
Model of multiple synfire chains explains cortical
spatio-temporal spike patterns

Alexander Kleinjohann1,2*Y, David Berling1,2,3Y, Alessandra Stella1,2, Tom Tetzlaff1,
Sonja Grün1,2

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced
Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships
(INM-10), Jülich Research Centre, Jülich, Germany
2 Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
3 Faculty of Mathematics and Physics, Charles University, Malostranské nám. 25, 118
00, Prague 1, Czechia

YThese authors contributed equally to this work.
* a.kleinjohann@fz-juelich.de

It has been postulated that information processing in the brain is based on precise
temporal correlation of neural activity across populations of neurons. In a recent study
we found spatio-temporal spike patterns in experimental recordings from monkey motor
cortex, and here we study if those could be explained by a synfire chain (SFC) like
model. The model is composed of groups of neurons connected in feed-forward manner
from one group to the next with high convergence and divergence. When activated, e.g.,
by a current pulse to the first group, spiking activity in the SFC is synchronous within
neurons of the same group and propagates from group to group. When a few neurons
from different groups are recorded from such an SFC, and the SFC is repeatedly
activated, we would find a spatio-temporal spike pattern repeating across trials. Here,
we take the statistics of the STPs found in the experimental data from 20 sessions as a
reference to compare to a simulated network. Distributions of the data we take into
account include 1) the pattern sizes, i.e. the number of neurons involved in the patterns,
2) the number of patterns a single neuron is involved in, 3) the durations of the
patterns, and 4) the spatial distances of the patterns across the electrode array used to
record the data. For the simulations, we embed SFC(s) in an anatomical model of the
respective layer of the motor cortex, defined by its height and the density of the
neurons. Model parameters are the length of the SFC, the number of neurons per group,
the spatial extent of each neuronal group, and the distance between subsequent groups.
Given the size and reach of the Utah array electrodes, we derive the probability of
recording neurons from the SFC network. An SFC is considered detected if at least two
neurons from two different groups are recorded. We find that depending on the model
parameters, an embedded SFC can be detected with high probability, despite the
massive subsampling of the cortex by the Utah array. Furthermore, to achieve multiple
membership of a neuron in different patterns, we embed multiple SFCs that overlap.
The fitting of the model to the pattern data constrains the spatial SFC parameters: the
chains have to be broadly distributed in space and contain many neurons per group to
match the experimental results.

1 Introduction 1

The synfire chain (SFC) model was proposed by Moshe Abeles as a way to realize a 2

stable and temporally precise propagation of spiking activity in the brain [1] and is 3
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based on the complete transmission line, a concept proposed by [2] allowing for a robust 4

transmission of excitation within a randomly connected network of neurons. An SFC 5

consists of multiple groups of neurons. The number of groups is commonly referred to 6

as the chain’s length, and the number of neurons per group as its width. All neurons of 7

a group are connected with high divergence and convergence to the neurons of the 8

subsequent group of the chain (see Fig 1A). If sufficiently many neurons of the first 9

group are stimulated, the elicited spikes arrive at each of the neurons of the next group 10

synchronously and activate these if the dispersion of the spike times is small and the 11

number of spikes is large enough [3]. Thus, such a structure enables a stable propagation 12

of synchronous spikes with millisecond precision. This is further supported by additional 13

studies using a Fokker-Planck approach [4] and allowing for variations in the number of 14

spikes and for temporal jitter in a pulse packet [5]. After the initial proposition by 15

Abeles [1], further theoretical [3, 4, 6, 7] and experimental [8, 9] studies showed that in 16

such an architecture, both synchronous spikes and rate profiles propagate through the 17

system with advantages for synchronous propagation [10]. In addition to this robust 18

propagation of activity, SFCs can also be used to gate information which is traveling 19

along another chain, allowing for flexible information routing [11,12]. Interconnected 20

SFCs, each of which is assumed to represent a particular feature, could also serve for 21

binding of information [13]. A visual object can then be represented as a composition of 22

these interconnected SFCs [14, 15]. This binding of information may happen in multiple 23

cortical areas in parallel, for which a representation of the information in spatially 24

propagating structures is advantageous [16]. In this context, it has been shown that 25

many SFCs can be embedded in a single cortical network with stable 26

dynamics [13,17,18], and synchronization of SFCs has been proposed as a mechanism 27

for composing information into a more abstract single representation [13,19,20]. 28

Fig 1. Synfire chain (SFC) model and resulting spatio-temporal patterns (STPs). (A) SFC model. Neurons are
connected in groups (colors), here with all-to-all connections from each neuron of the previous group to the neurons of the
next group. Once the first group is stimulated with a strong and narrow pulse, synchronous spikes are sent as input to each
neuron of the next group, which activates the next group synchronously. (B) The sketch shows neurons potentially recorded
from the chain (colored spikes; see arrows in A to unit 10, 25 and 31). Such neurons then spike whenever the SFC is activated,
following the order of the group activation, and with a temporal delay corresponding to the signal propagation, thereby
forming STPs (blue, yellow, green, 3 times). Grey ticks represent spikes recorded from neurons not in the SFC.

In recent years, a large number of theoretical studies proposed alternative neuronal 29

network models predicting the emergence of precise firing patterns by biophysical 30
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mechanisms that are different from those of the classical SFC model of [1]. Similar to 31

the original SFC model, they often rely on successively activated groups of 32

synchronously firing neurons [21–26]. In this work, we therefore refer to these models as 33

SFC-type models, even though the mechanisms triggering synchronous firing in groups 34

of neurons are different from the classical SFC model, the connectivity structure is not 35

always strictly feed-forward, and the group sizes can be substantially smaller (of the 36

order of 10) if nonlinear dendritic integration (dendritic action potentials) is accounted 37

for [21–23,26]. Other models predict the emergence of robust precise firing patterns 38

without synchronous firing, but with specific temporal delays, such as the “braids” 39

model [14], or the polychronization networks [27]. 40

Temporal and spatio-temporal patterns are observed across several species and brain 41

areas, and at different temporal resolutions ranging from milliseconds to 42

seconds [16,28–39]. In a recent study we found spatio-temporal spike patterns (STPs) in 43

experimental data recorded from primary motor cortex (M1) of two monkeys [40]. Here, 44

we investigate if these patterns can be explained by SFCs, given the recording setup 45

with a 10x10 Utah array. Our assumption is that an STP results from recordings of at 46

least two different neurons that take part in the SFC (as sketched in Fig 1B). We 47

conceptually embed SFC(s) into a cortical volume corresponding to the region recorded 48

from by the Utah array: an area of 4× 4 mm2, layer 2/3 and its respective neuron 49

density. Additionally, the sensitivity of the individual electrodes of the Utah array are 50

considered for estimating the neurons recorded from in the model. 51

The distributions of the number of neurons involved in an STP, the temporal extents 52

of the STPs, the spatial cortical distance of neurons involved in STPs, and the 53

involvement of a single neuron in different STPs are the references for comparison. As 54

shown in the modeling results (Section 3.1.2), a single SFC is likely to be detected for a 55

large range of model parameters. However, to account for the STP characteristics found 56

in the experimental data, the model has to include multiple SFCs within the assumed 57

piece of cortex. Given a conservative estimate of how many chains exist in the recorded 58

volume, the detection of SFCs in form of STPs is very likely despite the massive 59

subsampling by the Utah array (Section 3.1.3). Additionally, the fact that individual 60

neurons occur in different patterns requires that these SFCs overlap and include the 61

same neurons (Section 2.3). The final results of the simulations (Section 3.2.4) 62

correspond well to the experimental data, which leads to the conclusion that STPs are 63

well explained by multiple SFCs. 64

2 Methods 65

2.1 Experiment and data 66

We are interested in understanding whether STPs detected in experimental data may be 67

explained by the SFC model. Thus, we examine spatio-temporal spike patterns from 68

numerous recording sessions, and consider the recording device, electrode depth and 69

brain area of the experiment for the assumptions of our model to test if the detected 70

patterns can be explained by the SFC model. 71

The experiment consists in a delayed reach-to-grasp task performed by two Macaque 72

monkeys (macaca mulatta) [41]. Recordings are obtained through a chronically 73

implanted a 10× 10 multi electrode Utah array (Blackrock Microsystems, Salt Lake 74

City, UT, USA, www.blackrockmicro.com) in the pre-/motor cortex (M1), along the 75

central sulcus. Each electrode has a length of 1.5 mm, and a distance of 400 µm to the 76

neighboring electrodes (ordered in a grid). Given the depth of the electrode tip, the 77

neurons detected are most likely deep in layer 2/3 [42–45], where the neuronal density in 78

primary motor cortex of macaques is between 21, 400 mm−3 and 40, 000 mm−3 [46]. The 79
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density in layer 2/3 is 18 % larger than the average density across all layers [42,43,45]. 80

