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Abstract 42 
The development of ultra high field (UHF) fMRI signal readout strategies and contrasts has led 43 
to the possibility of imaging the human brain in vivo and non-invasively at increasingly higher 44 
spatial resolutions of cortical layers and columns. One emergent layer-fMRI acquisition 45 
method with increasing popularity is the cerebral blood volume (CBV) sensitive sequence 46 
named vascular space occupancy (VASO). This approach has been shown to be mostly 47 
sensitive to locally-specific changes of laminar microvasculature, without unwanted biases of 48 
trans-laminar draining veins. Until now, however, VASO has not been applied in the 49 
technically challenging cortical area of the primary auditory cortex. Here, we developed a 50 
VASO imaging protocol for auditory neuroscientific applications. We describe the main 51 
challenges we encountered and the solutions we have adopted to mitigate them. With our 52 
optimized protocol, we investigate laminar responses to sounds. Finally, as proof of concept 53 
for future investigations, we map the topographic representation of frequency preference 54 
(tonotopy) in the auditory cortex.  55 
  56 
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1. Introduction 57 
Ultra high field (UHF) magnetic resonance imaging allows the acquisition of functional data 58 
with increased sensitivity (Yacoub et al., 2001). This increased sensitivity can be used to 59 
breach into the mesoscopic scale in humans (for examples see De Martino et al., 2015; Huber 60 
et al., 2015; Kok et al., 2016; Lawrence et al., 2019; Nasr et al., 2016; Yacoub et al., 2007, 61 
2008; Zimmermann et al., 2011), and the layered functional responses can be leveraged as a 62 
proxy for cortical architecture (Yang et al., 2021). 63 

Gradient-echo blood oxygenation level dependent (GE-BOLD) functional magnetic 64 
resonance imaging (fMRI) is the conventional approach to collect submillimeter data, due to 65 
its relatively high signal-to-noise ratio (SNR) (Yacoub et al., 2005). However, T2*-weighted 66 
images collected at 7 Tesla (and higher fields) still contain contributions of both macro- and 67 
micro-extravasculature compartments (Uludağ et al., 2009; Yacoub et al., 2005). The 68 
macrovascular contribution to GE-BOLD originates from both pial vessels and draining vessels 69 
that penetrate the cortex orthogonally (Duvernoy et al., 1981). This results in two effects: the 70 
signal in superficial cortical depths is larger and the layer dependent spatial specificity is 71 
reduced as activation is drained away from the original locus of neural activity (Heinzle et al., 72 
2016; Menon et al., 1995; Polimeni et al., 2016; Turner, 2002). Regardless, the increased 73 
sensitivity, coverage and temporal efficiency of GE-BOLD makes it the most common 74 
approach for laminar fMRI (for a recent review see e.g. De Martino et al., 2018), also when 75 
considering auditory studies (Ahveninen et al., 2016; Gau et al., 2020; Moerel et al., 2019; Wu 76 
et al., 2018). 77 
         While draining effects in GE-BOLD can be reduced with modeling and analyses 78 
approaches (see e.g. Havlicek et al., 2015; Markuerkiaga et al., 2016), alternative acquisitions 79 
have been proposed to minimize the contribution of macrovasculature. For example, spin-80 
echo (SE) echo planar imaging (EPI) has been used to collect T2-weighted functional data 81 
(Yacoub et al., 2007, 2008). To retain T2-weighted specificity, these applications used 82 
segmented EPI acquisitions, while non segmented acquisitions introduce unwanted T2* 83 
contributions (Kemper et al., 2015). 3D gradient-echo and spin-echo (3D-GRASE - Feinberg et 84 
al., 2008; Oshio & Feinberg, 1991), has also been used to investigate human laminar and 85 
columnar function in both visual and auditory cortices (De Martino et al., 2013, 2015; Moerel 86 
et al., 2018; Olman et al., 2012; Zimmermann et al., 2011). However, the limited field of view 87 
(FOV) of early 3D-GRASE approaches has allowed only the investigation of small portions of 88 
cortex and, in auditory studies in particular, often in a single hemisphere (De Martino et al., 89 
2015; Moerel et al., 2018; for a review see Moerel et al., 2021). More recent 3D-GRASE 90 
advancements can mitigate FOV constraints (Park et al., 2021). Furthermore a large spectrum 91 
of alternative approaches is currently under development to optimize the sensitivity and 92 
specificity of layer-fMRI experiments (Chai et al., 2020, 2021; Han et al., 2022; Kashyap et al., 93 
2021; Kay et al., 2020; Lu et al., 2003; Priovoulos et al., 2022; Shao et al., 2021; Stanley et al., 94 
2021; Truong & Song, 2009; Wang et al., 2021). 95 

