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ABSTRACT  16 

Switchgrass low-land ecotypes have significantly higher biomass but lower cold tolerance 17 
compared to up-land ecotypes. Understanding the molecular mechanisms underlying cold 18 
response, including the ones at transcriptional level, can contribute to improving tolerance of 19 
high-yield switchgrass under chilling and freezing environmental conditions. Here, by analyzing 20 
an existing switchgrass transcriptome dataset, the temporal cis-regulatory basis of switchgrass 21 
transcriptional response to cold is dissected computationally. We found that the number of cold-22 
responsive genes and enriched Gene Ontology terms increased as duration of cold treatment 23 
increased from 30 min to 24 hours, suggesting an amplified response/cascading effect in cold-24 
responsive gene expression. To identify genomic sequences likely important for regulating cold 25 
response, machine learning models predictive of cold response were established using k-mer 26 
sequences enriched in the genic and flanking regions of cold-responsive genes but not non-27 
responsive genes. These k-mers, referred to as putative cis-regulatory elements (pCREs) are 28 
likely regulatory sequences of cold response in switchgrass. There are in total 655 pCREs where 29 
54 are important in all cold treatment time points.  Consistent with this, eight of 35 known cold-30 
responsive CREs were similar to top-ranked pCREs in the models and only these eight were 31 
important for predicting temporal cold response. More importantly, most of the top-ranked 32 
pCREs were novel sequences in cold regulation. Our findings suggest additional sequence 33 
elements important for cold-responsive regulation previously not known that warrant further 34 
studies. 35 

Key words: Temporal transcriptional response, random forest classifier, regulation of cold 36 
stress, machine learning model interpretation, novel cis-regulatory sequences  37 
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INTRODUCTION  38 

Switchgrass (Panicum virgatum L.) is a perennial C4 grass species native to North 39 
America and identified as a major lignocellulosic feedstock for biofuel production (Sanderson et 40 
al., 2006). Higher biomass production has been a major breeding target and a potent research 41 
area in switchgrass. However, high-yielding switchgrass cultivars grow in narrow climatic niches 42 
and are known to be less productive under drought, high salinity, and freezing/chilling 43 
environmental conditions (Lovell et al., 2021; Sage et al., 2015; Zhuo et al., 2015). Expanding 44 
the growing range of high-yielding switchgrass cultivars has been proposed as a way to achieve 45 
economic bioenergy production (Sanderson et al., 2006). Coupling high biomass production with 46 
low and freezing temperature tolerance can be an effective way of increasing the range 47 
expansion of high-yielding switchgrass cultivars. Thus, it is important to understand which genes 48 
and how they are responsive to cold stress in cold-resistant switchgrass cultivars. 49 

The ability to tolerate and/or resist cold stress has been an active area of research with 50 
respect to the underlying genes, their transcriptional regulators, and signaling pathways (Manasa 51 
et al., 2021; Park et al., 2018; Thomashow, 2010). At the level of transcriptional regulation, the 52 
C-repeat-binding factor (CBF) cold response pathway is one of the best characterized. In 53 
Arabidopsis thaliana, three C-Repeat Binding Factor/Dehydration Responsive Element-Binding 54 
Protein 1 (CBF/DREB1) transcription factor (TF) genes are rapidly up-regulated in response to 55 
cold stress (Liu et al., 1998; Stockinger et al., 1997). Such rapid cold response is due to a 56 
signaling network that is active upon cold stress. During cold treatment, cellular Ca+2 is elevated 57 
and activates Calmodulin proteins (CAMs). CAMs then bind to promoters of CAM-binding 58 
Transcription Activators (CAMTAs) and up-regulate expression of CAMTAs. Finally, CAMTAs 59 
bind to the conserved CGCG-box in CBF genes and up-regulate their transcription. Another 60 
well-studied regulator of CBF expression is the Inducer of CBF Expression (ICE) (Chinnusamy 61 
et al., 2003). ICE TFs are activated through low temperature mediated sumoylation and 62 
subsequently bind to ICE-box promoters in CBF genes to activate its transcription (Chinnusamy 63 
et al., 2010, 2007, 2003). CBF TFs then up-regulate over 100 cold regulated (COR) and low-64 
temperature induced genes by binding to C-repeat/dehydration-responsive (CRT/DRE) elements, 65 
located in promoters of COR genes (Thomashow, 2010). This regulatory hub is known as the 66 
CBF regulon which is a major mechanism of cold stress response regulation in plants.  67 

Beyond the CBF regulatory hub, there are examples of other, non-CBF regulatory 68 
pathways important for cold stress response in plants. Studies using CBF mutants have shown 69 
that TFs rapidly responsive to cold, such as HSFC1, ZAT12, and CZF1, also regulate COR gene 70 
expression, indicating CBF-independent regulation (Liu et al., 2019; Park et al., 2018).  Another 71 
example is BZR1 TFs in the brassinosteroid (BR) signaling pathway that become 72 
dephosphorylated upon exposure to cold stress and bind to BR responsive element and E-box in 73 
the promoter regions of COR genes such as WRKY6, SAG21, and SOC1 (Li et al., 2017).  It is 74 
also shown that cold-induced, Abscisic Acid modulated COR gene expression is also shown to 75 
work independently from CBF regulon (Liu et al., 1998). There are likely other, non-CBF 76 
regulatory mechanisms for plant cold-responsive transcription that remain to be discovered. In 77 
addition, in switchgrass, it remains unclear how temporal regulation of cold response is 78 
regulated, CBF-dependent or not.  79 
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Computational approaches are powerful tools in the identification of genome-wide 80 
regulatory patterns in plants under biotic and abiotic stress conditions. In switchgrass, co-81 
expression analysis has been used to establish the potential transcriptional regulatory networks in 82 
heat, drought, and biotic stress conditions (Hayford et al., 2022; Pingault et al., 2020). Recently, 83 
a comprehensive, transcriptomic study on several panicoid grasses, including switchgrass, 84 
revealed that machine learning approaches can be implemented to predict cold stress responses 85 
of genes within and between species based on nucleotide frequencies in promoter regions of 86 
genes, among other features (Meng et al., 2021). Beyond nucleotide frequencies, a similar 87 
approach using longer nucleotide sequences (i.e., k-mers) can identify putative cis-regulatory 88 
elements that are regulatory switches of gene expression under cold stress in switchgrass. Such 89 
approaches have been applied to identify the regulatory switches of genes under wounding (Liu 90 
et al., 2018; Moore et al., 2022), salinity (Uygun et al., 2017), iron excess response (Kakei et al., 91 
2021), heat, and drought stress conditions (Azodi et al., 2020). 92 