In a separate study [40], we analyzed 20 experimental sessions (10 per monkey), 81

recorded in different days over the time span of months. For monkey N, the recordings 82

were performed in 2014, from June to July; whereas, for monkey L, recordings started in 83

October 2010 and finished in February 2011. Each session has a duration of 84

approximately 15 minutes and consists of around 120 successful trials. The data from 85

each session were spike sorted independently using the Plexon spike sorter (Plexon Inc, 86

Dallas, Texas, USA, version 3.3), retaining only the single unit activities (SUAs) with a 87

signal-to-noise ratio ≥ 2.5, and with an average firing rate of < 70 Hz across the trials. 88

Artifacts consisting of hyper-synchronous spikes at sampling resolution occurring across 89

electrodes were assumed to be cross-talk artifacts and were therefore detected and 90

removed in a preprocessing step [31]. Over all sessions, the average number of SUAs per 91

session is 107, however, it differs across monkeys: higher for monkey N (mean 92

=143± 14.82 units), and lower for monkey L (mean =70.5± 13.93 units). The average 93

number of SUAs per electrode is 1.1 averaged over the two monkeys. 94

The two monkeys, L and N, were trained to self-initiate trials by pressing a start 95

button. After a waiting period of 400 ms, a visual cue (yellow LED) was shown to the 96

monkey (waiting signal). The monkey was instructed to wait again for 400 ms, until it 97

was presented to another visual cue, lit for 300 ms (from CUE-ON to CUE-OFF). The 98

task consisted in reaching and grasping an object with the indicated grip type and force 99

level. The grip can be either be a precision grip or a side grip. The CUE-ON signal 100

contained the grip information. The monkey then waited for 1, 000 ms, eventually 101

receiving the GO-SIGNAL, which contained the information on the amount of force to 102

exert to pull the object towards itself. The behavioral conditions were selected 103

randomly for each trial. The requested grip and force had to be maintained for 500 ms, 104

and if it was performed correctly, the monkey received a reward. Further details on the 105

experimental setup can be found in [41,47] and analysis results on the same data are 106

presented in [31,48]. 107

2.2 Analysis approach for spatio-temporal spike patterns in 108

the experimental data 109

We used the SPADE [49–51] method to detect STPs in the parallel spike trains of these 110

recordings. The method consists of three successive steps. The first is the detection of 111

all putative patterns in the data at a certain temporal resolution, during which the 112

putative patterns are stored along with the information on when and how often they 113

occur. This is achieved by applying a Frequent Itemset Mining algorithm [52,53]. The 114

second step is the statistical evaluation of the significance of the patterns detected in 115

the first step, under the null-hypothesis of mutual independence of spike trains given 116

their firing rate (co-)modulations [54]. The third step is a conditional test performed on 117

all significant patterns, in order to remove patterns arising from the overlap of true 118

pattern spikes and chance spikes. SPADE outputs all patterns labeled as significant, i.e. 119

STPs, by the statistical tests. Each pattern is returned together with the neuron ids 120

involved in the patterns, the lags between spikes, the times of the occurrences, and the 121

p-value. Details of the method and on its implementation can be found in [51]. The 122

temporal resolution of the detected patterns is given as an input to the SPADE method, 123

and is here fixed to b = 5 ms. Moreover, we fix the maximal duration of STPs to 60 ms. 124

Each recording session contains four trial types (corresponding to the combinations 125

of the two force types and two grip types). For the pattern analysis, we segmented the 126

trials of about 4 s into six 500 ms-long behavioral epochs in each single trial; start, cue, 127

early delay, late delay, movement and reward. The respective epochs of the same trials 128

of the same session are concatenated and analyzed as an independent data set, and thus 129
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in total yield (4 trial types × 6 epochs) data sets per session (see [31] for details on the 130

data segmentation into trial epochs). The data sets of each session are analyzed 131

separately, since the probability to record the same neuron(s) across sessions is 132

unlikely [55]. 133

2.3 Reference statistics of STPs 134

We analyzed the data recorded in the delayed reaching-and-grasping task for STPs 135

using SPADE. We detected 119 patterns in total (monkey N: 61, monkey L: 58) in 20 136

sessions. The statistics of the results pooled over all sessions are displayed in Fig 2. 137

STPs in different epochs are not identical, but specific to the behavior. However, for 138

this study we pool across trial types, epochs, and sessions. Typically we find around 6 139

patterns per session (mean = 5.95± 3.26). Patterns are formed by spikes emitted by 140

different neurons, and contain spikes of 2-6 neurons (mean = 2.9± 0.93 neurons), but 141

the majority of patterns consist of two and three spikes (Fig 2A). Another statistic is 142

the number of different STPs a single neuron (within a single session) is involved in 143

(Fig 2B). Most STP neurons participate in only 1 pattern, but many also in 2-3 144

patterns, and in a few cases, a single neuron can partake in up to 9 STPs [40,56]. 145

Fig 2. Pattern statistics in the reach-to-grasp experiment of two monkeys, of ten sessions each. (A)
Histogram of the number of neurons involved in a STP (pattern size). (B) Histogram of the number of STPs a single neuron
appears in (multiple membership). (C) Histogram of time lags between neighboring pattern spikes, i.e. only the time
difference between subsequent pattern spikes are taken into account. The temporal resolution of the histogram coincides with
the resolution of the SPADE analysis (5ms) . The maximum time lag corresponds to the maximal pattern duration (here
60ms). (D) Histogram of the euclidean distances between pattern spikes. Only subsequent pattern spikes are taken into
account. The entries for each spatial distance are weighted by the occurrences of the respective distance on the Utah array
electrode grid. All histograms are normalized such that the sum of all entries is 1.

Regarding the temporal delays between the spikes in STPs, we observe that the 146

whole range of allowed delays (0 to 60 ms) is covered for both monkeys (Fig 2C). We do 147

not see a particular tendency towards preferred delays or oscillatory activity. However, 148

the results show a slight preference for temporal delays around 10 to 30 ms. We also 149

calculate the euclidean spatial distances between STP neurons of the ones forming 150

successive spikes. The position of the respective neuron is given by the electrode the 151

neuron is recorded from. The distribution of these distances is shown in Fig 2D). This 152

distribution is normalized by the number of distances that exist on the array. The 153

resulting distribution is rather flat, with a peak around 3, 600 µm, however, we tend to 154

ignore that peak since the larger the distances, the fewer number of samples are 155

available which makes the statistics less reliable. 156
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2.4 Model for spatial embedding of SFCs in a cortical network 157

We aim to assess the detectability of SFCs in the experimental setting presented in 158

Section 2.1. Since the recording was performed with a 10× 10 electrode Utah array 159

recording with 96 active electrodes arranged at 400 µm distance, we only look at the 160

cortical volume below the area of the electrode array (4 mm×4 mm) for this study. 161

Moreover, we only consider layer 2/3 by setting the height of the simulation volume to 162

its thickness: hSFC Volume = 1.5 mm (see [42–45]). The volume in which neurons can be 163

detected by the electrodes of the array is confined to spheres with a radius 164

corresponding to the sensitive range (see Section 2.5). The simulation volume and its 165

height hSFC Volume = 1.5 mm corresponds to the volume in which SFCs are embedded in 166

our model. Since the sensitive range of the electrodes is a separate parameter, 167

increasing the volume height effectively increases the subsampling of the neurons in the 168

simulation volume by the Utah array. We choose a default value of ρ = 35, 000 mm−3
169

for the neuron density in our simulation, but we will investigate the impact of varying it 170

in the following sections. In our simulation, we first fill the volume under the Utah 171

array with neurons according to the neuron density (Fig 3A). Then, we simulate a single 172

SFC realization by positioning a sequence of SFC groups in the space of the cortical 173

area. In particular, the SFC embedding procedure starts by drawing the position of the 174

first group center within the borders of the electrode array from a two-dimensional 175

uniform distribution covering the area of the array. Around the first group center, we 176

select w neurons inside a cylinder with radius rgroup and height hSFC Volume (Fig 3B). 177

The parameter w controls the number of neurons per group, and rgroup represents the 178

radius of the cylinder in which all w neurons of a single group reside. For the 179

subsequent group, the center position is drawn from a two-dimensional, symmetrical 180

Gaussian distribution which is centered on the previous group center (Fig 3C). The 181

standard deviation σgroup distance of this Gaussian distribution determines the average 182

spatial distance between groups (〈d〉): 183

〈d〉 =
√
π/2 · σgroup distance. (1)

The next group of neurons is selected inside the cylinder around the center position 184

analogously to the first group. This procedure is repeated to distribute l groups 185

iteratively, where l represents the length of the SFC, i.e. the total number of groups in 186

the chain (Fig 3D). We allow groups of a chain to be partially or fully outside of the 187

simulation volume (e.g. the final group of the SFC shown in Fig 3D), since there is no 188

plausible reason for SFCs to be constrained to the volume below an electrode array. 189