Cerebral blood volume (CBV) based imaging is one of the approaches to collect 96 
functional data with high spatial specificity, in which CBV functional responses can be 97 
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acquired alongside conventional BOLD (Huber et al., 2019; Jin & Kim, 2008; Kim et al., 2013; 98 
Lu et al., 2013). The most commonly used approach to measure functional CBV changes is 99 
vascular space occupancy (VASO) (Hua et al., 2013; Huber et al., 2014; Lu et al., 2003). A 100 
concomitant acquisition approach of BOLD and VASO has the potential to combine their 101 
complementary aspects and facilitate a more comprehensive understanding of physiological 102 
underlying laminar activity changes. Furthermore, a combined acquisition of BOLD and VASO 103 
allows researchers to benefit from cumulative quality metrics of both methods, e.g. a high 104 
detection sensitivity (in BOLD compared to VASO) and a high localization specificity (in VASO 105 
compared to BOLD). VASO has been used to investigate laminar functional responses in visual 106 
(Huber et al., 2021a), motor (Huber et al., 2015, 2017), somatosensory (Yu et al., 2019) and 107 
prefrontal (Finn et al., 2019) cortices. 108 

To date, VASO has not been successfully applied to investigate layer dependent 109 
functional responses in the human auditory cortex. Despite its lower power compared to 110 
BOLD (Beckett et al., 2020), the use of VASO has proven useful outside of auditory cortical 111 
areas (Finn et al., 2019; Huber et al., 2015, 2017; Huber et al., 2021a; Yu et al., 2019) and this 112 
warrants the need for developing an effective VASO protocol for auditory neuroimaging. 113 
Here, we present the results of a study aimed at optimizing a VASO functional protocol to 114 
image the auditory cortex at submillimeter resolution. We evaluated functional images 115 
collected at 7T using concurrent measurements of GE-BOLD and VASO. First, we explored a 116 
wide parameter space to mitigate methodological and physiological challenges. Specifically, 117 
we investigated the difference between a 2D- and a 3D-EPI readout and their stability across 118 
several participants. We showcase the laminar profiles of VASO data, and present initial 119 
results of the use of VASO for auditory neuroscience applications by characterizing VASO 120 
acquisitions of cortical sound frequency preference (i.e. tonotopic maps). 121 
 122 

2. Methods 123 
2.1 Ethics 124 
The scanning procedures were approved by the Ethics Review Committee for Psychology and 125 
Neuroscience (ERCPN) at Maastricht University, following the principles expressed in the 126 
Declaration of Helsinki. Informed consent was obtained from all participants.  127 
 128 
2.2 Participants 129 
Participants were healthy volunteers with normal hearing and no history of hearing or 130 
neurological disorders. Participants were excluded if they had any standard MRI 131 
contraindications (e.g. any metal implants etc.).  132 
 133 

Ten healthy volunteers participated in three separate studies. In study 1 (N=4), we 134 
optimized the VASO protocol. In study 2 (N=4), we evaluated the stability of the optimized 135 
protocol with 2D and 3D readouts. In study 3 (N=2), we applied the optimized protocol for 136 
tonotopic mapping as a proof of principle.  137 
 138 
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2.3 Scanner 139 
Scanning was performed on a MAGNETOM “classic” 7T scanner (Siemens Healthineers) 140 
hosted by Scannexus (Maastricht) equipped with a 32-channel Nova Head Coil (Nova Medical, 141 
Wilmington, MA, USA). Sequences were implemented using the vendor provided IDEA 142 
environment (VB17A-UHF). We used an in-house developed 3rd order B0-shim system 143 
(Scannexus) that depends on the vendor provided "3rdOrder ShimSet" feature. 144 
 145 
2.4 Auditory stimulation 146 
Sounds were presented to participants in the MRI scanner using MRI compatible ear buds of 147 
Sensimetrics Corporation (www.sens.com).  148 
 149 
2.5 Slice-saturation slab-inversion VASO 150 
We used a slice-saturation slab-inversion VASO (SS-SI-VASO - Huber et al., 2014) acquisition 151 
with either a 3D-EPI (Poser et al., 2010) or 2D-EPI readout (Huber et al., 2016). VASO uses an 152 
inversion recovery pulse to effectively null the contribution from the blood magnetization 153 
(Hua et al., 2013; Lu et al., 2003). For all of the tested protocols, the inversion delay (i.e. the 154 
dead time between the inversion pulse and the VASO signal readout module) was chosen to 155 
have the readout block roughly centered around the expected blood nulling time. In SS-SI-156 
VASO, VASO and BOLD images are acquired in an interleaved fashion, which allows for a 157 
straightforward combination of the two datasets.  158 
 159 
2.6 Reconstruction 160 
The reconstruction of the data was conducted as described in previous studies for SMS-VASO 161 
(Huber et al., 2016) and 3D-EPI VASO (Huber et al., 2018b), respectively. In short, the vendor’s 162 
in-plane GRAPPA (Griswold et al., 2002) reconstruction algorithms were applied using a 3 × 2 163 
(read direction x phase direction) kernel. Partial Fourier reconstruction (Jesmanowicz et al., 164 
1998) was done with the projection onto convex sets (POCS) algorithm (Haacke et al., 1991) 165 
with 8 iterations. Finally, the complex coil images were combined using the vendor’s 166 
implementation of sum-of-squares. 167 

