new method to measure 
protein turnover. We chose to use heavy ammonia and glucose to label newly synthesized 
proteins to avoid the use of mutants and to boost the signal for short labeling times. The 
resulting MS1 and MS2 spectra are extremely complex, making standard quantification 
approaches challenging (O’Brien et al., 2020). We have overcome these challenges by taking 
advantage of the exquisite ability of the complement reporter ion strategy (TMTproC) to 
distinguish real signals from the chemical background (Johnson et al., 2021). The introduced 
methods are applicable widely beyond E. coli. Our ability to use comparatively cheap heavy 
isotope labels opens up the possibility of performing similar studies on larger animals e.g., after 
D2O intake, which would be cost-prohibitive with heavy amino acid labeling (O’Brien et al., 2020; 
Sadygov, 2021). Unlike many other cutting-edge multiplexed proteomics approaches, the 
applied technology is compatible with comparatively simple and widely distributed 
instrumentation such as quadrupole-Orbitrap instruments, as we avoid the need for an 
additional gas-phase isolation step. The required analysis software is available on our lab’s 
GitHub site (https://github.com/wuhrlab/TMTProC). 
 
We have generated a broad resource of protein turnover rates in 12 different growth conditions, 
each with biological replicates. The investigated conditions include varying cell cycle times from 
40 minutes to 12 hours, nitrogen-, carbon-, phosphorus-limitation, and various protease 
knockout strains. We expect this resource to allow researchers to complement their datasets 
with protein turnover information. Our measurements of how protein turnover rates change in 
protease knockout strains will help refine protease substrate relationships. Unlike studies relying 
on trap experiments or protein microarrays, we could start to deduce the redundant nature of 
these connections. We have shown the power of the provided resource by showing cytoplasmic 
recycling in nitrogen-limitation and by finding a scaling law for active protein degradation rates 
with varying cell cycle times. Thus, we advance protein turnover measurement technology, 
provide a resource for ~3.2k E. coli protein half-lives under various conditions, and provide 
fundamental insight into global protein expression regulation strategies.  
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Figures 

 
Figure 1: Combining heavy isotope labeling with an accurate multiplexed proteomics 
method (TMTproC) enables high-quality measurements of unperturbed protein turnover. 
A) Experimental setup. E. coli cells were grown in chemostats with a defined doubling time. 
After reaching steady state, the chemostat feed was switched to a medium with 15N-labeled 
ammonia. Newly synthesized proteins will increasingly incorporate heavy isotopes. Proteomics 
samples were collected at various time points to determine the protein turnover rate. B) 
Theoretical isotopic envelopes of an example tryptic peptide, which is assumed to be stable 
(protein is removed from the vessel only through dilution). Over time, the increasing fraction of 
heavy ammonia in the peptide’s structure shifts the isotopic envelope to higher masses. 
Peptides were labeled with isobaric tags (TMTpro) to encode different time points. C) Top: 
theoretical MS1 spectrum for a single peptide species after combining labeled peptides from all 
the time points. The mass spectrometer was set to isolate the monoisotopic peak (M0) and 
fragment the peptide. Bottom: the resulting complement reporter ions (peptide plus broken tag) 
enable accurate quantification of the relative abundance of the M0 over time. D) Example 
measurements for the stable OmpF protein and rapidly degrading RpoS protein. Each dot 
indicates the relative peptide quantification at a particular time. The size of each point is 
proportional to the number of measured ions. Fitting the observed data with the theoretical 
decay profile for M0, we can extract the half-life for each protein (solid curve). The dotted curve 
shows the theoretical decay for a stable protein. E) Scatter plot of measured protein half-lives 
for biological replicates of carbon-limited E. coli grown with a six-hour doubling time. Dotted 
lines indicate the cell doubling times. The solid line marks the 1:1 line. The half-lives for each 
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protein were calculated from the fits shown in D. Median standard deviation for the half-lives 
between the replicates is 0.3h. 