In this study, we aim to apply a similar, machine-learning based approach in switchgrass 93 
to assess the involvement of CBF-dependent components of cold response regulation and 94 
identify other cis-regulatory mechanisms. Using an existing cold stress time course 95 
transcriptomes of switchgrass (Meng et al., 2021), we first identified temporally cold-responsive 96 
genes. To test the extent to which the temporal cold transcriptional response at different cold 97 
treatment duration can be explained using potential cis-regulatory sequences, we built machine 98 
learning models to predict genes that are up- and down-regulated upon cold treatment in the time 99 
course experiment using k-mers enriched among up- or down-regulated genes. The k-mers that 100 
were the most predictive for cold-responsive genes were considered putative Cis-Regulatory 101 
Elements (pCREs) controlling the temporal transcriptional response. To further reveal the 102 
regulatory logic behind the temporal transcriptional response, we examined transcription factors 103 
that may bind to pCREs, similarity between pCREs to known CREs, as well as functions of the 104 
genes that these pCREs are located on. In addition, to understand if there are common 105 
mechanisms underlying the transcriptional response at different time points after cold treatment, 106 
we assessed if pCREs identified in one time point were similar to the regulatory elements 107 
identified in other time points.  108 

RESULTS AND DISCUSSION 109 

Temporal transcriptional response in switchgrass under cold stress 110 

Switchgrass genes responsive to cold stress at different treatment time points (0.5, 1, 3, 6, 111 
16, and 24 hrs) were identified using the transcriptome data from Meng et al, (2021) (S1 table). 112 
We found that the number of cold-responsive genes, regardless if they were responsive to cold at 113 
multiple time points or at a specific time point, increased as the duration of cold treatments (S1A 114 
fig). This observation is consistent with a cascading effect of transcriptional response over time, 115 
similar to responses to other biotic (Ikeuchi et al., 2017; Moore et al., 2022; Ren et al., 2008)and 116 
abiotic (Joshi et al., 2016; Ohama et al., 2016) stress conditions. This cascading effect could be 117 
because the key regulators are activated sequentially during the cold treatment (Ding et al., 118 
2019a; Lamers et al., 2020). Moreover, as expected, more cold-responsive genes tend to be 119 
shared between adjacent time points compared with time points apart from each other (S1A fig).  120 

To understand what functions the genes that are responsive to cold stress at different time 121 
points tend to have, we conducted Gene Ontology (GO) enrichment analysis (see Methods, S1B  122 
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and C fig). GO terms relevant to signaling and activity of transcription factors, such as protein 123 
phosphorylation and regulation of transcription, were enriched for genes up-regulated at earlier 124 
time points (i.e., 0.5 - 3 hrs, S1B fig). These early up-regulated genes may act as initial 125 
regulators of genes that are responsive to cold at later time points. Consistent with this, it is 126 
known that the accumulation of Ca+2 as a result of initial cold sensing activates the expression of 127 
calcium-dependent protein kinases (CDPKs), which in turn activate transcription factors that 128 
regulate downstream cold stress response (Chinnusamy et al., 2010; Knight and Knight, 2012). 129 
Moreover, GO terms such as glucan metabolism and trehalose biosynthesis were also found to be 130 
enriched at initial time points. These biological processes are known to be important in the initial 131 
cold acclimation in Arabidopsis (Maruyama et al., 2009; Miranda et al., 2007). The GO terms 132 
enriched in up-regulated genes at later time points (i.e., 6-24 hrs) may involve biological 133 
processes that are required to maintain the functionality of the plant under prolonged cold stress. 134 
For example, during prolonged cold stress an increase in plant respiration has been observed 135 
(Manasa et al., 2021). As a result of elevated respiration, plants tend to accumulate higher 136 
amounts of reactive oxidative species (ROS), followed by the transcription of genes that are 137 
responsive to oxidative stress (Wei et al., 2022). This is in line with the enriched GO terms for 138 
later cold-responsive genes, such as response to oxidative stress and metal ion transport. Thus, 139 
the results from GO enrichment analysis are also indicative of the cascading effect of temporal 140 
transcriptional response under cold stress in switchgrass, where initial responsive genes activate 141 
later cold-responsive genes that are involved in different physiological and metabolic processes 142 
to withstand cold stress conditions.  143 

Putative cis-regulatory elements (pCREs) regulating temporal cold stress responses  144 

The cascading effect of temporal transcriptional response that we observed, as well as the 145 
differences between GO terms enriched in genes that were up-regulated at different time points, 146 
indicates that the transcriptional regulation differs among time points after cold treatment. To 147 
understand how cold-responsive genes are regulated at the cis-regulatory level, we first identified 148 
k-mers in the promoter and gene body regions that were enriched among cold-responsive genes 149 
at each time point. Then the enriched k-mers were used to establish a predictive model to 150 
distinguish cold-responsive genes from non-responsive genes for each time point with machine 151 
learning (see Methods; Fig. 1A). We calculated F-measure (F1 score) on the validation and test 152 
instances (held out before model training, see Methods). In our modeling setup, the F1 score 153 
ranges between one and zero, where one represents a model with perfect prediction, while a 154 
score ~0.5 indicates a model with predictions no better than random guesses. Among models 155 
distinguishing genes that are significantly up- or down-regulated from non-responsive genes at 156 
different time points, the F1s were all higher than random expectation (> 0.7) (Fig. 1B), 157 
indicating that the sequence information (i.e., k-mers) was predictive of cold stress response at a 158 
time point.  159 