SMS unaliasing was performed on-line on the scanner using a combination of the 168 
vendor software and the SMS reconstruction as distributed with the MGH blipped-CAIPI C2P 169 
(http://www.nmr.mgh.harvard.edu/software/c2p/sms). SMS signals were first un-aliased 170 
with an implementation of SplitSlice-GRAPPA with LeakBlock (Cauley et al., 2014) and a 3 × 3 171 
SliceGRAPPA kernel before entering in-plane reconstruction as described above. 172 

The 3D-EPI reconstruction was based on a previous 3D-EPI implementation (Poser et 173 
al., 2010) using a combination of standard scanner software and a vendor-provided work-in-174 
progress implementation of GRAPPA CAIPIRINHA (Siemens software identifier: IcePAT WIP 175 
571).  176 

 177 
2.7 Study 1: Protocol optimization 178 
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We aimed at implementing and testing a VASO protocol for the auditory cortex that can 179 
mitigate a series of methodological challenges. The purpose of this pilot study was to explore 180 
the protocol parameter space of previously described 2D and 3D VASO sequences and 181 
optimize them with respect to maximal temporal signal-to-noise ratio (tSNR) and minimal 182 
artifact level. The protocol resulting from this study will then be subject to quantitative 183 
investigations and validations in a subsequent study (study 2). 184 
 First, compared to other cortical areas, the auditory cortex has an exceptionally short 185 
arterial arrival time of approximately 0.5-0.8s (see Fig. 7B in Mildner et al., 2014). This is 186 
approximately 1-2s earlier than the primary visual cortex. Such short arterial arrival times can 187 
result in the unwanted inflow of fresh (uninverted) blood during the VASO readout. When 188 
collecting simultaneous VASO and BOLD, these effects were more pronounced in the VASO 189 
data (figure 1A). To mitigate this challenge, we explored the usage of a phase-skipped 190 
adiabatic inversion pulse with B1-independent partial inversion (based on shapes of a TR-FOCI 191 
pulse - Hurley et al., 2010) that minimized these contaminants at the cost of SNR. Reducing 192 
the inversion efficiency by means of the phase skipped adiabatic inversion pulse can reduce 193 
the blood nulling time so that it is shorter than the arterial arrival time, mitigating inflow 194 
artifacts. Depending on the TR, the inversion efficiency and excitation flip angles that are 195 
used, the tissue signal can be reduced by about 30%. 196 

Second, we explored the effect that the readout time (and its relationship to the 197 
cardiac cycle) has on VASO data in the temporal cortex. Readout times longer than the cardiac 198 
cycle resulted in loss of contrast around Heschl’s gyrus (HG) and in typical vascular artifacts in 199 
components extracted with independent component analysis (ICA) from VASO time series 200 
(figure 1B).   201 

High-resolution VASO is commonly used in combination with a 3D signal readout (e.g. 202 
3D-EPI). However, since the primary auditory cortex, especially the medial portion of HG, is 203 
located right next to large feeding arteries, the partitioned 3D-EPI approach can result in 204 
higher susceptibility to physiological noise. To compare it to a 2D-EPI readout (study 2), 205 
optimizing parameters specific to the 2D readout was required. In particular, the location of 206 
the auditory cortex requires large in-plane imaging FOVs, resulting in large matrix size, and 207 
low bandwidth in the phase encoding direction for submillimeter acquisition protocols. The 208 
correspondingly long readout duration makes the acquisition protocol more susceptible to 209 
Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA, Griswold et al., 2002) 210 
artifacts. To find an effective protocol we compared the tSNR over 40 volumes resulting from 211 
an SS-SI-VASO acquisition with 2D readout at 0.9 mm isotropic employing different GRAPPA 212 
references: single-shot, segmented and FLEET (Polimeni et al., 2016) with three different flip 213 
angles (2, 30 and 90 degrees) (figure 1C). The segmented reference resulted in the best 214 
compromise between artifact level and tSNR in temporal areas. 215 

