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Abstract

Although cancer genomes often contain complex genomic rearrangements, its impact on tu-

morigenesis is still unclear, especially when they are involved in non-coding regions. Under-

standing 3D genome architecture is crucial for uncovering the impacts of genomic rearrange-

ments. Here, we present InfoHiC, a method for predicting 3D genome folding and cancer

Hi-C from complex genomic rearrangements. InfoHiC provides distinct interaction views of

multiple contigs from the cancer Hi-C matrix. We then validated cancer Hi-C prediction us-

ing breast cancer cell line data and found contig-specific interaction changes. Moreover, we

applied InfoHiC to patients with breast cancer and identified neo topologically associating

domains and super-enhancer hijacking events associated with oncogenic overexpression and

poor survival outcomes. Finally, we applied InfoHiC to pediatric patients with medulloblas-

toma, and found genomic rearrangements in non-coding regions that caused super-enhancer

hijacking events of medulloblastoma driver genes (GFI1, GFI1B, and PRDM6). In summary,

InfoHiC can predict genome folding changes in cancer genomes and may reveal therapeutic

targets by uncovering the functional impacts of non-coding genomic rearrangements.

Introduction

Complex genomic rearrangements have been observed in various cancers1,2. Moreover, high-

throughput sequencing revealed breakpoints of genomic rearrangements or so-called structural

variations (SVs) at the single-base level, and revealed an association with tumorigenesis in terms

of copy number alterations (CNAs) or gene fusions3. A recent study revealed complex genomic
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rearrangements including homogeneously staining regions (HSRs), double minutes (DMs), and

breakage-fusion-bridge cycles, which contributed to massive gene copy number (CN) changes1.

However, most SV breakpoints have been found in non-coding regions or outside genes, and their

effect on tumorigenesis has been less closely investigated.

Recent studies4–6 using Hi-C data have advanced our understanding of the 3D genome organiza-

tion of DNA sequences. Topologically associating domains (TADs)7 are key components of the

3D genome architecture, and DNA elements in the same TAD are more likely to interact with each

other. SVs may form neo-TADs and novel interactions between gene promoters and enhancers6.

However, neo-TAD formation has been less thoroughly investigated because of a lack of available

methods for interpreting cancer Hi-C data. Recently, a method called NeoLoopFinder8 was de-

veloped to analyze neo-loops from cancer Hi-C data; however, this method is restricted to large

SVs, and interactions from complex SV clusters are ignored. In addition, high-quality Hi-C data

are limitedly available in cancer cell lines; thus, the 3D genome architecture of primary cancers

has not yet been investigated. Furthermore, although deep learning approaches9–11 have been used

to predict Hi-C data using sequence-based modeling, these methods are based on the reference

sequence and are restricted to non-cancerous cell lines. Their applicability in cancer Hi-C data

were not investigated yet.

In this article, we present a method named InfoHiC that enables cancer Hi-C prediction from com-

plex SVs. Based on complex genomic rearrangements in different haplotypes, InfoHiC predicts

the cancer Hi-C matrix in assembled contig and total Hi-C views. We then validate our model

using Hi-C data from breast cancer cell lines (T47D, BT474, HCC1954, SKBR3, and MCF7) and
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show that InfoHiC outperforms the reference-based model. We also discover neo-TADs and neo-

loops, as well as enhancer hijacking events from contig Hi-C prediction in breast cancer cell lines,

which can be validated using the InfoHiC validation scheme. Furthermore, we apply InfoHiC to

patients with breast cancer from The Cancer Genome Atlas (TCGA) and discover enhancer hi-

jacking events that result in oncogenic overexpression and poor survival outcomes. Finally, we

apply InfoHiC to pediatric patients with medulloblastoma, and highlight its analytical potential for

discovering non-coding driver SVs associated with oncogenic expression.