However, these neurons are not available to be ’recorded’ from. 190
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Fig 3. Visualization of the spatial embedding procedure of an SFC. (A) The simulated volume is homogeneously
filled with neurons according to the local neuron density (here the density is reduced to 10 mm−3 to unclutter the plot). Its
size is given by the area covered by the Utah array along the x and y axes, and by the thickness of the cortical layer 2/3
(1, 500 µm) in which the electrode tips are placed in the z axis. To illustrate the relation of the shown spatial scales to the one
of an electrode and its sensitive range one electrode (at the corner of the Utah array) is shown in gray on the right side of the
plot and its sensitive range is illustrated as a green sphere at its tip. (B) The center of the first synfire group is randomly
placed inside the volume. A group is confined by a circle with radius rgroup in the horizontal plane, and by the thickness of
the cortical layer along the third dimension, resulting in a cylinder (not to be confused with a micro-column). w neurons
inside the cylinder are randomly assigned to the group. For illustration purposes we show only groups of w = 10 neurons here.
(C) Top down view on the cube showing everything projected onto an x-y plane. The Utah electrodes and their sensitive
ranges are illustrated across the whole area by black dots surrounded by white circles, respectively. The center of the second
SFC is drawn from a two-dimensional Gaussian centered on the previous group center, with a standard deviation
σgroup distance. The neurons of the second group are assigned analogously to the first group. (D) This procedure is repeated
for l groups, resulting in one SFC being embedded in the simulated volume.

To reduce computational cost and account for participation of one neuron in 191

multiple SFCs we always embed multiple SFCs per simulation. In order to achieve that, 192

we repeat all of the above steps nchains times to embed nchains SFCs in the volume. A 193

neuron can be part of multiple groups and multiple chains. This setup allows us to 194

study multiple trials if we consider single chains one after another. 195

2.5 Neuron isolation model 196

Since an electrode only records neurons whose soma is close to the electrode tip, we 197

need to consider their distance to the electrode [57]. We make the simplifying 198

assumption that for isolating the activity of a single neuron, its cell body needs to lie 199

within a certain radius around the electrode tip, which we refer to as the electrode’s 200

sensitive range (rsens): 201√
(x− xel)2 + (y − yel)2 + (z − zel)2 ≤ rsens (2)

Here, x, y and z are the spatial coordinates of the neuron and xel, yel and zel are the 202

coordinates of the electrode tip (the tip is where the actual recording takes place). We 203

set the depth of the electrode tips to rsens. This is arbitrary, but zel does not have any 204

impact on the results since the z coordinates do not affect the assignment of neurons to 205

SFC groups (see Section 2.4). Thus, a neuron can be recorded if it lies within a sphere 206

with a radius equal to the sensitive radius of the electrodes (rsens). The experimental 207

data show that on average 1.1 single units are recorded from a single Utah array 208

electrode, estimated from all 20 sessions (see Section 2.1). Thus, we set the isolation 209

probability of a neuron located in the sensitive sphere around an electrode tip with 210

radius rsens accordingly: 211

P3D(isolation) =
1.1

Vsphere(r = rsens) · ρ
(3)

with the neuron density ρ in the vicinity of the electrode and the number of single 212

units per electrode in the numerator. Note that this means that independently of the 213

SFC parameters, the constant average number of detected neurons per electrode is 214

always 1.1. This matches the number of isolated single units, which might seem low at 215

first glance. However, to be selected, they also have to be isolated by the spike sorting 216

software, which requires that neurons have to fire often enough, have a high enough 217

signal to noise ratio and have a spike waveform that is clearly distinguishable. This 218

number is thus to be expected to be quite low, up to 10- to 100-fold lower than expected 219

from the neuron density [58]. Assuming a sensitive radius of rsens = 50 µm [57] and a 220
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neuron density of ρ = 35, 000 mm−3 [46], there are 18 neurons in the sensitive volume of 221

each electrode of which we can isolate 1.1 per electrode, matching the 10- to 100-fold 222

subsampling observed by Shoham et al. (2006) [58]. See [47] for more detailed 223

information on the applied spike sorting procedure. 224

Sensitive Range of Utah Electrodes In order to estimate the sensitive range of 225

the Utah array electrodes, we have to extrapolate from measurements in a different 226

setting due to the unavailability of directly comparable data. [57] estimated the sensitive 227

range of extracellular electrodes to be 50 µm by comparing simultaneous extracellular 228

and intracellular recordings. The electrodes they used have a significantly higher 229

impedance than Utah array electrodes (400 kΩ to 600 kΩ vs 50 kΩ, cf. [59]), which 230

results in a smaller sensitive range and a higher signal-to-noise ratio, but they were also 231

recording in rat hippocampus which has a ten-fold higher neuron density than macaque 232

M1 [60,61] which we are considering in our experimental setting (cf.Section 2.1). Since 233

these differences have both positive and negative contributions to the sensitive range, 234

we assume a range of 50 µm for most analyses but investigate the effect of smaller (30 235

µm) and larger ranges (70 µm) on the detectability of SFCs to quantify the associated 236

uncertainty. For illustration of the size relationships we refer to Fig 3A, which shows a 237

sketch of an electrode of the Utah array including its sensitive range (green sphere). 238

2.6 SFC detectability measure 239

With our model for spatial embedding of synfire chains (cf. Section 2.4) we simulate the 240

positions of the neurons of the chain. Assuming a 10x10 Utah array and the isolation 241

model (cf. Section 2.5) we determine whether these or some of these neurons are 242

recorded from. Repeating this experiment (embedding and measuring) with the same 243

parameters yields probability distributions for recording different numbers of neurons 244

given these parameters. 245

Next, we would like to quantify the ability to detect an SFC in such a setting. For 246

that, we assume the dynamics in such an embedded SFC as determined by [3] for the 247

case of stable propagation. Diesmann et al. [3] assumed an all-to-all connectivity from 248

one group to the next and found that at least 80 neurons are required per group to get 249

a stable propagation. If the chain is activated by a strong current pulse in parallel to all 250

neurons of the first group, this first group then exhibits synchronous firing such that all 251

neurons of the next group are also activated synchronously at some delay 252

(corresponding to the time delay from one group to the next). That way, a packet of 253

synchronous activity propagates through the chain. For the detection of an active SFC, 254

we require that at least two neurons from two different groups are recorded, since only 255

spike patterns with delays show propagation of activity along the chain. Thus, we define 256

the SFC detectability as the probability to detect neurons from two or more different 257

groups, cf. Fig 4. The detected neurons correspond to an STP where the time difference 258

between spikes of the different neurons are assumed to be given by the number of SFC 259

groups between the two neurons multiplied by the time to propagate from one group to 260

the next, here assumed as 5 ms. With these assumptions, we get one STP per SFC. 261
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Fig 4. SFC detectability measure. (A) Neuron positions on the 4× 4 mm2 array in color-coded groups for an exemplary
SFC sample. The color shows the SFC group, lighter colors correspond to later groups. The black dots surrounded by a white
circle indicate the recording electrodes, and the radius of the circle indicates the sensitivity range of the electrode. (B) Same
type of plot as in A, but only the neurons recorded by the electrodes are marked in color. (C) Histogram of the probability to
record a certain number of neurons per embedded SFC, pooled across 1,000 embedding experiments. The cumulative sum
from 2 detected neurons per SFC and more yields the probability for SFC detection, here 0.065.