Finally, we considered the use of 2D simultaneous multi slice (SMS - also known as 216 
multiband) (Moeller et al., 2010; Setsompop et al., 2012) EPI readouts in VASO in order to 217 
‘freeze’ cardiac-induced vessel pulsation artifacts. The use of SMS results in different effective 218 
inversion times across slices and in our investigations this translated to sudden jumps of signal 219 
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intensity in the VASO data (figure 1D). As this complicates the performance of retrospective 220 
motion correction and results in spatially heterogeneous tSNR we did not use SMS in the 221 
comparison in study 2. 222 

Generally, in auditory fMRI studies, sounds are presented inside the silent gap 223 
between volume acquisitions (sparse design - Hall et al., 1999). In study 1, pure tones were 224 
presented for 800 ms within the inherent 900 ms dead time of the SS-SI-VASO sequence (thus 225 
following a sparse design), but this approach resulted in weak auditory evoked fMRI 226 
responses in the VASO (and simultaneously acquired BOLD) data. A possible reason for this 227 
reduced effectiveness of the sparse design is the relatively short duration of the gap and 228 
sound (900 ms and 800 ms respectively) compared to the noise of the BOLD/VASO acquisition 229 
time (~2.5 seconds depending on the protocol). Following this rationale, in study 2 and 3 we 230 
continuously presented auditory stimuli (e.g. the auditory stimulation overlapped with the 231 
scanner noise) and played them loud enough to be audible compared to the scanner noise. 232 
This approach resulted in larger evoked responses (see results study 2 and 3).  233 

 234 
 235 
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Figure 1. Overview of the challenges encountered when acquiring VASO data in the auditory cortex. A) Inflow 
effects were found in both GE-BOLD and VASO in temporal regions. However, the VASO signal seemed to be 
more affected by the inflow of not-nulled blood. B) Cardiac pulsation effects reduced image contrast due to 
long 3D-EPI readouts. In the functional images, the contrast in our region of interest seemed to be particularly 
affected. Additional ICA analysis (left bottom) showed the main components around Heschl’s gyrus. C) In the 
presence of physiological noise, there is a tradeoff in the amount of ghosts and the tSNR when evaluating 
different GRAPPA auto calibration signal (ACS) acquisitions. These tests were conducted for the protocol with 
2D-SMS readouts. D) 2D-SMS VASO resulted in T1-weighted slice-wise intensity differences that were most 
visible in the middle of the slab. The two axial slices show the intensity differences between two “consecutive” 
slices (with the same signal intensity scaling). E) Schematic depiction of one TR of the final SS-SI-VASO 
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sequence. An inaudible phase-skipped adiabatic pulse is used in the inherent silent gap of this sequence. This 
is followed by the acquisition of a volume of VASO and a volume of BOLD.   

 236 
A schematic depiction of the final protocol is illustrated in figure 1E (and with a 237 

complete parameter list available here: 238 
https://github.com/layerfMRI/Sequence_Github/tree/master/Auditory). In particular, we 239 
used an (inherently) inaudible adiabatic inversion pulse with a 30 degree phase skip, a readout 240 
time of 700 ms which is shorter than the cardiac cycle and a 70 degree reset-pulse (Lu, 2008) 241 
at the end of each acquisition of a VASO-BOLD pair. The purpose of the reset pulse was also 242 
to effectively saturate stationary Mz-magnetization of cerebrospinal fluid (CSF) and gray 243 
matter (GM) before the application of the consecutive inversion pulse. The suppressed CSF 244 
signal (see contrast in figure 1E) mitigates potential biases of dynamic CSF volume changes 245 
that have previously been reported to impose a source of bias for VASO applications in the 246 
auditory cortex (Scouten & Constable, 2007). The effective temporal resolution was 2.3 247 
seconds. 248 

 249 
2.8 Study 2: 2D versus 3D comparison 250 
We collected two datasets of both BOLD and VASO (0.9 mm isotropic and 12 slices), one with 251 
a 2D readout (TR = 1833.5 ms; TE = 21 ms; flip angle = 70°; GRAPPA = 3; reference scan = 252 
segmented) and one with a 3D readout (TR = 1609 ms; TE = 22 ms; variable flip angles between 253 
16° and 30°; GRAPPA = 3; reference scan = FLASH (Talagala et al., 2013)).  254 