Results

InfoHiC predicts cancer Hi-C using a convolutional neural network (CNN) model A can-

cer Hi-C matrix is a mixture of Hi-C matrices from multiple genomic contigs, in which Hi-C

reads from different contigs are observed as a sum in the reference coordinates. In contrast to

reference-based models9–11, the cancer Hi-C prediction model requires merging of multiple pre-

diction outputs. In addition, contigs have different genomic variations, including single nucleotide

polymorphisms (SNPs), SVs, and CNAs; thus, genomic variations must be encoded in a contig

matrix. To this end, we developed an architecture called InfoHiC, composed of CNNs, that out-

puts chromatin interactions of genomic contigs and merges them in the total Hi-C views based

on haplotype-specific copy number (HSCN) encoding, which represents genomic variants in the

contig matrix (Fig. 1).

To predict a target pair of the Hi-C contact between genomic bins observed in the reference coor-

dinates, we collected contig DNA sequences in which a contig target pair of genomic bins (40 kb)
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is matched with the reference target pair in a pre-defined genomic window with a length l of 1 Mb

or 2 Mb. For the contig, we used InfoGenomeR1, which enables the assembly of haplotype contigs

from SVs and SNPs, and measures their CNs using whole-genome sequencing (WGS) data. Next,

based on haplotype contigs, we encoded contig DNA features using an 4 × l matrix, where the

row index represents the HSCN of each base sequence (A, C, G, and T). We used a CNN model

as a component of the sequence-based prediction for each genomic contig, which has a similar

architecture with deepC9 that is developed for a single reference sequence. Each CNN model pre-

dicts a target contact, and target contacts may lie in different distances in the contig coordinates.

The predicted contig Hi-C matrices are then transformed into reference coordinate matrices and

merged into the haplotype Hi-C and the total Hi-C matrix (Fig. 1a).

Moreover, we propose a validation scheme of 3D genome folding changes predicted from SVs

using InfoHiC, which maps contig Hi-C matrices into the reference coordinates and validates them

via a cancer Hi-C experiment (Fig. 1b). Scattered Hi-C contacts resulting from SVs are outlined by

each genomic contig and those from the InfoHiC prediction and the Hi-C experiment are compared

in the reference coordinates (T1, C1-D1, and D2 in Fig. 1b). To discover neo-TADs and neo-loops

from the SV-induced Hi-C contacts, we applied a contig-specific normalization on the contig Hi-C

matrices, where the scattered Hi-C contacts are assembled in contig coordinates (contig 1, 2, and 3

in Fig. 1c). Hi-C normalization methods12,13 can be applied to the contig Hi-C matrices without the

loss of SV-induced Hi-C contacts. Finally, InfoHiC annotates neo-TADs and neo-loops resulting

from the SVs on the normalized contig Hi-C matrices (Fig. 1c).
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InfoHiC outperforms the reference-based CNN model We trained InfoHiC using Hi-C datasets

from a breast cancer cell line (T47D) and performed internal validation using it. To evaluate the

prediction performance for regions with and without SVs separately, we first extracted genomic

regions without SVs. Then, for these regions, we performed five random splits of 4-Mb reference

genomic windows, and 80%, 10%, and 10% of regions were used for the training set, validation

set, and test set 1, respectively. The remaining genomic regions with SVs, named test set 2, were

used for the SV prediction of 4-Mb reference windows and SV windows (novel windows derived

from SVs). We measured the distance-stratified correlation (DSC)9 and Pearson correlation for

reference windows (4-Mb windows that exist in the reference coordinate) of test sets 1 and 2 and

measured the Pearson correlation for SV windows of the test set 2. In addition, we used four breast

cancer cell lines (MCF7, BT474, SKBR3, and HCC1954) as the external test sets. Test sets were

defined for each of these cell lines. Test setext 1 refers to reference window regions used in test set

1 for T47D after extracting regions with SVs for each cell line and test setext 2 refers to regions

with SVs for each cell line. To evaluate the performance of InfoHiC when non-cancerous cell lines

were used for training, we further trained InfoHiC using two breast epithelial cell lines (HMEC

and MCF10A), and then tested the four breast cancer cell lines, where the same strategy of five

random splits as the T47D was used.