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Table 1: Summary of the 12 growth conditions for which we measured protein turnover 
rates. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.01.502339doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.01.502339
http://creativecommons.org/licenses/by/4.0/


 
Figure 2: Active degradation rates are generally independent of cell division rates. A) Two 
hypothesized models describing the relationship between cell division rates and protein-specific 
turnover rates. The total protein turnover rate (ktotal) is the sum of the active degradation rate 
(kactive) and the dilution rate due to cell division (kdilution). In the “scaled model,” active degradation 
rates increase in proportion to division rates with a protein-specific proportionality constant (αp), 
i.e., active degradation remains a constant fraction of the total protein turnover rate. In the 
“constant model,” protein-specific active degradation rates are constant (βp), regardless of 
changing division rates. In this case, for slower dividing cells the contribution of active 
degradation becomes greater relative to dilution. B) T1/2, total is the time taken to replace half the 
protein. Theoretical plot of T1/2, total from two conditions (i, j) where cell division rates change by a 
factor of r. In the scaled model, T1/2, total for all the proteins lie on a straight line with slope r 
(orange). In the constant model, the T1/2, total follows a nonlinear relationship between the two 
doubling times (purple). For proteins with very high active degradation rates, the constant model 
predicts that T1/2, total will approach the same value for both doubling times, indicated by the slope 1 
line (black). For diluting proteins with no active degradation, both models converge to the 
doubling times of conditions i and j. C) Scatter plots of protein T1/2, totals for E. coli grown at 
doubling times of 42 mins (defined minimal media batch), 3 hours (C-lim), and 6 hours (C-lim) 
compared to 12 hours (C-lim). The dotted lines represent the dilution limit. We observe a strong 
statistical preference for the model in which active degradation rates are uncoupled from cell 
cycle duration. Shown are the likelihood ratios (L) of the constant models compared to the 
scaled models assuming normally distributed errors. 
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Figure 3: E. coli recycles its cytoplasmic proteins when nitrogen is limited. A) Histogram 
of protein half-lives for E. coli grown in chemostats under carbon (C-lim), phosphorus (P-lim), 
and nitrogen (N-lim) limitation. The vertical line marks the dilution limit set by the 6h doubling 
time. Half-lives greater than doubling time indicate measurement noise. Under C-lim and P-lim, 
most proteins have half-lives equal to the doubling time, suggesting they are stable. However, 
under N-lim, many proteins are actively degraded. B) Separation of the proteome into stable 
proteins (grey) and actively degrading proteins (yellow) (t-test, p-value < 0.05, n=2). In C-lim 
and P-lim, ~15% of the proteome turns over confidently. In contrast, under N-lim, ~ 43% of the 
proteome turns over.  C) Distribution of half-lives for proteins from different subcellular 
localizations overlayed against the entire proteome. Most proteins are stable under C-lim and P-
lim, irrespective of localization. However, nearly all cytoplasmic proteins slowly degrade under 
N-lim while the membrane and periplasmic proteomes are largely stable. D) Scatter plots of 
protein half-lives in different nutrient limitations. The dotted black lines mark the dilution limit, the 
solid black line denotes perfect agreement. Contour plots contain 85% of the probability mass 
for each subcellular compartment. The contour plots of membrane and periplasmic proteins are 
centered around the dilution limit in all the binary comparisons, indicating that most of these 
proteins are stable under all limitations. However, the shift in the contour plots of the 
cytoplasmic proteins on comparing N-lim with P-lim and C-lim suggests that the cytoplasmic 
proteins are degraded in N-lim. E) Measurement of protein decay rates under complete nutrient 
starvation in batch. Exponentially growing cells in minimal media are washed and resuspended 
in nitrogen-depleted media. Proteomics samples are collected after the switch and protein 
profiles are fitted with exponential curves to obtain the decay rates. In batch, similar to the N-lim 
chemostat, the cytoplasmic proteins are confidently decaying as compared to the membrane 
and periplasmic proteins (ANOVA). 