Next, we asked what features (k-mers) were most predictive of the temporal cold stress 160 
response of genes with feature selection. By assessing the model performance improvement by 161 
adding features successively from the most to the least important, the minimal number of 162 
features required to reach 95% of the optimal model performance was identified for each time 163 
point model (S2 fig). The k-mers that met this criteria for each time point model were defined as 164 
pCREs (S2 and S3 tables).  From here onwards, we focus on the pCREs predictive of up-165 
regulated genes. Some of these pCREs were general across time points (Fig. 2A), which may 166 
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indicate: (1) the genes regulated by these pCREs are responsive to cold across time points; 167 
and/or (2) different genes that are responsive to cold stress at different time points are regulated 168 
by the same pCRE set. We should note that only 154 and 411 genes for up- and down-regulation 169 
across >4 time points, respectively. On the other hand, 16,414 and 16,911 genes are up- and 170 
down-regulated in >=1 time points. Considering that very few genes are commonly responsive 171 
across multiple time points, the first possibility is unlikely. Some other pCREs were time point-172 
specific (Fig. 2A). The remaining pCREs were identified by models predicting genes up-173 
regulated at 2~5, most of the time, disjointed time points (S3 fig).  174 

Known cold response regulation transcription factors likely bound to pCRE sites  175 

Previous studies have shown that there are some conserved CREs that control the 176 
expression of both early responsive transcription factors (TFs), such as CBF, and downstream 177 
cold-responsive genes (e.g., COR genes) that carry out the cold stress tolerance in plants 178 
(Chinnusamy et al., 2010; Ding et al., 2019b; Park et al., 2018; Thomashow, 2010). To see if our 179 
models have identified binding sites for these known regulators as well as novel CREs, we 180 
examined the similarities between the general and time point-specific pCREs and 35 known 181 
transcription factor binding motifs (TFBMs) in Arabidopsis using DAP-seq (O’Malley et al., 182 
2016) and CISBP (Weirauch et al., 2014) datasets (S3 table). In addition, we collected 35 known 183 
TFs regulating plant cold stress response that have binding site information (S4 table).  Some 184 
pCREs that are significantly more similar (see Methods) to binding sites of 11 out of 35 known 185 
TFs regulating cold response than the 95 percentile of TFBMs from TFs of the same families 186 
(Fig. 2A, see Methods). Two general pCREs were similar to the binding sites of CAMTA1 and 187 
CAMTA5 (orange and yellow in Fig. 2B).  CAMTAs are known to be up-regulated by the 188 
activation of Ca+2dependent Calmodulin due to cold-induced  Ca+2 spike (Finkler et al., 2007; 189 
Manasa et al., 2021). In addition, CAMTAs are major regulators of CBF genes that are known 190 
regulators of cold responses, for the immediate cold stress response (Finkler et al., 2007). 191 
Consistent with the involvement of CAMTAs in early cold response, pCREs the most closely 192 
related to CAMTA binding motifs had the highest feature importance in the 30 min model 193 
(CAMTA1 and CAMTA5 ranked 17 and 6, respectively). We should point out that the 194 
CAMTA1/5 binding motif-like pCREs were also found in 1hr- and 16 hr-specific sets, indicating 195 
that, like in Arabidopsis (Doherty et al., 2009) the CAMTAs may also be involved in 196 
maintaining CBF or other cold response gene expression that are critical for overall cold 197 
acclimation in switchgrass. Because only 11 of 35 cold CREs of known plant cold stress TFs 198 
have similar binding sites to general and specific pCREs (Fig. 2A), we next examined if they 199 
could be recovered using pCREs important in >1 time points (non-specific pCREs, S3 table). 200 
We found that no new cold CREs can be recovered. Thus, in later discussion, we mainly focus 201 
on general and time point-specific pCREs only. 202 

Another notable finding is that pCREs are similar to ERF binding sites (gray and green in 203 
Fig. 2A and B) and were identified both in the general and most of the time point-specific pCRE 204 
sets (excluding the 3 and 6-hrs).  Like CBF/DREB TFs, ERF TFs are members of 205 
APETALA2/Ethylene Responsive Element Binding Protein (AP2/EREBP) gene family which 206 
are known to be involved in multiple stress tolerance (Dey and Corina Vlot, 2015; Park et al., 207 
2021). ERF115 prevents water deprivation in rice under extreme temperatures and drought 208 
conditions (Park et al., 2021). Dehydration is a condition that can occur under cold stress and 209 
transgenic switchgrass with higher water retention also has an increased cold tolerance (Xie et 210 
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al., 2019). Despite the lack of experimental evidence for the function of ERF TFs in switchgrass, 211 
our findings suggest that ERF TFs may play important roles in cold tolerance in switchgrass. 212 
Moreover, there were also pCREs that are similar to binding sites of TFs from other TFs 213 
families, such as WRKY, BZR and ABR. pCREs similar to binding sites for BZR1 (rank 1 to 4), 214 
WRKY24 (rank seven to eight), and WRKY 30 (rank seven) were also among the most 215 
predictive cold-CREs in cold-TFBM models (S4 fig). These TFs are known for cold signal 216 
transduction and cold stress tolerance via CBF-independent pathways (Park et al., 2015; Ramirez 217 
and Poppenberger, 2020). BZR1 is known to be involved in cold stress tolerance through 218 
processes such as ROS scavenging (Ramirez and Poppenberger, 2020) and facilitating structural 219 
changes in cell membranes and cell walls (Benatti et al., 2012). Moreover, WRKY TFs are also 220 
known to be involved in phytohormonal-induced signal transduction for low-temperature 221 
tolerance in plants (Park et al., 2018, 2015). ABR1 on the other hand is known to regulate stress 222 
responses including cold stress in a CBF-independent, CBL9-CIPK3-mediated, ABA-signaling 223 
cascade (Pandey et al., 2005). These findings indicate that our prediction models can not only 224 
predict cold-responsiveness for different time points after cold treatment, but also recover known 225 
plant cold-TFBMs. 226 