In Fig. 2, the internal validation of the test set 1 (Fig. 2 and Supplementary Table 1) shows per-

formance improvement due to the training strategies and architectures of InfoHiC. First, deepC

does not have prior knowledge of SV breakpoints. Thus, we used reference windows around SVs

regions (test set 2) for training as well, and obtained the DSC value of 0.607 for the test set 1.
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When windows with SV-derived contacts were removed for training deepC (breakpoint removal),

the performance increased (0.622 DSC). Moreover, HSCN encoding (0.668 DSC) employed in

InfoHiC with breakpoint removal showed better performance than HSCN decoding (0.647 DSC)

(see Methods), indicating that InfoHiC can learn the relationship between CNAs and Hi-C contact

intensities. We then extended the 1-Mb prediction window to 2 Mb to identify TADs greater than

1 Mb. We used the HSCN encoding model for 2-Mb prediction, and the 2-Mb model showed the

best performance when the 1-Mb model was transferred (InfoHiC transfer, 0.691 DSC). Finally,

we tested the 2-Mb HSCN encoding model with 1-Mb transfer using the external validation of

test setext 1, and showed that our model trained by T47D also predicted external cancer Hi-C data

well (InfoHiC transfer, average 0.631 DSC; deepC, average 0.572 DSC), thereby demonstrating

the generality of our model.

Next, we validated InfoHiC for test set 2 containing SV-derived Hi-C contacts (Fig. 2 and Sup-

plementary Table 2), which represent major challenges for cancer Hi-C prediction. For the SV

window, deepC-SV, which performed reference training and Hi-C prediction of individual SV

calls from InfoGenomeR, was compared with InfoHiC, which performed HSCN training and Hi-C

prediction of assembled contigs. InfoHiC (1 Mb, 0.765; 2 Mb, 0.754 Pearson’s R) outperformed

deepC-SV (1 Mb, 0.649; 2 Mb, 0.702 Pearson’s R) for T47D (SV window in Fig. 2). The perfor-

mance was still valid for test setext 2 (2 Mb InfoHiC, 0.715; 2 Mb deepC, 0.642 average Pearson’s

R), demonstrating the predictive power of InfoHiC for SV-induced contacts.

Further, we compared InfoHiC, deepC, and deepC-SV by training using non-cancerous breast

epithelial cell lines (HMEC and MCF10A), where performances of deepC and deepC-SV were
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measured before and after implicit normalization of raw Hi-C data (Supplementary Table 2). For

training using HMEC and MCF10A, InfoHiC performed reference training of raw Hi-C data and

Hi-C prediction of assembled contigs using HSCN decoding, as HSCN encoding could not be

trained by non-cancerous cell lines. InfoHiC showed better performance when the models were

trained by HMEC and MCF10A, despite deepC and deepC-SV taking advantage of implicit nor-

malization (Supplementary Fig. 1 and Supplementary Table 2). Validation using external test sets

demonstrated that the T47D-trained InfoHiC model showed slightly better performance than the

HMEC and MCF10A-trained models, which suggests that training using cancer Hi-C data may

be more effective than that using normal-tissue Hi-C data for external cancer Hi-C prediction, or

that the Hi-C data of T47D were generated at a higher quality. Under both circumstances, the

accumulated cancer Hi-C data would provide benefits to InfoHiC.

InfoHiC predicts neo-TADs and neo-loops of cancer cell lines We applied InfoHiC to five breast

cancer cell lines and predicted the contig Hi-C matrices. We then performed contig-specific nor-

malization to each contig Hi-C matrix and annotated the neo-TADs and neo-loops. The number

of neo-TADs ranged from 47 to 303 (Fig. 3a). More than 20% of neo-TADs were resulted from

multiple SVs. In those cases, a Hi-C contact in the cancer Hi-C matrix was not unique to a single