3 Results 262

In this section, we first present the results of the STP analysis of experimental data, 263

and show the corresponding statistics. Since we assume that the subsampling of an SFC 264

may lead to such spike patterns, we aim to verify that SFCs can be detected given the 265

experimental Utah array recording setup described in Section 2.1 and our spike pattern 266

analysis (Section 2.3). Thus, we come back to our model for spatial embedding of SFCs 267

(see Section 2.4), and verify the influence of model parameters and recording constraints 268

on the probability of observing a single SFC (SFC detectability). Within the parameter 269

regions with good SFC detectability, we compare the predicted spike pattern statistics 270

obtained by multiple simulations of our model to the statistics obtained experimentally. 271

This yields the best-fit parameter set in which our model can explain the spike patterns 272

in experimental data assuming that the underlying network utilizes SFCs for 273

information propagation. 274

3.1 SFC detectability 275

Our next question is if one embedded SFC is detectable in 10x10 Utah array recordings. 276

In that context we first aim to answer how the different SFC parameters and recording 277

constraints influence the SFC detectability. 278

3.1.1 Influence of single model parameters on SFC detectability 279

We start by fixing all but one parameter and investigate the effect of the varied 280

parameter on the SFC detectability. Therefore, we have to decide on reasonable default 281

values for all parameters. We assume that the temporal delay for the assumed 282

propagation of the SFC activity from one group to the next is b = 5 ms. In the 283

experimental data we found STPs with a maximum temporal delay of 60 ms, which was 284
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the maximal allowed duration of the patterns in the analysis. This corresponds to a 285

maximal SFC length of l = 12, since l · b = 12 · 5 ms = 60 ms (see Section 2.3). For the 286

SFC width we choose for a start an intermediate value of w = 1, 300 which is larger 287

than the minimal value w = 100 for stable, robust propagation of synchronous spiking 288

along the SFC [3] but far away from the maximal value of the number of neurons that 289

fit into the smallest assumed group disk rgroup = 300 µm we consider. The maximal 290

value would be w = π · r2group · hSFC Volume · ρ = 14, 844 neurons per group. Getting close 291

to this maximum would also mean that most neurons within rgroup would be inside the 292

same group of the same SFC, since no other neurons would be available anymore in the 293

volume and thus would not allow for any additional embedding flexibility. 294

The spatial parameters rgroup and σgroup distance are limited by two aspects: very 295

small values would result in SFC groups that fit in between the electrodes’ sensitive 296

ranges and in an SFC that does not move spatially, respectively. On the other hand, 297

very large values would result in parts of a group or parts of the chain residing outside 298

the volume below the area of the Utah array. Therefore, we fix both parameters to an 299

intermediate value of rgroup = σgroup distance = 900 µm. For the sensitive range of the 300

electrodes we choose rsens = 50 µm, but we expect this not to have an effect as discussed 301

in the appendix (S1 Appendix: The influence of the sensitive range of the electrodes). 302

The measures required and computed in this section only require single embedded 303

chains, however, we embed nchains = 10, 000 SFCs within one simulation (of 20) since 304

that is computationally much more numerically efficient than performing 200, 000 305

simulations for the same sample size. We have verified that separate simulations with 306

just a single chain provide similar results (not shown). With these default values for our 307

parameters, we can now investigate the effects of all parameters (one by one) on the 308

SFC detectability. 309

The SFC length l determines the number of groups in an SFC. Increasing it trivially 310

increases the amount of neurons in the SFC and thus the detectability increases 311

(Fig 5A). For high values of l this effect flattens out since longer chains have an 312

increased probability of leaving the simulation volume, and thus reduce the number of 313

neurons that can be recorded. 314
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Fig 5. Effects of single parameters on SFC detectability. SFC Detectability as a function of: (A) SFC length l in
steps of 1; (B) SFC group width w in steps of 100; (C) Spatial SFC group size rgroup in steps of 100 µm; (D) Spatial SFC
inter-group distance σgroup distance in steps of 100 µm; (E) Sensitive range of the electrodes rsens in steps of 5 µm; (F) Neuron
density in steps of 5, 000 mm−3. Orange bands represent standard deviations over 200, 000 evaluated embeddings.

The SFC width w determines the number of neurons in the SFC groups and 315

increasing w also leads to an increase of the detectability, however with a different slope. 316

That curve does not flatten out, since for example, a higher w for a given l just adds 317

more neurons to the existing groups and thus further increases the detectability 318

(Fig 5B). 319

The spatial SFC parameters rgroup and σgroup distance have quite different effects on 320

the detectability. The spatial SFC group size rgroup hardly affects the detectability 321

(Fig 5C). The increased area covered by an SFC group is counteracted by the decreasing 322

density of SFC neurons inside that area, such that the detectability only increases very 323

slowly for larger radii. That slow increase is however consistently monotonous. In 324

contrast to that, increasing the spatial SFC inter-group distance σgroup distance decreases 325

the detectability (Fig 5D), since a higher inter-group distance results in a higher chance 326

for the SFC to leave the simulation volume. The supplementary figure (S2 Figure: 327

Impact of SFCs leaving the simulation volume) supports this argument; if the boundary 328

conditions for the recorded area/volume were periodically continued there would be no 329
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decay of SFC detectability. 330

The sensitive range of the electrodes rsens has no effect on the SFC detectability in 331

our model (Fig 5E). This seems rather counter-intuitive, but the sensitive range is 332

implicitly included in the number of SUAs that can be recorded from an electrode 333

(Eq 3). This parameter has to be fixed in our model since we have to select the number 334

of neurons that can be recorded by an electrode. In order to do this we have to set a 335

maximal distance rsens from the electrode tip. The exact value we choose does not 336

matter since it eventually cancels out as discussed in the appendix (S1 Appendix: The 337

influence of the sensitive range of the electrodes). 338

We vary the neuron density between ρ = 20, 000− 50, 000 mm−3 to account for the 339

measurement uncertainty and the variance between measurements in different 340

studies [42,43,45,46]. The neuron density has a straight-forward effect on the SFC 341

detectability. Increasing the neuron density results in more neurons in the simulation 342

volume but decreases the ratio of neurons within one SFC to total neurons. This results 343

in a decreasing detectability (Fig 5F). 344

3.1.2 SFC detectability across the entire combined parameter space 345

In the previous section, we derived how single parameters affect the SFC detectability. 346

For this, we fixed all but one parameter and investigated the effect of the varied 347

parameter. In order to check for possible co-dependencies, we will now vary all 348

parameters at once and calculate the SFC detectability for parameter combinations 349

across our parameter space. 350

In Fig 6 we represent the results of 720 parameter configurations varying all 351

parameters. We run the simulated model 20 times for each configuration with 10, 000 352

chains per simulation, and we fix the non-SFC parameters to the worst case scenario of 353

high neuron density ρ = 50, 000 mm−3 and a high thickness of layer 2/3 of 354

hSFC Volume = 1, 600 µm. The parameters varied simultaneously are: the SFC length l, 355

the SFC group width w in the y axis; the SFC group disk rgroup and the s.d. of the 356

spatial displacement of SFC groups σgroup distance along the x-axis. The SFC 357

detectability is represented by color (note the color bar): light/dark blue color 358

corresponds to a low/high probability of SFC detection (probability of detecting 359

neurons from two or more different SFC groups). 360
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Fig 6. Detectability of a single SFC within an SFC volume height of 1, 500 µm. The color indicates SFC
detectability (see color bar) i.e. the probability to detect 2 or more neurons in different groups of a single SFC. Length l and
width w of the SFC are displayed on a combined y-axis, with l varying from one quadrant to the next, and w varies along
each quadrant. The SFC detectability characteristics of varying the spatial distribution determined through the group disk
radius rgroup (changing from one quadrant to the next) and the s.d. of the group distance σgroup distance (changing within each
quadrant) are shown along the x-axis. Each entry corresponds to N = 20 runs of the model with nchains = 10, 000 SFCs
embedded, i.e. 200, 000 evaluations of a single SFC.

Increasing the group width w (along the y-axis within each quadrant), the SFC 361

detectability increases. If in addition the SFC length l is increased (across the 362

quadrants along the y-axis) the SFC detectability increases even more. Intuitively, the 363

more neurons belong to an SFC, the more likely it is that two neurons are detected from 364

different groups. Increasing the SFC group displacement σgroup distance (along the x-axis 365

within the quadrants) lowers the SFC detectability for a given fixed group disk radius 366

rgroup, whereas a change of the group disk radius rgroup (across the quadrants along the 367

x-axis) does not lead to big differences. 368

In summary, the SFC detectability is highest for high l and w and low group 369

distances σgroup distance. The SFC detectability reaches a maximum of 0.975 for l = 48, 370

w = 2, 100, σgroup distance = 100 µm and rgroup = [1, 300, 1, 700, 2, 100] µm. This means 371

that for such values the detectability of an SFC is very likely, and we should observe a 372

spatio-temporal pattern of at least two neurons involved. These parameter 373

configurations with large groups are actually feasible and lead to good agreement with 374

experimental data as will be seen in the following sections. 375
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3.1.3 SFC detectability depending on the number of present SFCs 376

In the previous section we estimated the detectability of a single SFC which lies in the 377

cortical volume where the Utah array is recording from. However, assuming that there 378

is more than one SFC in the recorded cortical volume, the probability of detecting an 379

SFC should be larger. As explained in Section 2.6 each SFC results in one STP if at 380

least two participating neurons are recorded and cannot result in multiple STPs since 381

they would simply be merged into a larger STP in the spike pattern detection process. 382

Thus also the probability to detect spatio-temporal spike patterns should be larger if 383

multiple SFCs are embedded and assumed to be activated. We can estimate the 384

probability of recording at least one STP by considering an anatomically realistic 385

estimation of the number of SFCs under the Utah array and combining this number of 386

present SFCs with the detection probability of one single chain. 387

To obtain a conservative estimate of how many SFCs we expect in the cortical 388

volume which is accessible with the Utah array we assume the following: only excitatory 389

neurons form SFCs and each neuron takes part in only one SFC. An SFC consists of l 390

groups with w excitatory neurons per group. Hence, the number of neurons in each SFC 391

is 392

NSFC = l · w. (4)