Potentially novel cold cis-regulatory sequences in switchgrass  227 

While known TFs involved in cold-responsive regulation can be identified, 45 pCREs 228 
either resembled known TFBMs but the TFs were not known to be involved in cold-regulation. 229 
Perhaps more importantly, another 598 pCREs did not have significant similarity to known 230 
TFBMs. This raises the question if these pCREs not resembling cold-TFBMs, represent novel 231 
component of switchgrass cis-regulation under cold treatment. To address this, we compared the 232 
informativeness of pCREs identified by our models and the experimentally validated cold-233 
TFBMs for predicting cold stress response. Based on literature search, 35 TFs involved in cold 234 
response regulation with binding site information in different plant species (S4 table) were used 235 
to build models (hereafter referred to as cold-TFBM models). We found that the cold-TFBM 236 
models had far worse prediction performance (median F1=0.66) than models built using all 237 
pCREs (median F1=0.85, Fig. 3A). Since these 11 of 35 cold-TFBMs are significantly similar to 238 
top-ranked pCREs (similarity >95% of randomly expected matches, see Methods), it is not 239 
particularly surprising that the cold-TFBMs predictive of cold responsiveness at different 240 
specific time points are similar to the findings in Fig. 2, By looking at the feature importance of 241 
the cold-TFBMs models built for each of the time points (S4 fig), TFBMs of CAMTA1/5 and 242 
CBFs were among the most predictive features among the cold-TFBMs time point models.  243 

While the all-pCRE models overall performed significantly better than cold-TFBM-based 244 
ones (T-test, p < 0.01, Fig. 3A), it is possible that the all-pCRE models simply have far more 245 
features. To address this, we also built models using the top 35 most important pCREs (based on 246 
the feature importance of time point models) for comparison. We found that the cold-TFBM 247 
models remain worse than models built using the top 35 pCREs (median F1=0.77, p<0.01, Fig. 248 
3A). This finding, together with that based on all-pCRE models, suggests that pCREs identified 249 
in our models contain potentially novel cold-responsive CREs that may or may not be specific to 250 
switchgrass. In Fig. 3B, the top 10 ranked pCREs from each of the time point models are shown 251 
with emphasis on novel pCREs. These novel pCREs are significantly enriched (multiple testing 252 
corrected, p<0.05) in cold stress up-regulated genes at each time point (Median log odds 253 
ratio=0.55). Taken together, the comparison between cold-TFBM models and the all-pCRE or 254 
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the top-35 pCRE models shows that known cold-TFBMs could not explain cold responsiveness 255 
at any particular time point as well. These findings suggest that there are novel temporal cis-256 
regulatory components of cold transcriptional response. 257 

Relationships between pCREs across time points 258 

The majority of top pCREs are sequences that do not resemble TFBMs associated with 259 
cold regulation. To further understand how these pCREs we identified may be involved in 260 
temporal cold stress regulation, we examined: (1) the similarity of the pCREs across time point 261 
models (Fig. 4A); (2) importance of pCREs from different clusters in predicting cold response 262 
(Fig. 4B); (3) functions carried out by the genes that the pCREs were located (Fig. 4C); (4) 263 
sequence similarities between pCREs and TFBMs (earlier the focus was only on cold-related 264 
TFs, Fig. 4D); and (5) expression profiles of genes that the pCREs were located (Fig. 4E). First, 265 
we categorized the pCREs into clusters by calculating the pairwise PCC distance (1-PCC) based 266 
on their sequences (see Methods; S5 fig). The clusters were defined using the same PCC 267 
distance threshold as in (Liu et al., 2018), where pCREs with PCC distance <0.39 were 268 
considered to be bound by TFs of the same family. The pCREs were grouped into 27 clusters and 269 
pCREs in 25 clusters were shared by >1 cold treatment time points. Since pCREs in a cluster are 270 
likely bound by TFs of the same family, this finding indicates the involvement of most TF 271 
families across time points. These clusters consisted of pCREs important in >1 time points were 272 
referred to as non-specific pCRE clusters (Fig. 4A).  273 

To assess if pCREs in different clusters may regulate distinct sets of genes, we compared 274 
the differential expression profiles of genes that contain pCREs from different clusters in 275 
different time points (Fig. 4E and S6 fig). To facilitate interpretation of the differential 276 
expression profiles, we encoded the transcriptional responsiveness of a gene at a time point as U, 277 
D, N if it is significantly up-regulated, significantly down-regulated, and not differentially 278 
expressed, respectively. For example, a profile of “UUDDNN” indicates that the gene is 279 
significantly up-regulated at 30 minutes and 1 hr, down-regulated at 3 hrs and 6 hrs, and not 280 
differentially expressed at 16 hrs and 24 hrs after cold treatment. Using this strategy, we 281 
investigated the frequency of differential expression profiles of genes with pCREs in different 282 
pCRE clusters. NNNUUN, NNNUUU, and NNUUUU were the top three most frequent 283 
expression profiles found on the genes that contain pCREs in all 25 non-specific pCRE clusters 284 
(S7 fig). Because the up-regulatory patterns were contiguous after 3hrs of cold treatment, 285 
regulatory switches common between time points may have a role in the up-regulation and 286 
maintaining the expression of genes at later time points. Similarly, previous studies also show 287 
that in both CBF-dependent and independent pathways, immediately cold-responsive TFs are 288 
responsible for up-regulating and maintaining the expression of a large number of downstream 289 
cold-responsive genes by binding to conserved regulatory sequences (Li et al., 2017; Park et al., 290 
2015; Thomashow, 2010). Some genes harboring pCREs from non-specific pCRE clusters also 291 
had unique expression profiles (expressed in a single time point) as well as much more complex 292 
expression profiles (up- or down-regulated in multiple, non-contiguous time points) (S6 and S7 293 
fig).  294 