TAD, and neo-TADs were overlapped with Hi-C contacts from other TADs (the average number

of overlapping TADs was four, with a cut-off of 10% overlapping contacts). These results suggest

that assemblies of complex SVs and multiple contig predictions are important for neo-TAD analy-

sis. After annotating typical-enhancer (TE) and super-enhancer (SE) hijacking events of genes in

neo-TADs, we searched enhancer hijacking events of several cancer-related genes14,15 in the breast
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cancer cell lines (Supplementary Table 3). InfoHiC can predict SE hijacking events of cancer-

related genes from complex SVs such as MYC and PVT1 in SKBR3, which play an oncogenic role

in various cancers16, as well as GNA13 in BT474, which is upregulated and associated with poor

outcomes in breast cancers17. SE hijacking events were confirmed by Hi-C experiments using the

InfoHiC validation scheme (Supplementary Fig. 2).

Next, we investigated the expression levels of genes in the neo-TADs and neo-loops (Fig. 3b).

Genes in neo-TADs were overexpressed compared to those in the reference TADs (Benjamini-

Hochberg (BH) adjusted P < 0.0001, Student’s one-sided t-test), suggesting that neo-TAD forma-

tion may induce interactions with other TEs or change the reference chromatin state4. Moreover,

SE hijacking events resulted in significant overexpression of genes compared to that in the refer-

ence TADs (BH-adjusted P < 0.0001) and neo-TADs (BH-adjusted P = 0.011). This overexpres-

sion was also observed in neo-loop annotations (BH-adjusted P< 0.0001 in all three comparisons).

Furthermore, we performed analysis of covariance (ANCOVA) by controlling for CN effects on

gene expression (Supplementary Fig. 3). Overexpression by neo-TADs and SE hijacking events

were observed under CN covariates (P = 0.001, one-way ANCOVA), suggesting that neo-TADs

and SE hijacking events are involved in the dysregulation of gene expression in cancer.

An example of neo-TAD formation in the IDO1 gene was observed in the HCC1954 cell line.

HCC1954 had three distinct SV clusters, one of which was found among chromosomes 8, 12,

and 20 (Fig. 3c). Moreover, SV clusters resulted in neo-TADs from different contigs. A tandem

duplication was found near IDO1, which resulted in an SE hijacking event (contig 4 in Fig. 3c).

Interaction between IDO1 and the SE was absent in the other breast cell lines, indicating a neo-
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interaction. The IDO1 gene showed the highest fragments per kilobase of transcripts per million

mapped reads (FPKM) level among breast cancer cell lines from the Cancer Cell Line Encyclo-

pedia (CCLE) (Supplementary Fig. 4), whereas integer CNs of the genes did not significantly

affect gene expression (-0.002 Pearson’s R). The correlation between IDO1 expression and the in-

tracellular level of an immunosuppressive metabolite, kynurenine, was reported in a recent CCLE

report18. The HCC1954 cell line showed the second-highest kynurenine levels among the breast

cancer cell lines. Collectively, these results showed that InfoHiC can provide evidence of the 3D

genome context associated with IDO1 overexpression and high kynurenine levels.

Non-coding effect of SVs in 3D cancer genomes Subsequently, we applied InfoHiC to BRCA

patients (n=90) in TCGA to investigate the non-coding effects of SVs. Neo-TADs were anno-

tated on contig Hi-C prediction and were found with high frequency peaks in chromosomes 1, 8,

11, 17, and 20 (bottom plots in Fig. 4a). Recurrent neo-TAD genes (found in ≥ 10% neo-TAD

samples) were enriched in the KEGG breast cancer pathway (BH-adjusted P = 0.014), including

breast cancer genes such as FGF19, ERBB2, CCND1, MYC, and RPS6KB1. Genes in neo-TADs

were overexpressed under CN covariates (P < 0.0001, one-way ANCOVA), demonstrating the

non-coding effects of SVs on gene expression (Fig. 4b).