The volume in which we can measure SFCs is given by the area of the Utah array in 393

the horizontal plane (Aarray) times the SFC volume height (hSFC volume) along the 394

vertical direction. Based on the neuron density and the evidence showing that about 395

80% of all neurons are excitatory [62–65], we can estimate the number of neurons inside 396

the volume we record from (NSFC volume): 397

NSFC volume = ρneuron ·Aarray · hSFC volume (5)

For an SFC volume height of 1, 500 µm and an intermediate neuron density of 398

ρneuron = 35, 000 mm−3, we get a total of 840, 000 neurons and NSFC volume = 672, 000 399

excitatory neurons in the simulation volume. Dividing this neuron count by the number 400

of neurons per SFC (NSFC) yields the maximum possible number of SFCs inside the 401

volume: 402

npresent SFCs =
NSFC volume

NSFC
. (6)

Thus for our parameter ranges that would result in 7 to 560 chains. The probability of 403

detecting at least one SFC when multiple SFCs are present is binomially distributed: 404

P (kSFC ≥ 1) = 1− P (kSFC = 0) = 1−
(
nSFCs

0

)
· p0 · (1− p)nSFCs , (7)

where nSFCs is the number of SFCs in the cortical volume and p is the probability to 405

detect a single SFC (the SFC detectability). The required number of SFCs in the 406

cortical volume to detect at least one SFC with a probability equal to or greater than α 407

is obtained by plugging P (kSFC ≥ 1) = α into Eq 7 and solving for nSFCs: 408

nSFCs for α ≥
ln(1− α)

ln(1− p)
. (8)

For an example parameter set with l = 12 groups, w = 100, rgroup = 900 µm, 409

σgroup = 900 µm which is constrained to the extent of layer 2/3 (SFC volume height of 410

hSFC volume = 1, 500 µm), the probability of detecting a single chain is 411

p(SFC detected) = 0.0708 (simulation result from Section 3.1.2) and the number of 412

SFCs is npresent SFCs = 560 (obtained by plugging in the example parameters in Eq 4, 413
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Eq 5 and Eq 6). By plugging this into Eq 8 we get minimal number of SFCs needed to 414

detect at least one SFC with a 99% probability: nSFCs for α =99% ≥ 63. 415

Fig 7 shows the probability of detecting at least one SFC in simulated Utah array 416

recordings. While the detection probability for an individual SFC can range from 0.0002 417

to 0.975 as we saw in the previous section, the probability of detecting at least one SFC 418

stays above 95% (α ≤ 0.05) for the majority of parameter configurations. This is 419

because our conservative estimate of the number of present SFCs is very high, which 420

compensates for the low detectability of an individual chain. 421

Fig 7. Detectability of ≥ 1 SFC in Utah array recordings in layer 2/3 of macaque M1. Similar visualization to
Fig 4. The color denotes the probability to detect at least one SFC for the respective parameter set. Each entry corresponds
to N=20 runs of the simulated model.

3.2 Comparison of spatio-temporal patterns in SFC model and 422

experiment 423

The detectability measure we introduced in Section 2.6 was designed to give a binary 424

yes-or-no answer to the question whether the SFC can be detected. To this end, we 425

required that two neurons from different groups of the SFC are recorded. Beyond that, 426

more insights can be gained from considering the exact number of neurons that are 427

expected to be recorded from an SFC and their distribution over the groups of the SFC. 428

This reveals the statistics of the spike patterns that are expected to be found as a result 429

of the SFC. With our model we are able to determine the pattern sizes, which are given 430

by the number of recorded neurons per SFC. In addition, we can turn this around and 431
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check for each detected neuron in how many detected chains it appears. Here we allow 432

neurons to participate in multiple chains to match the multiple participation of single 433

neurons in patterns observed in the experiment (see Section 2.3). The assumption in the 434

previous section that every excitatory neuron is part of exactly one chain was just used 435

to get a conservative estimate of the number of present SFCs. 436

Each detected chain results in one spike pattern. Within such a pattern we can 437

determine the distribution of spatial distances between neurons emitting subsequent 438

pattern spikes. By plugging in an assumed synaptic delay between groups of 5 439

ms [66,67], the times between pattern spikes can be calculated as well. This yields all 440

the metrics presented in Section 2.3 for the patterns detected in experimental data. 441

3.2.1 Euclidean distance as a measure of histogram similarity 442

In order to compare the spike pattern statistics predicted by our model to the statistics 443

observed in the experiment, we need a way to quantify their similarity. We will compare 444

the distributions of the four measures presented in Fig 11 for the experimental data: 445

pattern sizes, multiple participation of neurons in patterns, time delays between pattern 446

spikes, and spatial distance between pattern neurons. Commonly, two-sample tests are 447

used for this kind of comparison [68]. However, discrete distributions, which we want to 448

compare here, complicate the tests [69]. An additional caveat is that two-sample test 449

p-values do not penalize a small sample count, i.e. comparing a histogram of 1, 000 450

samples to one with just one sample can still lead to a small p-value if the single sample 451

fits the distribution of the 1, 000 samples. This could happen if for example only one 452

pattern is detected in the model. In such a case, we would like to see this reflected in 453

the similarity measure. Furthermore, it is non-trivial to combine the p-values for the 454

four measures in a final combined measure [70]. That is why we decided to use 455

Euclidean distances of the histogram bins, which correspond to Euclidean distances of 456

all possible discrete values of the distributions. This distance is calculated as 457

dhist =

√∑
i

(
hiexperiment − himodel

)2
, (9)

where hiexperiment and h
i
model are the values of the ith entry, i.e. the height of the ith 458

histogram bar, of the experimental and modeled histogram, respectively. Since all 459

histograms are normalized such that the sum of all of their entries is 1, the total 460

Euclidean distance between two such histograms is always constrained to 0 ≤ dhist ≤ 2. 461

This ensures that we can get a combined measure to which all histograms contribute 462

similarly (independently of their number of bins) by simply summing all distances. 463

We will use the Euclidean distances dpattern size, dmultiple membership, dgroup lags and 464

dspatial distance and the total distance dtotalin the following. 465

3.2.2 Influence of single model parameters on spike pattern statistics 466

Now we look at the effects of single parameters on the Euclidean distance between the 467

distributions resulting from the simulated model and the distribution of pattern 468

statistics observed in experimental data (Section 2.3). In Fig 8, we represent the 469

distances defined in the preceding section in function of five parameters: SFC length l, 470

SFC width w, SFC group radius rgroup separately, and s.d. of the Gaussian distribution 471

sampling the displacements between SFC groups σgroup distance. 472
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Fig 8. Effects of single model parameters on the euclidean distance
between the model results and the pattern statistics. Each distance is
calculated between the distribution observed in the experimental data and the one
observed in the model. All individual histogram distances (dpattern size in orange,
dmultiple membership in red, dgroup lags in blue and dspatial distance in green) are shown as a
function of (A) the number of groups l, (B) the group size w, (C) the SFC group radius
rgroup, (D) the SFC group distance σgroup distance, (E) the number of chains nchains, and
(F) the neuron density ρ.

August 1, 2022 18/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502431
http://creativecommons.org/licenses/by/4.0/


We use the same default parameter values as in Section 3.1.1. First, we vary the 473

SFC length and measure how the histogram distance changes as a function of it 474

(Fig 8A). If we assume the transmission delay from one group to the next to be 5 ms, 475

we need l ≥ 12 groups in order to generate the longest patterns that can be detected 476

with the SPADE window size of 60 ms. In fact, dgroup lags is highest for the lowest 477

values of l, decreases for higher lengths and flattens out around l = 15. Increasing the 478

SFC length beyond this minimum value results in more patterns and longer delays. This 479

effect saturates at some point and few long chains become indistinguishable from many 480

shorter ones due to the limited SPADE window size. No patterns longer than 60 ms can 481

be detected, but going beyond l = 12 does still improve the fit since it increases the 482

chance of observing patterns with delays close to the maximum of 60 ms which are 483

actually observed in the experimental data. This is because there are more possibilities 484

to observe two neurons that are 12 groups apart in a chain of length l ≥ 12 than in a 485

chain of length l = 12. We also observe that dpattern size decreases with increasing l 486

(orange line in Fig 8A). For very short chains not enough large patterns are found to 487

match the experimental data. Making the chains longer alleviates this issue. This effect 488

also saturates around l = 12 since due to the 60 ms duration limit we cannot indefinitely 489

make an STP larger by making the corresponding SFC longer. The other histograms do 490

not show strong effects when varying l since they only depend on the total number of 491

chains and the spatial spread of SFCs as we will see in the following paragraphs. 492