Participants were asked to passively listen to a series of sounds consisting of multi-255 
frequency sweeps. Stimuli were presented following a blocked design with 20 volumes of 256 
sound stimulation followed by 20 volumes of rest. Each run consisted of thirteen stimulation 257 
blocks. A recording of the stimuli is available here: https://layerfmri.page.link/aud_stim. In 258 
each participant we collected two runs (S1 and S4) or 3 runs (S2 and S3) with a 2D readout 259 
and a 3D readout. 260 
 261 
2.9 Study 3: Tonotopy  262 
Simultaneous BOLD and VASO data were collected using the 3D sequence (after finalizing 263 
study 2) described above (0.9 mm isotropic; 12 slices; TR = 1609 ms; TE = 22 ms; GRAPPA  = 264 
3; reference scan = FLASH), variable flip angles between 16° (first segment of readout block) 265 
and 30° (last segment of readout block). In addition, we collected anatomical data (with 266 
optimized gray/white matter contrast) using MP2RAGE (TR = 6000 ms, TE = 2.39 ms, TI1/TI2 267 
= 800/2750 ms, FA1/FA2 = 4°/5°, GRAPPA = 3 and 256 slices) (Marques et al., 2010) at a 268 
resolution of 0.7 mm isotropic. 269 

Participants passively listened to tones varying slightly around 7 different center 270 
frequencies (130, 246.2, 466.3, 883.2, 1673, 3168 and 6000 Hz). Center frequencies were 271 
presented following a blocked design. Stimulation blocks (23 seconds) contained forty-six 272 
tones (500 ms each) varying 0.2 octaves around the center frequency. Each stimulation block 273 
was followed by a rest period (23 seconds). Functional runs consisted of fourteen stimulation 274 
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blocks with a total duration of approximately 11 minutes per run. In one participant we 275 
collected four runs and in a second participant five runs. Before each tonotopic experiment 276 
tones were equalized for perceived loudness.  277 

 278 
2.10 Functional data analysis 279 
All functional images were sorted by contrast, resulting in a (BOLD-contaminated) VASO and 280 
a BOLD time series. The first three volumes of each time series were removed to account for 281 
the steady state. Each time series was motion corrected using SPM12 (Functional Imaging 282 
Laboratory, University College London, UK). The estimation of the motion parameters was 283 
restricted to a mask of the temporal lobe. Next, the time series were temporally upsampled 284 
by a factor of 2. This resulted in an interpolated TR of 1.15 seconds. As in previous studies, we 285 
corrected for the BOLD contamination in the VASO data using the open software suite LayNii 286 
(version 2.2.0 - Huber et al., 2021b).  287 

In study 2, activation maps were created using AFNI (3dDeconvolve - version 21.2.04). 288 
We used a General Linear Model and normalized the time course with z-standardization. The 289 
resulting maps portray normalized differences between auditory stimulation and rest. Two-290 
dimensional ROI’s were drawn manually in spatially upsampled EPI space and were divided in 291 
7 equivolume layers (Waehnert et al., 2014) with which layer plots were created using LayNii.  292 

In study 3, after preprocessing, functional data were first aligned to the anatomical 293 
data using Brainvoyager (version 22.2 - Brain Innovation, Maastricht, The Netherlands). For  294 
statistical analysis we used a General Linear Model with one predictor for each center 295 
frequency. Time series were normalized to percent signal change prior to statistical analysis. 296 
Tonotopic maps were created using best frequency mapping (Formisano et al., 2003).  297 
 298 

3. Results 299 
3.1 Study 2: 3D-EPI versus 2D-EPI  300 
The presentation of auditory stimuli resulted in reliable responses in the bilateral auditory 301 
cortex for VASO (except for participant 2 in the 2D readout acquisition - see figure 2) and for 302 
BOLD (supplementary figure 1). For VASO, the 3D readout resulted in higher z-scores in 303 
bilateral auditory cortex, while this benefit was not directly visible in the BOLD data at these 304 
resolutions (supplementary figure 1). These results are somewhat consistent with previous 305 
2D vs. 3D comparisons of VASO in the primary motor cortex (Huber et al., 2018a). Here we 306 
extend these findings for the physiological-noise constrained primary auditory cortex.  307 

Since the VASO signal is a composite signal from blood-nulled and not-nulled (BOLD) 308 
images, its detection sensitivity is indirectly dependent on the noise level of BOLD too. We 309 
believe, the result that VASO benefits from 3D-EPI more strongly than BOLD, is thus mostly 310 
driven by the relatively lower tSNR of blood-nulled images compared to non-nulled BOLD 311 
images.  312 
 313 
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Figure 2. Activation maps of VASO (z-scores) overlayed on distortion corrected mean EPI images (per 
participant and readout). For our data, using a 3D-EPI readout seems to be beneficial in VASO.  