We also observed that neo-TAD formation frequently accompanies CNAs in breast cancer. To

identify recurrent neo-TAD genes associated with overexpression controlling for CNAs, we per-

formed a linear regression between gene CNs and expression in reference TAD samples without

neo-TADs. Based on the regression line, we measured Cook’s distance (an indicator of outlier

influence on the regression line)19 for the neo-TAD samples. We counted the number of neo-TAD
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samples with a positive residual and a Cook’s distance greater than 4/n (n=90), which indicated

overexpression compared with the reference TAD samples. Genes with such neo-TADs were found

to have peaks in the 8p11, 11q13, and 17q11 regions (top plots in Fig. 4a). We selected genes with

the following attributes: 1) more than 50% of neo-TAD samples showing a Cook’s distance greater

than 4/n and 2) with SE hijacking samples ≥ 4 as recurrent neo-TAD genes involved in overex-

pression (Supplementary Table 4), which included known driver genes14 such as ERBB2, CCND1,

LASP1, CLTC, and CDK12. We further investigated the survival outcomes of patients with recur-

rent neo-TAD genes across all BRCA data using RNA-seq from TCGA (n=1098). A threshold

for overexpression samples was defined as the minimum FPKM value over the Cook’s distance

cut-off for each gene (Supplementary Table 4). We found three recurrent neo-TAD genes (LASP1,

CLTC, and MYO1D) with poor prognosis. LASP1 overexpression is reportedly correlated with

poor prognosis in breast cancers; however, the cause of LASP1 overexpression remains unclear (it

does not result from CNAs)20. Here, we discovered neo-TAD formation of LASP1 associated with

overexpression and poor prognosis (BH-adjusted P = 0.019, log-rank test) (Supplementary Fig. 5).

The most recurrent neo-TAD formation associated with poor survival was found in the MYO1D

gene (Fig. 4c). MYO1D is in a repressed TAD, indicating that its transcriptional activity is low

in the reference state4. Seven patients exhibited neo-TAD formation of MYO1D. We found SE

hijacking events with neo-TAD formation in six patients, five of whom showed overexpression of

the MYO1D gene (Fig. 4d). One patient (TCGA-AO-A124) did not have a SE in the neo-TAD

but also showed overexpression of the MYO1D gene, as tandem duplication may have a position

effect on gene expression21. Furthermore, overexpression of MYO1D was a prognostic factor for
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survival in TCGA BRCA patients (BH-adjusted P = 0.044, log-rank test) (Fig. 4e). Overexpres-

sion of MYO1D has previously been associated with breast cancer cell motility and viability22.

Collectively, these results suggest that InfoHiC can detect 3D genome changes associated with

overexpression and poor prognosis.

Application of InfoHiC to pediatric patients with medulloblastoma To demonstrate the an-

alytical potential of InfoHiC in discovering non-coding driver SVs, we applied InfoHiC to five

pediatric patients with medulloblastoma in our cohort. After we performed WGS and RNA-seq

analysis to these patients, the presence of driver mutations in coding regions were examined us-

ing cancer-related gene lists14,15,23 (Methods). Driver mutations were not found in three patients

(PD2104, 2107, and 2109) by single nucleotide variants (SNVs), indels, and CNA calls (Supple-

mentary Table 5 and 6). MYC amplification, which is a prevalent driver of group 3 medulloblas-

tomas24, and LOH deletion of a tumor suppressor, TSC1 was found in the PD2105 and PD2110

patients, respectively. Further analysis of SVs using InfoGenomeR revealed derivative chromo-

somes in the medulloblastoma patients; however the impacts of SVs were unknown as most SVs

occured in non-coding regions and were not relevant to CN changes or fusion events of driver genes

(Supplementary Fig. 6-9). Next, we investigated SVs that may affect the 3D genome organization.

Notably, we found complex SVs in the non-coding region in the driver mutation-negative case

(PD2107), which included a subtype-specific SE of group 4 medulloblastomas near the PRDM6

gene, the overexpression of which has been suggested as a driver of medulloblastoma23(Fig. 5a).