We have already seen that increasing the SFC width results in an increase of 493

detection probability of an SFC. In Fig 8B, we observe that when increasing the SFC 494

width w there is an increase in the probability of observing larger patterns. dpattern size 495

between the model and the distribution of the SPADE analysis decreases until 496

w = 2, 000. The other three distances remain constant when w is changed. 497

The SFC group radius rgroup determines the spread in space of an SFC group: all 498

neurons of a group are horizontally confined to a circle with radius rgroup. Results 499

obtained in Fig 2C show that small group radii lead to low similarity between the model 500

and the experimental results. There is a small continuous decrease in both dgroup lags 501

and dspatial distance with increasing rgroup. This is probably due to the fact that a small 502

group radius coincides to an increase of synchronous patterns of neurons recorded at the 503

same electrode, since it becomes more likely to detect multiple neurons of a group at the 504

same electrode. However, synchronous patterns and short spatial distances between 505

pattern spikes are not prominently observed in the experimental data (Fig 2C). These 506

effects are much weaker than the ones observed when varying the other parameters, but 507

since they have the same sign they will add up when we look at the total distance. 508

The s.d. σgroup distance of the two-dimensional Gaussian distribution for the distance 509

between successive SFC groups has a twofold effect on the histogram distances (Fig 8D). 510

Increasing σgroup distance increases the chance that later groups of an SFC leave the 511

simulation volume. This reduces the chance of finding large patterns and the chance of 512

finding long lags between pattern spikes, which is reflected in an increase of dpattern size 513

and dgroup lags, respectively. However, dspatial distance decreases for larger σgroup distance. 514

For a small s.d. there is a bias towards short spatial distances between pattern spikes, 515

which is not what we observe in the experimental data. Since this parameter has 516

opposite effects on multiple distances, we expect to find an optimal value which depends 517

on the parameter set, and we expect the total distance to increase in both directions 518

from that optimal value. 519

Additionally, we inspect how varying the number of SFCs embedded in the 520

simulation volume nchains influences how often single neurons participate in multiple 521

SFCs (Fig 8E). We observe that dmultiple membership decreases from low to higher values 522

of nchains, until it reaches a minimum at nchains = 200. However, an even higher nchains 523

increases the chance for neurons to be involved in multiple patterns, since the number of 524
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chains is higher but the number of neurons stays the same. Neurons then have to be in 525

more chains on average, which results in them being in more patterns, thus shifting the 526

distribution of number of patterns a neuron appears in to the right (not shown). This 527

measure thus constrains the total number of chains in our model, and we can use it to 528

calculate the optimal number of embedded SFCs for each parameter set, which we will 529

do in the following section. This will essentially allow us to eliminate one SFC 530

parameter. We can do this since all other measures do not depend on nchains. For them, 531

nchains essentially determines the number of samples, but does not change the 532

distribution. We see an increase towards the extreme case nchains = 1 and some noise 533

for very few chains, but then all measures except for dmultiple membership stabilize. 534

Finally, in (Fig 8F) we investigate the impact of the neuron density ρ on the 535

histogram distances. dpattern size increases slightly with increasing ρ, which matches our 536

findings in Section 3.1.1, where we showed that increasing the total neuron density ρ 537

decreases the SFC detectability. Since the number of chains and the number of neurons 538

in a chain remains constant, but the total number of neurons increases, the detection 539

probability decreases as the ratio of neurons in one chain to the total number of neurons 540

goes down, thus reducing the chance to record two or more neurons from a chain. Here, 541

this is reflected in an increase in dpattern size since not enough large patterns are found 542

to match the experimental data due to the decreased probability of recording multiple 543

neurons from a chain. Besides this small effect on dpattern size, the neuron density does 544

not show a significant impact on the histogram distances, since it does not affect the 545

spatial distribution of SFC neurons in any way. 546

3.2.3 Calculating the number of SFCs required to match the 547

experimentally found spike pattern statistics 548

We have seen in the last section that the number of chains nchains only affects the 549

number of patterns a single neuron may participate in (dmultiple membership). We saw a 550

clear minimum of dmultiple membership at nchains = 200 in Fig 8E. However, this optimal 551

value also depends on l and w, since for a neuron to appear in the same number of 552

SFCs, more chains are required if each chain contains fewer neurons (i.e. lower l or w). 553

In order to verify that we can use dmultiple membership to find the optimal number of 554

simulated SFCs nchains for each parameter configuration, we plot dmultiple membership as a 555

function of nchains for all combinations of l and w in Fig 9. Varying the combination of l 556

and w corresponds to varying the number of total neurons in an SFC which is simply the 557

product l ·w. We can see in Fig 9 that for every parameter combination, we find a clear 558

minimum of dmultiple membership which we can use to fix nchains to the corresponding 559

number of simulated SFCs. The optimal values range from 40 for very long and wide 560

chains containing many neurons each to 10, 000 for very narrow and short chains with 561

few neurons per chain. In the following, we will fix nchains for each parameter set using 562

this method and only use the optimal value for all further plots and analyses. 563
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Fig 9. Fixing the number of SFCs by finding the minimal dmultiple membership. (A) One line corresponds to a
simulation run for fixed values of l and w. The product l ·w, which corresponds to the number of neurons per SFC, is denoted
by the line color. Along the x-axis, we vary the number of simulated SFCs nchains, and on the y-axis, the histogram distance
for the multiple occurrences of neurons in SFCs is shown. Only data points for cases in which patterns have been detected are
shown. No patterns were detected in the cases of chains with few neurons (low l ·w) for very low values of nchains ∼ 10, which
is very far from the optimal values of nchains ∼ 104. (B) Optimal number of chains corresponding to the minimal
dmultiple membership as a function of l · w, corresponding to the minima of the graphs in A.

We can estimate in how many chains a neuron participates in by dividing the 564

number of “neuron slots” in all chains l · w · nchains by the total number of neurons 565

840, 000 that exist in that cortical volume. Or in other words, single neurons have to 566

participate in multiple chains to realize the chains. Thus, for the different parameter 567

sets this estimate varies between l·w·nchains

ρ·V ≈ 5− 30 within the simulation volume 568

V = 25.6 mm3 and the neuron density ρ = 35, 000 mm−3. 569

3.2.4 Comparing model vs. experimental pattern statistics across the 570

entire parameter space 571

Having fixed the optimal number of SFCs , and thus having eliminated one parameter, 572

we can move on to a parameter scan to see how the total histogram distance behaves as 573

a function of the remaining parameters. We showed in Section 3.2.2 that the neuron 574

density does not have a significant impact on the histogram distances. Thus, we will 575

focus on the SFC parameters l, w, rgroup, and σgroup distance and show the results in 576

Fig 10. 577
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Fig 10. Total histogram distance between model and experimental results. Similar visualization to Fig 4. The
color encodes the summed Euclidean distances between all histogram bins for the measures shown in Fig 11. Each entry
corresponds to N = 20 runs of the simulated model. Red crosses indicate the parameter configurations where the chance of
observing at least one pattern is lower than 80% (i.e., the lighter entries of Fig 4). The black dot represents the parameter
configuration having the lowest total histogram distance.

Across the board, the histogram distance is quite consistently decreasing for 578

increasing values of rgroup (lighter shades of blue when moving box-by-box to the right). 579

This is expected from Section 3.2.2, where we found that rgroup has to be high to fit the 580

distribution of time lags between pattern spikes. 581

In most sub-panels of Fig 10, for fixed l and rgroup, we see a diagonal band of lighter 582

blue and even white shading, corresponding to smaller total histogram distances. This 583

means that higher values of σgroup distance require higher values of w for a good fit. This 584

effect has contributions from several single histogram distances, but can be seen most 585

prominently for the pattern size histogram (see Fig 8). High values of w are required 586

such that enough neurons per chain are detected to get large spike patterns as observed 587

in the experimental data (see also Fig 8). However, there is a limit to this since at some 588

point the patterns become larger than the experimental ones. This can be 589

counter-balanced by increasing σgroup distance, which decreases the pattern size since 590

parts of the SFC are more likely to be outside of the simulation volume and are thus not 591

detectable and cannot contribute to patterns. A higher SFC length l also increases the 592

chance of larger patterns, which is why the diagonal of lighter shades moves down to 593

lower values of w in the sub-panels for higher values of l. 594

As expected from Section 3.1.3, parameter sets with low w and high σgroup distance 595

August 1, 2022 22/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502431doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502431
http://creativecommons.org/licenses/by/4.0/


are ruled out since it is very unlikely that enough patterns can be detected in those 596

cases. This corresponds to the parameter sets with a detection probability lower than 597