In addition to non-specific clusters, there were two 30 min-specific pCRE clusters 295 
(clusters 23 and 25) (Fig. 4A). pCREs in these clusters may regulate initial cold transcriptional 296 
response. However, these clusters were significantly enriched (q≤0.05) with the genes that are 297 
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up-regulated only at the 30-min time point compared to genes that contain pCREs in other 298 
clusters (S8 fig), For example, in cluster 23, UNNNNN, UNUUNN, UNUNNU, UUUUUU, 299 
UUDDDD, and UUNNDD are among profiles with the highest degrees of enrichment. There are 300 
~360 different gene expression profiles that contain pCREs in all 25 of the shared pCRE clusters 301 
(S7 fig). Thus, the temporal regulation of cold transcriptional response is likely mediated through 302 
a combination of general CREs that are important for the entire duration, specific CREs that 303 
regulates response at particular time, as well as non-specific CREs that regulate a certain 304 
duration (contiguous time points) or complicated expression profiles (e.g., UNUNNU).   To 305 
assess the functions of genes that contained pCREs from pCREs clusters, we examined which 306 
GO terms were enriched with genes containing pCREs in a cluster (Fig. 4C). Except for the 307 
general enriched GO terms (e.g., metabolic processes), genes containing pCREs of non-specific 308 
pCRE clusters were enriched with biosynthetic processes that are involved in cold stress 309 
responses (e.g., fatty acid biosynthetic process, lipid biosynthetic process, and trehalose 310 
biosynthetic process) and specific metabolic processes (e.g., response to oxidative stress, 311 
carbohydrate metabolic process) (Fig. 4C). These GO terms are known to be enriched in late 312 
responsive genes under cold stress (Manasa et al., 2021). Our findings suggest that some genes 313 
containing pCREs from these non-specific pCRE clusters may contribute to metabolic processes 314 
crucial for cold tolerance. None of the GO terms were enriched for genes containing pCREs in 315 
the specific pCRE clusters 23 and 25, potentially due to the small sample size of these two 316 
clusters.  317 

Cold stress regulatory pCREs that do not resemble known TFBMs 318 

 To further assess the regulatory role of the pCREs in pCRE clusters, we asked what TFs 319 
may bind to these pCREs using the in-vitro TFBM information of 344 Arabidopsis TFs. 320 
Although the Arabidopsis and the switchgrass lineages diverged ~200 million years ago (Wolfe 321 
et al., 1989), the TFBMs of dicot and monocot TFs from the same families are highly similar 322 
(Weirauch et al., 2014). A TF was considered to have the potential to bind to a pCRE if the 323 
similarity between its TFBM and the pCRE in question was above the 95th percentile of the 324 
similarity distribution calculated among TFBMs in the same TF family (see Methods). In 325 
addition to members of the AP2-EREBP family discussed previously (Fig. 2 and 4C), TFBMs of 326 
B3, bZIP, MYB, Trihelix, and FAR1 TF families were also found to have a significant similarity 327 
to pCREs in multiple clusters (Fig. 4C). In soybean, the bZIP TFs are known to regulate cold 328 
stress in ABA-dependent pathways by inducing the expression of downstream COR and ERF 329 
type genes that help plants to resist cold stress conditions (Liao et al., 2008; Yu et al., 2020). 330 
Moreover, in tomatoes, the Trihelix type TFs are known to be up-regulated under cold stress 331 
conditions, and activate downstream genes with products that modulate stomatal conductance to 332 
prevent water loss (Liu et al., 2012; Yu et al., 2018). In apples, R2R3-MYB TFs were found to 333 
be induced by cold stress and activate ROS scavenging genes (An et al., 2018).  334 

Aside from 19 clusters containing pCREs resembling known Arabidopsis TFBMs, eight 335 
clusters did not contain pCREs resembling TFBMs we investigated (Fig. 4B). These pCREs are 336 
referred to as “unknown” pCREs (those with “between” threshold in S3 table). In our time-point 337 
models, those unknown pCREs were also important for predicting cold responsiveness of a gene 338 
(S3 table) as indicated by the median importance of pCREs in clusters (Fig. 4C). Furthermore, 339 
the feature importance ranks of these pCREs in predicting cold transcriptional response in the 340 
time point models (median rank=0.45) are significantly similar (T-test, p-value<0.01) to those of 341 
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pCREs resembling known TFBMs (median rank=0.38). Using general pCREs as examples, we 342 
built models to predict genes up-regulated at different time points using solely pCREs similar to 343 
known TFBMs (n=16), and another model with unknown pCREs (n=38). We found that the 344 
performances of models built using general pCREs similar to known TFBM (median F1=0.66) 345 
and general “unknown” pCREs (median F1=0.70) were not significantly different (T-test, p-346 
value>0.01). This result also suggests that “unknown” pCREs have similar importance to pCREs 347 
that resemble known TFBMs in predicting temporal cold-stress response in switchgrass. The 348 
reasons we did not find similar TFBMs to these pCREs may be because the threshold we used to 349 
assign a pCRE to TFBSs was too stringent. However, the threshold used was established as the 350 
degree of similarity that allows binding motifs of a plant TF family to be identified (Azodi et al., 351 
2020). Thus, it was not asking if a pCRE resembled a specific TFBM, but the binding motifs at 352 
the level of family. The second reason may be that Arabidopsis TFBMs were used, which may 353 
miss TFBMs specific in other species. Although there is broad conservation of TFBMs across 354 
species, even between plants and humans (Weirauch et al., 2014), this can only be assessed with 355 
additional experimental studies either through DAP-seq or one-hybrid assay. Another possibility 356 
is that the Arabidopsis TFBM data may miss binding sites due to the limitations of in vitro 357 
binding assays (Bartlett et al., 2017). Finally, it is also possible that, instead of TFBMs, a subset 358 
of pCREs may represent motifs relevant for levels of regulation beyond transcription, such as 359 
post-transcriptional or translational regulation. This possibility remains to be investigated. 360 

 361 

CONCLUSION 362 

In this study, we aimed to find DNA regulatory switches responsible for temporal 363 
transcriptional response in switchgrass under cold stress conditions. By examining the number of 364 
cold-responsive genes at different time points, and the functions these genes tend to have, we 365 
found a cascading effect of gene transcriptional responses with regards to the time the plant was 366 
exposed to cold stress. The k-mers enriched for cold-responsive genes at a particular time point 367 
were predictive of the cold responsiveness of genes at that time point. By examining the top most 368 
predictive k-mers, we were able to identify well known CREs that regulate cold stress response 369 
in plants, indicating the usefulness of our models. Based on similarity of a subset of pCREs to 370 
known cold TFs, switchgrass cold stress response is mediated through both CBF-dependent and 371 
independent pathways. Beyond the known cold-responsive CREs, additional pCREs not known 372 
to be regulating cold response were identified. Some pCREs were identified in specific time 373 
point models, while others (general and non-specific pCREs) appeared to be relevant to 374 
regulation of cold response at multiple, sometimes disjoint, time points. In the latter case, 375 
differential expression profiles of genes containing these pCREs show complex patterns 376 
throughout the time course. 377 