The patient also showed overexpression of PRDM6 with a 90-fold change in FPKM compared to

that in our cohort of brain tumors, suggesting that the complex SVs may induce PRDM6 over-
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expression (Fig. 5b). In addition, we found recurrent SVs near the GFI1 family oncogenes; a

deletion and tandem duplication near the GFI1B gene in the TSC1-deleted and MYC-amplified

cases (PD2110 and PD2105, respectively), and reciprocal translocation near the GFI1 gene in the

driver mutation-negative case (IITP2109). The patients showed overexpression of GFI1 family

oncogenes with more than 100-fold changes in FPKM (Fig. 5b), suggesting that these SVs could

be medulloblastoma drivers associated with oncogenic overexpression.

Using InfoHiC, we discovered neo-TAD formation derived from complex SVs and a SE hijack-

ing event in PRDM6 (Fig. 5c). We then annotated the CTCF motif directions in CTCF ChIP-seq

peak regions of TAD boundaries using PWMScan25 and checked the pairwise interactions of the

CTCF ChIA-PET data26, which supported the hypothesis that the reference TADs were arranged

in forward-reverse orientations. Complex SVs included an inversion spanning from the SE to the

CTCF motifs, which resulted in the SE hijacking event of the TAD containing PRDM6 (Fig. 5c).

This inversion maintained the forward-reverse CTCF arrangements, supporting neo-TAD forma-

tion with the SE (Fig. 5d). Complex SVs in the non-coding region near PRDM6 were also reported

in group 4 medulloblastomas in a previous study23, whereas neo-TAD formation by complex SVs

remains unclear. Our results demonstrated that InfoHiC can validate neo-TAD formation by com-

plex SVs and specify the non-coding driver SVs from the driver mutation-negative case (PD2107).

Furthemore, InfoHiC revealed SE hijacking events of neo-TADs of GFI1 oncogene families in-

duced by various types of SVs (PD2105, 2109, and 2110) (Supplementary Fig. 10 and Fig. 5d);

a deletion occured across TAD boundaries causing TAD fusion (PD2110), a tandem duplication

spanned an SE and the GFI1B gene causing a neo-TAD with the hijacked SE (PD2105), and a
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reciprocal t(1;5) translocation caused interchromosomal neo-TADs with distant SEs (PD2109),

demonstrating that neo-TADs were involved with activation of GFI1 oncogene families.

Discussion and Conclusions

In summary, we developed InfoHiC for cancer Hi-C prediction using a sequence-based model that

enables the identification of neo-TAD and neo-loop formation from rearranged genomes. In addi-

tion to providing a validation scheme for SV-derived Hi-C contacts, InfoHiC performs better than

the reference-based model. Currently, there is no normalization method suitable for the cancer

Hi-C matrix dealing with SV-derived contacts from multiple contigs. Therefore, instead of apply-

ing normalization methods to cancer Hi-C data to remove CNAs and SVs as biases, InfoHiC uses

raw Hi-C data for training and performs contig-specific normalization after contig Hi-C prediction.

Thus, InfoHiC provides normalized contig Hi-C matrices, which can be analyzed using other ana-

lytics tools developed for Hi-C data.

Regarding previous studies aimed at obtaining a contig Hi-C matrix from cancer Hi-C data, Ne-

oLoopFinder8 uses one-to-one mapping from the reference coordinate to a single contig coordi-

nate, which restricts cancer Hi-C data to large SVs (>1 Mb). However, InfoHiC uses a many-to-

one mapping from contig coordinates to the reference coordinate; thus InfoHiC is available for any

type of SVs, as shown in the tandem duplication, deletion, translocations, and cluster of complex

SVs (< 1 Mb) in the medulloblastoma cases (Fig. 5). Compared with reference-based prediction

models such as deepC9, Akita10, and Orca11, InfoHiC enables the use of cancer Hi-C data for

training and validation, which takes advantage of the accumulated Hi-C datasets of cancer cell
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lines. In addition, applications of reference-based models9–11 are currently limited to simple dele-

tions, duplications, or inversions; however, we showed that Hi-C prediction from complex SVs is

essential for neo-TAD findings in cancers.