0.8 in Fig 7. These parameter configurations are indicated by red crosses in Fig 10. The 598

corresponding total histogram distances are also rather high for these parameter sets as 599

can be seen by the darker shades of blue in the respective sub-panels in the figure. 600

We have selected the parameter set with the lowest total histogram distance 601

dtotal = 0.40 (black dot) and we will look at its pattern statistics in the next section. 602

This best fit of the experimental pattern statistics is reached at l = 24, w = 1, 300, 603

rgroup = 2, 100 and σgroup distance = 500. As discussed in Section 3.2.2, a value of l > 12 604

does make sense here since it helps to increase the number of patterns with long 605

temporal delays by increasing the number of possibilities to observe two neurons that 606

are 12 SFC groups apart. In this parameter configuration with rather high values of w 607

and rgroup, SFCs contain many neurons per group, and a single group covers most of 608

the area of the Utah array. There is however a quite large region in the parameter space 609

with an almost similarly good fit, so this is not the only possible setting in which the 610

model can explain the experimentally found spike pattern statistics. 611

3.2.5 Pattern statistics of the best-fit parameter set compared to the 612

experiment 613

Finally, we compare the statistics of the patterns detected in the experiment to the 614

statistics obtained in the best-fit parameter setting identified in the preceding section 615

(Fig 11). Overall, the distribution of the best-fit parameter setting (in light blue) 616

matches well with the experimental one (in orange) for most of the distributions 617

(Fig 11A-C). The distribution of the Euclidean distance between pattern spikes 618

(Fig 11D) is very variable due to the finite size of the electrode array. However, both the 619

experimental and the model distribution show entries across most distances (see also 620

Section 3.2). 621

Fig 11. Pattern statistics in the experiment and the model. Experimental results are shown in orange, model
results in light blue. The model parameters are l = 24, w = 1, 300, rgroup = 2, 100 and σgroup distance = 500. (A) Histogram of
the number of pattern units (number of neurons involved in a pattern). (B) Histogram of number of patterns a single neuron
appears in. Only neurons which take part in patterns are taken into account. (C) Histogram of time lags between neighboring
pattern spikes. Only subsequent pattern spikes are taken into account. The temporal resolution of the histogram coincides
with the one of the SPADE analysis, and is equal to 5 ms. The maximum time lag corresponds to the maximal pattern
duration (here 60 ms). (D) Euclidean distance between pattern spikes. Only subsequent pattern spikes are taken into account.
The histogram is normalized by the occurrences of the respective distances on the Utah array electrode grid.
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4 Discussion 622

In this paper, we asked 1) whether synfire chains can be detected by Utah array 623

recordings, and 2) whether or not the STPs and their statistics which we found in 624

experimental data can be explained by synfire chains embedded below the Utah array. 625

We were able to answer both questions positively, and found a large parameter range for 626

the embedding of multiple SFCs that elicit the same STP statistics as the experimental 627

data. 628

As data reference we used results on spatio-temporal spike patterns from 96-electrode 629

recordings (Utah array) from monkey motor cortex (two monkeys) reported on in detail 630

in a related study [40,56]. The data contained between 80 and 152 simultaneously 631

recorded neurons during motor behavior. Across 20 sessions (10 per monkey) we found 632

STPs and summarized their statistics in four histograms with averaged data from all 633

sessions of both monkeys (Fig 2): A) the number of neurons involved in STPs, B) the 634

number of STPs a single neuron is involved in, C) the maximal temporal duration of 635

STPs, and D) the spatial distances on the Utah array of the spikes involved in STPs. 636

We designed a model of the spatial embedding of one or more SFCs in the cortical 637

area recorded from by the Utah array (motor cortex). The neuron composition of each 638

SFC is parameterized by the length of the chain and the width of the groups. The 639

distribution of the SFC groups in space is captured by the radius of a disk inside which 640

all neurons of a single group are located, and by the standard deviation of a 641

two-dimensional Gaussian distribution, which governs the positions of the group disk 642

centers for subsequent groups. This choice of spatial distributions minimizes the model 643

parameters. By varying these parameters we generated both localized and spatially 644

extended SFCs in agreement with cortical connectivity. 645

Multiple anatomical and recording parameters enter in our calculations and 646

introduce additional uncertainties. However, we were able to show in the appendix (S1 647

Appendix: The influence of the sensitive range of the electrodes) that the actual 648

sensitive range of the electrodes does not have to be measured and is implicitly included 649

in the number of isolated single units per electrode, a parameter available from 650

experimental data, here 1.1. This is in agreement with [71–73] who report between 0.2 651

and 1.2 single units per electrode across multiple subjects and implantation sites. We 652

define a model parameter rsens to select neurons near the electrode tips which are 653

candidates to be detected, but we were able to show that this parameter does not have 654

any influence on the SFC detectability (Section 3.1.1). This is especially advantageous 655

since the sensitive range has not been measured for Utah electrodes and thus underlies a 656

large uncertainty. The neuron density ρ in the cortical layer in which the simulation 657

volume is located constitutes another free parameter. However, we used the most 658

conservative choice, i.e. the highest density (more neurons in total but same number of 659

neurons within one SFC decreases the detectability, cf. Section 3.1.1), for our 660

detectability calculation (cf. Section 3.1.3). Additionally, we showed that for the spike 661

pattern statistics the density is not as critical since it does not affect the spatial 662

distribution of SFC neurons (cf. Section 3.2.2). 663

We constrained the embedded SFCs to the cortical layer 2/3, which the experimental 664

data was recorded from. Using the height of this layer as the height for the SFC volume, 665

hSFC Volume = 1.5 mm, (see [42–45]) and the neuronal density of ρ = 35, 000 mm−3, we 666

expect 840, 000 neurons inside this volume. In the experimental data we analyzed, 1.1 667

single units were detected per electrode, which we used as the basis for our neuron 668

isolation model. This results in 110 recorded neurons, which corresponds to a 669

subsampling of the neurons in our simulation of three orders of magnitude. We were 670

able to show that despite this massive subsampling, SFCs can be detected in such a 671

recording setting. 672

We distributed SFCs in the volume below the area of a Utah array and determined 673
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whether they can be detected by its electrodes. To this end, we evaluated the 674

probability of recording single neurons, and we developed a detectability measure which 675

requires at least two neurons from different groups of the same SFC to be recorded for 676

the chain to be considered detected. Here, we assumed that every neuron of a chain 677

always fires when the chain is activated, such that one SFC can only result in one STP. 678

Going one step further, we predicted the statistics of the patterns that would be 679

detected in such a setting and fitted the model embedding parameters to the pattern 680

results obtained from the experimental data. We identified a region in the parameter 681

space in which the spike pattern statistics that our model predicts match the 682

experimental results well. The best match was found for a length of l = 24, a group size 683

of w = 1, 300, a spatial radius of each group rgroup = 2, 100 µm and a group distance of 684

σgroup distance = 500 µm, which corresponds to wide SFCs with many neurons per group 685

and a broad spatial distribution. More combinations of l, w, rgroup and σgroup distance 686

provide comparable results, see Section 3.2.4. 687

Since more than one pattern was observed per session of experimental data and since 688

some neurons took part in multiple patterns, we had to embed multiple SFCs at the 689

same time and we had to allow neurons to be in more than one chain. We found an 690

optimal match to the experimental data for broad spatial distributions since STPs in 691

the experiment were detected across all possible spatial distances on the Utah array. 692

As shown in [74,75], SFCs with large group sizes w and dense inter-group 693

connectivity easily undergo an instability where even small fluctuations in the 694

background activity trigger the formation of synchronous bursts of spiking activity. 695

This problem of spontaneous synchronization in broad SFCs can be alleviated by a 696

number of mechanisms, such as by diluting the inter-group connectivity [76], or by 697

accounting for inhibitory feedback [18,77] or synaptic failure [78]. 698

Despite the required large groups in our results, a dilution of inter-group 699

connectivity to 100 to each receiving neuron in the following group guarantees that the 700

activity runs stably through the chain ( [76], and thus our assumption of stably running 701

chains to find the amount of STPs as in the data would still be met. 702

Trengove et al. [18] were able to simulate networks in which 800,000 excitatory and 703

200,000 inhibitory neurons participate in a total of 51.020 SFC groups. Each neuron 704

participates in ∼ 70 chains. In their model, each SFC group activates a random set of 705

inhibitory neurons, which regulates the network activity when a SFC is activated. Our 706

scenario with 840,000 neurons participating on average in 5-30 SFC groups (see 707