A substantial fraction of the pCREs do not resemble known binding motifs of known cold 378 
response regulatory TFs or, in general, Arabidopsis TFs with in vivo binding data. However, the 379 
regulatory function of these pCREs in cold responses needs to be experimentally validated using 380 
knockout lines and additional efforts, including modeling complex expression patterns under 381 
cold stress response (i.e., non-contiguous, up-/down-regulation) to identify the pCREs 382 
responsible for complex temporal expression and modeling cold stress response using 383 
combinations of pCREs to identify complex expression patterns under cold stress are required to 384 
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fully understand the cold-responsive cis-regulatory code in switchgrass. We also emphasize how 385 
building computational methods and their interpretations are important for identifying the global 386 
patterns of gene expression and their context-specific regulatory elements. This study provides 387 
sequence elements that regulate temporal cold stress response, allows a systematic understanding 388 
of the temporal cold stress regulation in switchgrass and, with subsequent validation studies, the 389 
information can be used as the bases for fine tuning switchgrass tolerance to cold stress.  390 

 391 

MATERIALS AND METHODS 392 

Transcriptome data collection, preprocessing, and gene-set enrichment analysis 393 

The switchgrass cold response RNA-seq data were from a published study of a time 394 
course (0.5, 1, 3, 6, 16, and 24 hrs) under cold treatment (6 �) with paired control samples (29 395 
�/23 � in a 12-h/12-h day/night cycle) (Meng et al., 2021). Switchgrass transcriptomes under 396 
three other stress conditions were from three published studies [Dehydration ((Zhang et al., 397 
2018)), salt ((Zhang et al., 2021)), and drought ((Zuo et al., 2018)]. The RNA-sequencing (RNA-398 
seq) data of these studies were downloaded from NCBI-SRA database 399 
(https://www.ncbi.nlm.nih.gov/sra), processed, and used to generate raw counts and transcript 400 
abundance (transcripts per million, TPM) using an RNA-seq analysis pipeline 401 
(https://github.com/ShiuLab/RNA-seq_data_processing.git). For mapping RNA-seq reads, 402 
Panicum virgatum v5.1 genome and the corresponding genome annotations were downloaded 403 
from the Joint Genome Institute (JGI) database (https://jgi.doe.gov). Only reads that were 404 
uniquely mapped to the genome were used. Differential expression of genes (fold change, FC) 405 
contrasting cold stress treatment and corresponding control at each time point and false 406 
discovery rate corrected p-values were calculated using the EdgeR package implemented in R 407 
(Robinson et al., 2010).  408 

Gene Ontology (GO) annotations of switchgrass genes were downloaded from JGI Data 409 
Portal as of 07.08.2021 (https://data.jgi.doe.gov). Fisher’s exact test was conducted to identify 410 
GO categories enriched in cold-responsive genes at each time point versus all the other genes in 411 
the genome. The resulting p-values were adjusted using the Benjamini-Hochberg method 412 
(Benjamini and Hochberg, 1995), and GO terms with adjusted p-values ≤ 0.05 were considered 413 
as enriched for cold-responsive genes 414 
(https://github.com/ShiuLab/Manuscript_Code/tree/master/2022_switchgrass_cold_pCREs). The 415 
GO enrichment analysis was also conducted for genes that contain pCREs from the same pCRE 416 
distance cluster versus all the genes in the genome (see next sections). 417 

Identification of cold-responsive putative cis-regulatory elements (pCREs)  418 

Cold-responsive genes were defined as genes that were either significantly up-regulated 419 
(Log2FC≥1 and adjusted p≤0.05) or down-regulated (Log2FC≤-1 and adjusted p≤0.05) upon cold 420 
treatment at each time point. Genes were defined as non-responsive to cold at any of the six time 421 
points and nonresponsive to the other three stress conditions mentioned above (|log2FC|<0.5 422 
and/or adjusted p>0.05). Here, stress conditions other than cold treatment were considered to 423 
define non-responsive genes, because previous studies have found that stress-responsive CREs 424 
could activate genes under multiple stress conditions (Azodi et al., 2020; Zou et al., 2011). Thus, 425 
contrasting the cold-responsive genes against genes that are not responsive to combined stresses 426 
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would allow us to identify the full scale of pCREs, i.e., both cold-stress-specific pCREs and 427 
pCREs responsible for multiple stress conditions including cold stress. 428 

To identify pCREs, we applied a combination of a k-mer enrichment approach and 429 
machine learning. To avoid data leakage, for each time point, cold-responsive genes (up- or 430 
down-regulated after cold treatment) and non-responsive genes were split where 80% of the 431 
genes were used as the training set and 20% were the test set. The test set was set aside and was 432 
not used for any pCRE identification or modeling steps. For the k-mer enrichment step, genes in 433 
the training set were further split into five bins. For each bin, we first identified all possible k-434 
mers (k=5-8 nucleotides where a forward k-mer was considered as the same as its reverse 435 
complements) from 1kb upstream, gene body including 5’ and 3’ untranslated regions, and 1kb 436 
downstream regions of both cold-responsive and non-responsive genes. K-mers enriched for 437 
cold-responsive genes (Fisher’s exact test adjusted p-value<0.05) were identified for each bin, 438 
and the k-mers commonly enriched among all five bins were used as features to establish 439 
machine learning models classifying cold-responsive genes (positive examples) and non-440 
responsive genes (negative examples) in the training set.  441 