In the application study of pediatric patients with medulloblastoma, we showed that various types

of SVs caused neo-TAD formation of the same GFI1 families. In addition, the impact of com-

plex SVs was uncovered by predicting Hi-C interaction from the assembled contig. Previous ap-

proaches of SV analysis in non-coding regions include annotating juxtaposition events between

genes and regulatory elements24 or boundary-affecting SVs from known TAD boundaries4. How-

ever, SV analysis requires Hi-C evidences as chromatin interaction between DNA elements and

TAD boundaries change according to rearranged sequence contexts. InfoHiC annotates juxtapo-

sition events (SE hijacking) and neo-TAD boundaries based on Hi-C prediction, providing more

accurate results for analyzing non-coding SVs. Furthermore, the impact of complex SVs could not

be investigated by previous approaches of enhancer-juxtaposing24 or boundary-affecting SV anno-

tation, and InfoHiC provides Hi-C evidences for neo-TAD boundaries derived from complex SVs.

Based on InfoHiC prediction, targeted therapy may be possible for non-coding driver SVs. For

the example of medulloblastoma (PD2109) where GFI1 gene was overexpressed by the reciprocal

translocation t(1;5), inhibitors of a co-factor of GFI1 transcription factor, LSD1 can be used for

targeted treatment. LSD1 inhibitors such as GSK-LSD1 and ORY-1001 were shown to be effective

for GFI1-activated medulloblastoma27.

As an integrative work from 1D genome reconstruction to 3D genome prediction, we demonstrated

that SVs have non-coding effects on the overexpression of cancer-related genes, which are asso-
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ciated with poor prognosis in BRCAs. We expect that the application of InfoHiC to other cancer

types may improve the chances of identifying cancer drivers altered by non-coding SVs, especially

for cancer types without driver SNVs and CNA events in coding regions. Furthermore, future re-

search may identify cancer drivers in patients without common coding driver mutations, which

may lead to personalized medication based on patient-specific SVs in the 3D genome context.
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Methods

Reconstruction of genomic contigs Genomic contigs were obtained using InfoGenomeR from

WGS data, which were used to construct a breakpoint graph to model the connectivity among

genomic segments using SVs, CNAs, and SNP information and derived genomic contigs from Eu-

lerian paths according to a minimum entropy approach1. We used DELLY228, Manta29, and novo-

Break30 for the initial SV detection from Illumina paired-end data. Then, SV calls pre-detected

from other WGS platforms (see Data availability section) were merged into the initial SV detec-

tion. We used BIC-seq231 for CNA detection and ABSOLUTE32 for integer-CN detection (with

cancer purity and ploidy estimation). SAMtools and BCFtools33 were used for SNP detection,

and the haplotype-cluster model of BEAGLE34 from 1000G was used for haplotype phasing in

InfoGenomeR.

HSCN encoding The genomic contigs were derived from SVs in haplotypes, and had different

CNs and SNP compositions with one another. Their sequences were represented by HSCN encod-

ing, which was modified from one-hot encoding to represent the CNs and SNPs in a contig matrix.

The column of the contig matrix represents each base index j of the contig, whereas the row index

i represents the base composition, i.e., A, C, G, and T. One-hot encoding represents a zero or one

binary for the base, and HSCN encoding multiplies the binary by the CN of the contig. We denote

the genome G as a set of genomic contigs g, with length l and HSCN encoding function as H . The
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CN of the genomic contig was µ(g).

H(g) = (hij) ∈ Z4×l (1)

h1j = µ(g) if gj is A, else 0. (2)

h2j = µ(g) if gj is C, else 0. (3)

h3j = µ(g) if gj is G, else 0. (4)

h4j = µ(g) if gj is T, else 0. (5)

Hi-C data processing We used the 3DIV pipeline for Hi-C read mapping, which previously es-

tablished the first large-scale resource for cancer Hi-C35. Reads were mapped to the hg19 reference

genome. The chimeric and self-ligated reads were filtered using the 3DIV pipeline. The contact

matrix was obtained at a resolution of 40 kb. In the InfoHiC, we used the raw contact matrix with-

out implicit normalization for training and validation to preserve the Hi-C signals from genomic

rearrangements. For comparison, we applied covNorm13, a normalization method included in the

3DIV pipeline, to the raw contact matrix for implicit normalization.