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Figure 4: Measurement of protein turnover in knockout strains enables proteome-wide 
identification of protease substrates.  
A) Scatter plots of protein half-lives of N-limited wild-type (WT) compared to ΔclpP, Δlon, and 
ΔhslV knockout (KO) cells. Dotted lines mark the dilution limit, and the solid black line indicates 
perfect agreement. Substrates, marked in black, confidently increase their half-lives in KOs (t-
test, p-value < 0.10). ClpA (in pink), tag (in teal), and UhpA (in purple) are the substrates of 
ΔclpP, Δlon, and ΔhslV, respectively. However, the protein YbhA (in orange) is still degraded in 
the individual KOs. Contour plots containing 85% of the probability mass for the cytoplasmic (in 
red) and membrane (in green) proteins indicate that individual KOs of hslV, lon, and clpP retain 
their ability to degrade the bulk cytoplasmic proteins. B) Since ΔftsH cells cannot grow in 
chemostats, we repeated the batch starvation assay as in Fig. 3E. Results indicate that the 
ΔftsH cells, like the WT, also degrade their cytoplasmic proteins under nitrogen starvation (t-
test, p-value = 2E-12 for WT and p-value < 2E-16 for ΔftsH). C) Scatter plots of protein half-lives 
of WT and ΔclpP Δlon ΔhslV cells in N-lim. The substrates marked in black confidently increase 
their half-lives in the triple KO (t-test, p-value < 0.10). Strikingly, many proteins are still 
degrading in the triple KO, e.g., LexA and YoaC in blue. In fact, the bulk cytoplasm is still turning 
over. However, many more proteins are stabilized in the triple KO compared to the individual 
KOs, indicating redundancy among substrates. E.g., YbhA, which was degrading in the 
individual knockouts, gets significantly stabilized in the triple KO (in orange). D) Comparing the 
shifts in the WT and KO strains' half-lives, we can assign each protease's contribution to active 
protein turnover. Pink, green, and purple describe the contribution of ClpP, Lon, and HslV, 
respectively, in stabilizing the protein. Orange marks the contribution of redundancy, defined as 
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the additional gain in stability upon simultaneously knocking out the three proteases as 
compared to the additive contributions of individual KOs. Blue represents the fraction that is 
unexplained by the three proteases. The bar graph represents examples from each of the six 
categories - turnover explained predominantly by ClpP, Lon, HslV, additive contributions, 
redundant contributions, and actively degrading proteins in the triple KO. E) Bar graph for the 
number of substrates and the % of the proteome assigned to each of the six categories 
described in D. F) Comparison of the substrates from our categories in E with previous 
proteome-wide substrate-protease assignment studies. ClpP trapped substrates significantly 
overlap with the identified ClpP substrates (p-value: 6E-9, Fisher test). Lon trapped substrates 
do not significantly overlap with the substrates from our categories. Previously identified 
substrates of HslV show a significant overlap with redundant and additive substrates. Similarly, 
FtsH trapped substrates significantly overlap with redundant and additive substrates in the triple 
KO, indicating that FtsH might also be involved in their degradation. Interestingly, however, the 
FtsH trapped substrates do not significantly overlap with the proteins that are still degrading in 
the triple KO. G) Comparison of the percentage of active turnover per hour across the protease 
KOs under N-lim. In WT cells, ~4.5% of the proteome is replaced by active degradation each 
hour. The proteome of ΔhslV cells turns over at the same rate as WT cells. Both ΔclpP and Δlon 
cells had ~30% less protein turnover than WT cells. Even after knocking out hslV, lon, and clpP 
simultaneously, ~40% of the WT proteome-turnover remains, suggesting that a major pathway 
of protein degradation in E. coli remains to be discovered. 
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