To create a balanced training dataset (same numbers of positive and negative examples), 442 
genes in the minority class with fewer instances were randomly up-sampled using the Synthetic 443 
Minority Over-sampling Technique (Chawla et al., 2002). We also experimented with down-444 
sampling where the majority class was randomly selected to match the number of minority class 445 
genes. Classification models were built for each time point to predict cold-responsive and non-446 
cold responsive genes using the random forest algorithm (Breiman, 2001)grid search was 447 
conducted based on 60 hyperparameter combinations ('max_depth': [3, 5, 10], 'max_features': 448 
[0.1, 0.5, 'sqrt', 'log2', None], 'n_estimators': [10, 100, 500, 1000]) in a five-fold cross-validation 449 
scheme where every gene was used in the validation set exactly once. The optimal 450 
hyperparameter set was selected based on F1 score of the validation set predictions. F1 measure 451 
is the harmonic mean of precision and recall. An “optimal” model for each time point was then 452 
built using all training instances with the optimal hyperparameters. The final model for each time 453 
point was then applied to predict the cold responsiveness of genes in the testing set and model 454 
performance was evaluated using F1 measure.  455 

Selection of minimal pCRE sets as features and determining relationships between pCREs 456 

To identify the minimal number of features (enriched k-mers) that have a similar 457 
performance as the optimal model using all features to distinguish cold-responsive from non-458 
responsive genes, features were selected based on Gini importance defined as the impurity 459 
difference of a node in the decision tree when the feature in question is used, a measure of the 460 
contribution of a feature for distinguishing the cold-responsive and non-responsive genes. New 461 
models use the training set again by increasing the numbers of features used, starting with just 462 
the top 10 important features and, for subsequent models, increasing the number of features by 463 
20 in order of decreasing feature importance. The trend line of the cross-validation F1 score 464 
against the number of features was fit with the Michaelis-Menten Equation. For each time point 465 
the minimal number of features was determined as where the fitted line had a near zero 466 
differential (e.g., the 30 min model, S1 fig), or where the F1 first reached 90% of the optimal 467 
model F1 if there was no clear plateau (e.g., the 30 min model, S1 fig). Features within the 468 
minimal set were designated as pCREs for the cold response at the time point in question. To 469 
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determine the similarity between pCREs, pairwise PCC distances between pCREs were 470 
calculated using the TAMO package (Gordon et al., 2005), implemented in R. The distance 471 
matrix was used to construct a UPGMA tree using average linkage in the library ‘cluster’ in R 472 
(Maechler et al., 2012). Sequence similarity of 0.39 was used as a threshold, such that pCREs 473 
with similarity >0.39 can be treated as a single pCRE (Liu et al., 2018). For each cluster of 474 
pCREs, the proportion of pCREs in different categories (general or time point-specific pCRE 475 
groups) were calculated using custom scripts 476 
(https://github.com/ShiuLab/Manuscript_Code/tree/master/2022_switchgrass_cold_pCREs).  477 

Identification of transcription factors (TFs) with binding sites similar to pCREs 478 

The assessment of sequence similarity between pCREs and known transcription factor 479 
binding sites (TFBSs) was carried out using the Motif Discovery Pipeline 480 
(https://github.com/ShiuLab/MotifDiscovery.git) as described in (Azodi et al., 2020). For this 481 
analysis, only the pCREs responsible for up-regulation upon cold treatment were considered. 482 
Known TFBS data was retrieved from two datasets: (1) DNA Affinity Purification sequencing 483 
(DAP-seq) database, where in-vitro DNA binding assays were performed for 344 TFs in 484 
Arabidopsis thaliana; (2) Catalog of Inferred Sequence Binding Preferences (CIS-BP) database, 485 
where position frequency matrices (PFMs) for TFBS of 190 TFs (non-redundant TFBS with 486 
DAP-seq database) in A. thaliana were available (Weirauch et al., 2014). To assess the similarity 487 
between pCREs and TFBSs, the Pearson’s Correlation Coefficients (PCC) between the position 488 
weighted matrices (PWMs) of pCREs and PWMs of TFBSs were calculated as described in 489 
(Azodi et al., 2020). The top matching TFBS for each pCRE was reported in three threshold 490 
levels (same TF, same family, or significantly more similar than randomly expected) as 491 
described in (Azodi et al., 2020). To determine the similarity between pCRE and TFBMs for TFs 492 
regulating cold response, we checked if pCRE-TFBM PCC is higher than 95th percentile of the 493 
PCCs calculated among TFBMs of different transcription factors families. This is a mid-494 
stringency threshold out of the three thresholds we used to find similarities between pCREs and 495 
TFBMs. Since we are using Arabidopsis TFBMs to identify similar binding sites of specific TFs 496 
switchgrass we wanted to use TFBMs with the highest similarity when compared with other 497 
families of TFs, which with a higher stringency threshold would not have been found. Using this 498 
mid-stringency threshold we will be able to say if a pCRE resembles a specific binding site of a 499 
particular TF in comparison with other TFs in different TF families.  500 

To assess how well the binding sites of TFs known to regulate cold response might 501 
predict cold response, we collected known cold regulation TFs through a literature search (S4 502 
table). Using PWMs of binding sites of TFs known to regulate cold stress in plants (cold-CREs), 503 
we mapped similar binding sites in up-regulated genes in different time points. Based on 504 
absence/presence of cold-CREs in a gene we recreate feature tables for genes that are up-505 
regulated in each time point. Using the similar machine learning methods used in the 506 
“Identification of cold-responsive putative cis-regulatory elements” section, we made models 507 
to predict cold responsiveness of a gene up-regulated in each time point using cold-TFBMs. The 508 
performance of these models were then compared to our original time point models.  509 

 510 
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FIGURE LEGENDS 511 

Figure 1: Models predicting the cold responsiveness. (A) The overall procedure to model 512 
transcriptional response. Genes that are significantly up- or down-regulated at a cold treatment 513 
time point were used as positive examples, while genes not responsive to cold treatment at any 514 
time point and to other abiotic stresses (dehydration, salt, and drought) were used as negative 515 
examples. k-mers enriched in the gene body and flanking non-genic regions of the cold-516 
responsive genes were used as predictors (features). RandomForest classifier was used to train 517 
models, and the model performance was evaluated using the F1 score. (B) Model performances 518 
(F1) on the cross-validation (CV) and test sets for each time point model distinguishing genes 519 
that were up- (top chart) or down-regulated (bottom chart) after cold treatment for a specific 520 
duration from non-responsive genes. The number of positive example genes used in each time-521 
point model is shown in the parenthesis.  522 