Section 3.2.3), depending on the parameter set, is close to the parameters of [18], and 708

thus our setting appears to be feasible in dynamical simulations given that one 709

implements a regulatory mechanism which is as effective as the inhibitory feedback 710

employed in [18]. 711

Since the electrodes of the Utah array have the same length, they likely recorded 712

from neurons at the same cortical depth. So we have to assume that the observed 713

phenomena are largely due to horizontal connectivity. The connection probability of two 714

neurons mainly depends on the horizontal distance between their somata and drops off 715

with increasing horizontal distance [79–83]. 80− 82 % of the projection partners of a 716

neuron in layer 2/3 commonly lie within a distance of 500 µm [79,84,85]. A previous 717

SFC embedding study used a maximal distance of 300 µm between connected neurons 718

as a constraint [76]. Our simulations that match the experimental data showed that 719

large group radii (rgroup ≥ 900 µm) and large inter-group distances (σgroup distance ≥ 500 720

µm) are required. As discussed above, such SFCs would have to be diluted, i.e. not fully 721

connected, to function dynamically. This would help to stay within the anatomical 722

bounds since a neuron does not have to be connected to every neuron of the next group 723

and can instead just have connections to the closest neurons of the next group. Patchy 724

connections of excitatory neurons in layer 2/3 cover ranges of 849.5± 337.5 µm [85–89], 725
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which would also account for the large group radii required in our model. However, a 726

more recent study [84] showed in a dynamic photo-stimulation experiment lateral 727

connections and high response reliability up to a range of 1, 500 µm. These estimates 728

cover the connection distances required for our optimal parameter set and thus 729

constitute another candidate mechanism by which such chains could be realized. 730

Currently, we always fix all parameters to single values within a single simulation. 731

However, a hybrid scenario of broad and narrow spatial profiles could be interesting and 732

more realistic. SFCs with a broad spatial profile could serve information propagation 733

within and between cortical areas, but in addition to this, there could be much more 734

localized SFCs for local computations, which are connected to the grid of broader 735

chains. Such a hybrid scenario, and interlinked chains in general, would increase the 736

chance to find larger patterns. In [11,12], the authors found that information 737

propagation along an SFC can be effectively gated by a second SFC, and, according 738

to [16], the representation of information in spatially propagating structures is 739

advantageous for information binding (cf. [14,15]) across different cortical areas. These 740

findings indicate that SFCs are a solid candidate for information propagation and 741

computations on multiple scales, which would most likely require a multitude of spatial 742

configurations of such interconnected chains. Recently, theoretical studies [21,22,26] 743

have shown that an account of nonlinear synaptic integration in dendritic branches 744

(dendritic action potentials) permits the formation of narrow SFC-like structures with 745

only w ∼ 10 neurons per group, supporting a reliable propagation of small volleys of 746

synchronous spikes, and thereby constitutes an efficient mechanism for learning and 747

processing of complex sequences of data. 748

In the same data set that we analyzed for STPs, [90] find a spatial structure of 749

correlated neurons (measured by covariance) which changes across behavioral contexts. 750

The covariances are partly strong within neurons up to few mm distance. This goes well 751

with the fact that we found STPs involving neurons across all possible distances on the 752

4× 4 mm2 Utah array. However, it is currently not clear if neurons involved in an active 753

SFC also increase their rates. Grün (private communication, based on data from [91]) 754

showed that neurons involved in an SFC seem to go hand in hand with coherent rate 755

changes as visible in the population raster, however, when neurons are sorted according 756

to their spike times in the SFC, it turns out that these are actually single well timed 757

spikes. 758

A limitation of the SPADE analysis lays in the fact that the method is able to detect 759

only spike patterns repeating exactly (within few ms imprecision) across the data. Thus, 760

it does not allow for temporal imprecision in the spike sequences over a few milliseconds, 761

and does not allow for selective participation of the pattern neurons. In other words, 762

single pattern instances, where some spikes may be missing due to synaptic failure, due 763

to e.g. imprecision in the spike sorting, are not detected by SPADE. However, other 764

approaches relying on different methodologies may detect such “fuzzy patterns” [92–96]. 765

Thus, the results obtained by the analysis of the experimental data may be compared to 766

analysis of other pattern detection methods, perhaps leading to more patterns and/or to 767

somewhat different statistics. 768

In order to keep the model as simple as possible, we did not include the significance 769

testing performed in SPADE [51,54] either. Modeling it more closely could also improve 770

the match of the pattern size distributions, however, it is almost impossible without 771

fully dynamical simulations, since the rates of the neurons and thus the numbers of 772

occurrences of the patterns are important factors required for the significance test. 773

Our model can also be adapted to different recording settings. The electrode 774

positions and sensitive ranges, depth of the recorded cortical layer and the local neuron 775

density however have to be provided. Using other recording techniques and applying our 776

analyses could help to answer remaining and follow-up questions. Neuropixels probes 777
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provide a very good spatial resolution orthogonal to the surface of the cortex. Data 778

recorded with such probes could be analyzed and used to model SFCs across multiple 779

cortical layers. A high sampling resolution along the other dimensions is however much 780

more difficult to achieve with such probes since it would require multiple probes to be 781

implanted close to one another. 782

STPs have been detected in many studies across different animals, cortical areas, 783

temporal scales and task conditions. Riehle et al. [29] found synchronous patterns at 784

330 µm to 660 µm distance that would correspond to neurons recorded from a single 785

SFC group. The implied group radius is in accordance with many parameter sets that 786

provide a good fit to the data we analyzed, too. They also found synchronous 787

activations related to behavior of different subsets within a set of three neurons, hinting 788

at multiple participation of neurons in SFCs which we also assume to fit our data. In 789

the same data we analyzed, Torre et al. [31] also found synchronous firing of neurons at 790

distances of 400 µm to 2, 400 µm, implying similar group radii. Prut et al. [28] found 791

spatio-temporal spike patterns with different maximum temporal extents ranging from 0 792

ms to 500 ms within a cortical area. Modeling the latter with SFCs would require very 793

long chains or much larger delays between groups. They even found different inter-spike 794

delays between spikes of the same neurons in different patterns, adding to the evidence 795

for multiple participation of neurons in SFCs. Hemberger et al. [32] found fuzzy spiking 796

sequences which could be triggered by single spikes. The fact that a single spike from 797

one neuron suffices to trigger a reliable spiking sequence also hints at the possibility of 798

very narrow chains with few neurons per group and with strong synapses, which can 799

still be reliable if a single spike is already enough to propagate the activity to the 800

following groups. 801

As follow-ups to this work, SFC spatial embeddings should be complemented by 802

including spiking activity to study the dynamics. A closer modeling of pattern 803

significance testing may also help to match the experimentally found pattern size 804

distribution even better. A possible outlook is to apply our model to more spike 805

recordings where evidences of STP activity has been found, to investigate whether 806

different parameter values are required to match pattern statistics in other experimental 807

settings. 808
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Supplementary material 824

S1 Appendix: The influence of the sensitive range of the electrodes In our 825

three-dimensional model, the isolation probability of a neuron depends on the sensitive 826

range rsens of the electrode and the neuron density ρ (see Eq 3): 827

P3D(isolation) =
1

4π
3 r

3
sens

· 1

ρ
· 1.1 (10)

Note that the “real” sensitive range is implicitly included in the experimentally 828

obtained figure of 1.1single units/electrode (cf. Section 2.1). Our parameter rsens is required 829

in the model to select the neurons close to electrode tips which are candidates to be 830

detected. Our isolation probability P3D(isolation) is the number of single units per 831

electrode divided by the total number of neurons within the sensitive range of the 832

electrode. 833

This isolation probability applies to neurons which are inside the sensitive range of 834

an electrode. So, to get the total number of isolated neurons, we have to multiply this 835

probability by the number of neurons which are inside the sensitive ranges of electrodes. 836

Assuming a homogeneous neuron density, this number exactly corresponds to the 837

denominator in Eq 10: 838

Nin range =
4π

3
· r3sens · ρ (11)

Thus, the total number of isolated neurons is independent of our parameter rsens: 839

Nisolated = P3D(isolation) ·Nin range = const. (12)

This does not mean that the actual sensitive range of the electrodes does not matter, 840

it is hidden in the 1.1single units/electrode in Eq 10. Our model parameter rsens is not 841

equal to the actual sensitive range, and it does not have to be, since via Eq 10 we 842

ensure that the overall isolation probability of neurons per electrode in our model 843

matches the experimental data. In order to perform the simulations, we have to assign a 844

value to rsens in order to be able to select neurons close to electrode tips, and we fix 845

rsens = 50 µm. 846

S2 Figure: Impact of SFCs leaving the simulation volume Scanning σgroup as 847

in Fig 5, once as before (black dots indicating the mean with orange area indicating the 848

standard error of the mean) and once with periodic boundary conditions (gray dots 849

indicating the mean with turquoise band indicating the standard error of the mean). 850

See Fig 5 and description thereof for an explanation of the simulation procedure. In the 851

case with periodic boundary conditions, SFCs that leave the simulation volume enter it 852

again on the opposite side. 853
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