 314 
3.2 Cortical depth-dependent responses 315 
Figure 3 shows the layer profiles obtained in 2D regions of interest (ROIs; covering Heschl’s 316 
Gyrus [HG]). In VASO, the signal had a tendency to increase within gray matter. However, 317 
cortical depth dependent signal also showed a reduction at the pial surface (CSF/GM in figures 318 
3 and 4), indicating its reduced sensitivity to macrovasculature. Separate analysis on the BOLD 319 
data using the same ROI definition, showed a monotonic increase in functional activation 320 
towards the cortical surface (supplementary figure 2) and no decrease on the pial surface. 321 
Similar results were obtained when defining ROIs based on functional activation (response to 322 
sounds) in the medial anterior part of HG on the left hemisphere (figure 4 for VASO and 323 
supplementary figure 3 for BOLD). 324 

Both the activation maps and the laminar analysis indicate that a 3D readout is 325 
beneficial for collecting VASO data (higher z-scores and increased reliability). 326 
 327 
 328 
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Figure 3. Z-scored cortical depth-dependent activation changes for the 2D- and 3D-EPI VASO data. A) The 
anatomically-informed ROI was drawn on the bias field corrected mean 3D-EPI VASO (example at the left 
bottom). The fMRI layer-dependent changes across depths for each participant. B) Average z-scored layer-
dependent activation changes across participants.  

 329 
 330 
 331 
 332 
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Figure 4. Z-scored cortical depth-dependent activation changes for the 2D- and 3D-EPI VASO data. The ROI 
was drawn on an axial slice as shown in figure 3A and was based on functional activation. A) The fMRI layer-
dependent changes across depths for each participant. B) Average z-scored layer-dependent activation 
changes across participants. 

 333 
3.3 Study 3: Tonotopic maps 334 
In study 3, the presentation of pure tones resulted in responses in the bilateral auditory cortex 335 
for both BOLD and VASO. Mid-gray matter anatomical surfaces were created from a WM/GM 336 
segmentation and inflated (figure 5) to visualize HG (outlined in black) and the planum 337 
temporale/polare. The analysis was confined to voxels showing both a positive signal change 338 
for BOLD (at a threshold of p<0.05 uncorrected) and a negative VASO signal change. Tonotopic 339 
maps that were interpolated on the mid-gray matter surface (figure 5) show the expected 340 
high-low-high frequency gradient along HG in VASO (see e.g. Moerel et al., 2014 for a 341 
comprehensive discussion on the expected topography of tonotopic maps). The same 342 
gradient is present in the BOLD data (supplementary figure 4) as shown in previous studies 343 
using GE-BOLD (Moerel et al., 2014). 344 
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 345 

 
Figure 5. Inflated mid-gray matter surface meshes were created to visualize tonotopic maps coming from 
the VASO data. On the right of each inflated surface, tonotopic maps are displayed for both hemispheres 
of the two participants. Heschl’s gyrus is outlined in black. The expected tonotopic high-low-high 
frequency preference gradient is respected. 

 346 
4. Discussion 347 

Despite the fact that layer-fMRI VASO can provide valuable information in sub-millimeter and 348 
layer-fMRI applications (Finn et al., 2019; Huber et al., 2015, 2017; Huber, et al., 2021; Yu et 349 
al., 2019), it has not been successfully applied in the human auditory cortex. This is in contrast 350 
to GE-BOLD, which has been used to image laminar and columnar responses in the temporal 351 
lobe (Ahveninen et al., 2016; De Martino et al., 2015; Gau et al., 2020; Moerel et al., 2019). In 352 
this study, we aimed at implementing, testing, optimizing, and validating a VASO protocol for 353 
laminar fMRI investigations of the auditory cortices. As a proof of concept, we applied the 354 
final VASO protocol to map tonotopic responses in the bilateral auditory cortex. 355 

Starting from a protocol that was previously successfully used (Huber et al., 2021b), 356 
the location and vascular physiology of the auditory cortex resulted in several artifacts. This 357 
required us to reconsider acquisition parameters and approaches that have helped to 358 
improve layer-fMRI applications but whose proof of generalizability across brain areas is still 359 
limited. The need to account for the specific vascular physiology of the auditory cortex, 360 
resulted in using a readout time shorter than the cardiac cycle and optimization of the 361 
inversion pulse (figure 1). To evaluate possible physiological contamination when using the 362 
standard 3D readout in VASO, we considered the use of a 2D readout. To develop an efficient 363 
2D protocol for VASO, we combined techniques (such as FLEET for GRAPPA reconstruction 364 
and SMS acquisition) which are often used (in auditory neuroscience studies) when collecting 365 
submillimeter GE-BOLD data. To our surprise, while these approaches showed the expected 366 
utility in the GE-BOLD data, they did not result in the expected increase in sensitivity when 367 
considering the VASO data (figure 1). Study 1 resulted in two optimized protocols (2D and 3D 368 
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readout) for VASO fMRI in the temporal lobe. Their comparison (study 2) showed an increased 369 
stability and SNR when using the 3D-EPI readout, despite its susceptibility to physiological 370 
noise. Note that the benefit for the 3D readout was particularly visible in the VASO time series 371 
(and not the BOLD data). It has been previously shown that the superiority of 2D-SMS or 3D-372 
EPI readout strategies at 7T in conventional BOLD is highly dependent and specific to the 373 
acquisition and analysis details including the TR, acceleration factor, resolution, physiological 374 
noise correction and number of slices (Huber et al., 2018a; Jorge et al., 2013; Le Ster et al., 375 
2019; Reynaud et al., 2017; Stirnberg et al., 2017). The BOLD results presented here are in 376 
agreement with this literature (see supplementary figures 1, 2 and 3). 377 