 523 

Figure 2: Interpretation of the temporal cold-responsiveness prediction models. (A) General and 524 
time point-specific pCREs and their similarities to known cold CREs. Heatmap in the left panel 525 
shows the relative importance of pCREs, short sequences in the middle indicate pCREs that are 526 
similar to CREs known to regulate cold response (cold-TFBMs), which are shown in the right 527 
panel. Color scale in blue represents min-max scaled Gini index calculated for features in a time 528 
point model; color scale in pink indicates similarities between pCREs and cold-TFBMs. (B) 529 
Transcription factors (TFs) that bind to the cold-TFBMs are shown with different colors, and the 530 
sequence logos of TF binding sites are shown in the rightmost panel. PCC: pearson correlation 531 
coefficient. TFBM: transcription factor binding motifs.  532 

 533 

Figure 3: (A) Model performance comparison among models built using all the pCREs (blue), 534 
top 35 most important pCREs (cyan), and 35 known cold-TFBMs (hot pink). (B) Enrichments of 535 
top 10 pCREs in 0.5, 1, 3, 6, 16, 24 hr time point models (a-f respectively). 536 

 537 

Figure 4: Properties of pCRE clusters which were defined based on sequence similarity. (A) 538 
Heatmap showing the distribution of general and time point-specific pCREs within a cluster. 539 
Color scale represents the percentage of general and time point-specific pCREs in each pCRE 540 
cluster. (B) Median importance of pCREs in a cluster. Cell color depicts median min-max scaled 541 
Gini index of the pCREs within each cluster. Gray color indicates that the pCRE is not used in 542 
the time point model in question. (C) Potential transcription factors (TFs) that could bind to 543 
pCREs in pCRE clusters based on the similarity between pCREs and TF binding sites (TFBS) 544 
information based on in-vitro binding assays. A TF was considered to bind a pCRE only if the 545 
PCC similarity between the pCRE and its binding sites was above the 95th percentile of the 546 
background PCC distribution, which was calculated among TFs in the same TF family. TF 547 
families that don’t fall under this threshold were marked in gray. Color scale represents the 548 
percentage of pCREs within a pCRE cluster that showed significant similarity with TFBS. (D) 549 
Significantly enriched biological GO terms of genes containing pCREs in a pCRE cluster. Color 550 
scale represents the log10(odds ratio), for details, see Methods. (E) Differential expression of 551 
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genes that contain pCREs in clusters 3, 16, or 23 at different time points. Each row shows the 552 
profile of a gene, and color scale indicates log2(FC). 553 

 554 

SUPPLEMENTAL FIGURE LEGENDS 555 

S1 figure: Properties of cold-responsive genes at different time points. (A) Matrix showing the 556 
number of up-regulated (top left triangle) and down-regulated (bottom right triangle) genes at 557 
different time points after cold treatment. Color scale and number within the cell on the diagonal 558 
represent the count of time point-specific cold-responsive genes, while those in other cells 559 
indicate the number of responsive genes shared between two time points. For example, the 560 
number eight in the top left cell indicates that there are eight genes that are up-regulated at both 561 
30 min and 24 hrs. (B, C) Biological process GO terms that are significantly enriched (q ≤ 0.05) 562 
for genes that are down-regulated (B) or up-regulated (C) at different time points. Color scale: -563 
log10(q) for over-representative GO terms, and log10(q) for under-representative GO terms.  564 

S2 figure: Feature selection. Graphs show the relationship between the F1score and the number 565 
of features in time point models distinguishing genes up-regulated (left panel) or down-regulated 566 
(right panel) after cold treatment from non-responsive genes. The trends were fitted using the 567 
Michaelis-Menten Equation. 568 

S3 figure: pCREs that were identified by models that predicted genes up-regulated at 2~5 time 569 
points and their resemblances with known cold-CREs. 570 

S4 figure: Heatmap showing feature importance in the cold-TFBM models. Color scale and 571 
number in the cell represents the importance rank of features that had positive Gini indexes, the 572 
darker color and smaller number, the more important a feature was. Gray color indicates that the 573 
Gini index for the feature was negative.  574 

S5 figure: A dendrogram showing relationships among general and time point-specific pCREs 575 
based on sequence similarities. The dendrogram is clustered based on the similarity threshold of 576 
0.39. 577 

S6 figure: Heatmaps showing the differential expression of genes that contain pCREs from 578 
different pCRE clusters at different time points after cold treatment. Color scale indicates log 579 
fold change values. 580 

S7 figure: Frequency of expression profiles (e.g., NNUDNN, y-axis) that are shown by genes 581 
that contain pCREs of different pCRE clusters (x-axis). Color scale indicates log2(counts) of 582 
genes showing the expression profile. U: up-regulated; D: down-regulated; N: non-responsive.  583 

S8 figure: Heatmap showing enriched expression profiles (e.g., NNUDNN, y-axis) for genes 584 
that contain pCREs of a particular pCRE cluster (x-axis). The color scale represents the log odds 585 
ratio, which was calculated as ratios between positive and negative cases.  586 

 587 

SUPPLEMENTAL TABLES 588 

S1 table: Metadata of the transcriptome sequences used in this study.   589 
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S2 table: Number of features selected in the feature selection processes and the best threshold 590 
used in different time point models.   591 

S3 table: Enrichment p-values, feature importance scores, feature importance ranks, and 592 
summary of the similarity between pCREs and in-vitro transcription factor binding site data of 593 
pCREs in different time point models. 594 

S4 table: Information on Transcription Factor Binding Sites (TFBS) of the transcription factors 595 
that are known to regulate cold stress response. The table only includes the TFBS whose position 596 
weight matrix information was available.  597 

* TFs whose binding sites were similar to the pCRE recovered from our time point models. 598 
Y Binding site information was not available in DAP-seq or CISBP datasets 599 
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