We examined laminar profiles of activation elicited by the sounds presented in study 378 
2. Similarly to previous studies investigating the specificity of laminar functional responses in 379 
auditory cortex (Moerel et al., 2018 - using 3D-GRASE), we did not observe a clear peak in 380 
functional response in middle cortical depths. The nature of the stimulation, and analysis 381 
could underlie this observation.  First, as the auditory stimuli we presented in study 2 382 
comprised complex dynamic sounds presented for about 20 seconds, it is unclear what the 383 
expected neural laminar profile would be in absence of any control for attention or another 384 
task. Second, we defined regions of interest for the laminar profiles based on macro-anatomy 385 
(anterior HG) or activation. The effect that this has on sampling the laminar activation profiles 386 
in auditory regions whose cytoarchitecture overlaps only partly with macro-anatomical 387 
features (see e.g. Gulban et al., 2020) is beyond the scope of this paper but could be an 388 
interesting venue for future investigations. What we did observe was that while the signal in 389 
the upper layers has the tendency to be larger than in middle and deeper layers, the signal 390 
decreases again at the pial surfaces. This is expected due to VASO’s insensitivity to large pial 391 
veins. As expected, GE-BOLD data resulted in an increased response towards superficial layers 392 
(supplementary figures 2 and 3) without a reduction on the pial surface. This profile is 393 
characteristic of GE-BOLD submillimeter acquisitions and is resulting from vascular draining 394 
and the contribution of large vessels on the cortical surface. If confirmed when analyzing a 395 
larger sample, a more controlled stimulus design, and within a more extended portion of 396 
temporal areas, the fact that vein-free VASO signal changes (Kim et al., 2013) within GM 397 
decrease as a function of cortical depth, could be interpreted as a validation of previous BOLD 398 
results (e.g.  indicating that the signal trends visible in the BOLD signal in temporal areas 399 
cannot be solely explained by draining vein effects alone). It is important to note that while 400 
we here demonstrate that VASO auditory responses are not affected by draining and large 401 
vascular contributions on the cortical surface, we do not imply that in presence of careful 402 
controls (Kok et al., 2016; Lawrence et al., 2019; Moerel et al., 2018) or using modeling 403 
techniques (Havlicek et al., 2015; Markuerkiaga et al., 2016) GE-BOLD data cannot be used to 404 
investigate laminar cortical processing. 405 

As a first proof of concept of the usability of VASO fMRI for the investigation of cortical 406 
processing in the temporal lobe, we presented results from a tonotopic experiment. Neurons 407 
throughout the auditory pathway display preferential tuning to the sound frequency (Winer 408 
& Schreiner, 2011) and using fMRI the topographic arrangement of frequency preference 409 
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(tonotopy) can be mapped in single individuals (Ahveninen et al., 2016; Da Costa et al., 2015; 410 
Formisano et al., 2003; Moerel et al., 2014). Tonotopy shows a typical topography with a low 411 
frequency region residing primarily on the HG and regions preferring high frequency 412 
bordering it both posterior medially and anterior laterally (for a description see e.g. Moerel 413 
et al., 2014). This characteristic topography makes tonotopy a possible benchmark for 414 
auditory functional acquisitions. The large scale tonotopic gradient covering the superior 415 
temporal plane was visible in the VASO data. This initial promising result opens the venue to 416 
further investigations on the specificity of the VASO signal across cortical depths (Moerel et 417 
al., 2018).  418 

In both study 2 and 3 we opted for a continuous stimulation protocol (i.e. with sounds 419 
overlapping with the scanner noise). This choice was driven by initial investigations (study 1) 420 
that showed weak effect size for a strategy more conventional in auditory fMRI (i.e. a sparse 421 
design - Hall et al., 1999). A possible reason for this is the relatively short duration of the silent 422 
gap inherent in the VASO acquisition (900 ms) compared to the scanner noise time (~2.5 423 
seconds), making a sparse design highly inefficient in our case despite its quiet stimulation 424 
characteristics. The acquisition protocol we provide here could serve as the basis of future 425 
investigations directed at optimizing sound presentation in auditory VASO fMRI. We 426 
nevertheless consider it reassuring that despite the fact that we opted for presenting sounds 427 
also simultaneously with the scanner noise, tonotopic maps resulting from the VASO (figure 428 
5) and BOLD acquisition (supplementary figure 4) conform to the expected topography. 429 

Despite the shown applicability of VASO for auditory fMRI, we deem it necessary to 430 
outline some limitations (many not specific to auditory studies) that require consideration 431 
when setting up a neuroscientific (laminar) fMRI study. While VASO is more sensitive to 432 
microvascular CBV increases, it is also characterized by a reduced detection sensitivity (as 433 
indicated by generally lower z-scores in figures 2, 3 and 4 than in supplementary figures 1, 2 434 
and 3). To compensate for this effect a typical approach is to average across runs. As a result, 435 
extending averaging across sessions would require careful consideration of approaches for 436 
inter session alignment (and placement) of the relatively small slab (12 slices in our case). 437 
Future investigations may have to address issues related to detection sensitivity and its 438 
dependence on experimental design and sound presentation schemes. In addition, when 439 
using VASO, functional runs are typically acquired with an identical design as averaging is 440 
performed on the raw time series before BOLD correction to limit noise amplification. This 441 
calls for careful balancing of conditions within functional runs. To increase sensitivity we also 442 
employed long stimulation periods (block design). Evaluating the sensitivity of event-related 443 
functional responses with VASO (Dresbach et al., 2022) would increase its usability (e.g. to 444 
prediction-error related responses in typical oddball designs). Moreover, alternative 445 
approaches for increasing sensitivity such as denoising (e.g. NORDIC - Vizioli et al., 2021), 446 
should be considered in future investigations. Finally, while to compensate for physiological 447 
noise effects we decided to use a readout train shorter than the cardiac cycle, in the future it 448 
may be interesting to consider higher order physiological noise correction methods in k-449 
space.  450 
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We believe that the significance of this work is multi-fold. In study 2 we developed a 451 
ready-to-use acquisition protocol for the user base of application-focused neuroscientists. 452 
The sequence binaries and the importable protocols are publicly available via ‘SIEMENS’ 453 
sequence ‘app-store’ on TEAMPLAY for any users of a ‘classical’ MAGNETOM 7T, which is the 454 
most widely used 7T scanner version around the world today. Users of other scanner versions 455 
and vendors will benefit from this protocol-development study as they can re-implement the 456 
acquisition approaches as described in study 1. Additionally, our protocols may allow 457 
application studies that are not straightforwardly addressable with the vein-bias of 458 
conventional GE-BOLD, such as single-task condition experiments. In such experiments, 459 
utilizing the developed VASO protocols alongside with BOLD can be useful to augment the 460 
understanding of the neurovascular origin of the fMRI signals. Other example studies, where 461 
acquiring VASO and GE-BOLD simultaneously may be beneficial, might be related to research 462 
questions of altered vascular baseline physiology (e.g. in studies about pharmacological 463 
interventions, aging, and surgical interventions). Furthermore, we think that the 464 
concomitantly acquired VASO and BOLD data can be useful to calibrate existing layer-fMRI 465 
BOLD models (Corbitt et al., 2018; Havlicek et al., 2015; Heinzle et al., 2016; Markuerkiaga et 466 
al., 2016; Marquardt et al., 2018; Merola & Weiskopf, 2018; Puckett et al., 2016) and extend 467 
their applicability across brain areas. For example, future GE-BOLD studies that want to apply 468 
venous-deconvolution model-inversion and may not find an increased response in the middle 469 
layers, can use the data we present here to increase the confidence in their results. The 470 
imaging protocol developed here can have implications beyond the auditory cortex. The 471 
auditory cortex is not the only brain area challenged by proximal macro-vessels with 472 
substantial physiological noise. There are many other brain areas in which sub-millimeter 473 
VASO was not successfully applied until now, for example, hippocampus, insular cortex, 474 
claustrum, entorhinal cortex, and thalamic nuclei. The protocol developed here is designed 475 
to mitigate the challenges of such brain areas and may be useful to address neuroscientific 476 
research questions in those brain areas as well. Finally, the main aim of this work was to 477 
provide the auditory research community with a viable VASO protocol for laminar fMRI 478 
studies.  479 

To conclude, our results demonstrate that, when using optimized parameters, VASO 480 
can be used to investigate cortical responses in the bilateral temporal cortex. While VASO has 481 
a lower detection threshold compared to GE-BOLD, it is believed to be dominated by 482 
microvascular CBV increase close to the site of neural activity changes. A combined 483 
acquisition approach of BOLD and VASO, as described here, may allow benefitting from the 484 
quality features of each method.  485 
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