Prediction of the total Hi-C matrix We denote the convolutional neural network as CNN, which

is composed of CNNdeepSEA to extract chromatin features from DNA sequences36, a dilated convo-

lution neural network CNNdilated to model a wide range of contexts for contact prediction9, and a

fully connected layer FCd to predict the Hi-C contact for a genome distance d. The target value

of the Hi-C interaction is c(x, y), which represents the number of Hi-C reads mapped into the x-

and y-coordinate bins in the Hi-C matrix. Here, we denote c(x, y) as c. The reference version of
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deepC9 predicts c using a single reference contig centered on c. In a reference model, the target c

is in the reference coordinate. We denote one-hot encoding based on the reference sequence as R.

c = FCd(CNN(R(g)) (6)

In contrast to the reference model, we predict c as the sum of Hi-C contacts of multiple contigs,

g1, g2, ..., gn with different genomic distances d1, d2, ... dn centered on target values c1, c2, ...,

cn in the contig coordinates. When using different contigs rather than a reference sequence, we

require a reference coordinate mapping function to change the contig coordinate prediction, which

is denoted by ref.

ci = FCdi(CNN(H(gi))) (7)

c =
n∑

i=1

ref(ci) (8)

The ref(ci) function indicates the mapping from ci(x
′, y′) on the x′ and y′ contig into ci(x, y) on

the x and y reference coordinates. It returns ci if two 40-kb genomic bins (x′ and y′) targeting

ci in the contig coordinate are maximally matched with two genomic bins (x and y) targeting c

in the reference coordinate; otherwise, it returns 0. When Hi-C reads were mapped at a certain

resolution, a genomic bin in the contig coordinates contained multiple portions of several bins in

the reference coordinate. For example, a 40-kb genomic bin in the contig coordinate could contain

30 kb of bin 1 and 10 kb of bin 2 in the reference coordinate. In this case, we select a maximum

match (bin 1) to maintain the sharpness of the Hi-C data, which enables accurate TAD annotation.

For training multiple contigs with SV, there are issues compared to training the reference sequence.

The reference prediction such as deepC9 uses a single one-hot encoding matrix to predict a vector
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of targets c=(c1, c2, ... ck) using a vector of genomic distances d=(d1, d2, ... dk) (a zig-zag pole),

simultaneously, rather than targeting a single scalar of ck. However, for multiple contigs with

SVs, prediction of the target vector is complicated. First, the genomic distances could differ when

targeting ck. Second, the reference coordinate mapping should be included in the training. Third,

tens of contigs could exist, and the graphics processing unit (GPU) memory would not be available

for them. Thus, to simplify the training procedure for multiple contigs, we used genomic contigs

in reference regions without SVs for training (breakpoint removal). The following are true for the

reference regions: 1) genomic distances are the same for two haplotypes; 2) the ref function is not

required because it is in the reference coordinate itself; 3) only two haplotype contigs are required

to enable proper GPU memory usage. Simply, we target a vector of target c=(c1, c2, ..., ck) using

two haplotype contigs, g1 and g2, with the genomic distance d1, d2, ..., dk. Here, cj is the sum of

the haplotype target values for each (cj1 and cj2).

cj1 = FCdj(CNN(H(g1))) (9)

cj2 = FCdj(CNN(H(g2))) (10)

cj = cj1 + cj2 (11)

Given the two haplotype contigs for training, we denote ĉ = (ĉ1, ĉ2, ..., ĉk) as a zig-zag pole

prediction9 and minimized the mean square error (MSE) loss between c and ĉ.

Minimize
1

k

k∑
j=1

(cj − ĉj)2 (12)

HSCN decoding HSCN decoding was used for a comparison study with HSCN encoding when

InfoHiC was trained by the cancer cell line (T47D). In addition, when InfoHiC was trained by
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the non-cancerous cell lines (HMEC and MCF10A), we used HSCN decoding for the InfoHiC

prediction model because HSCN encoding could not be trained by these cell lines. In HSCN

decoding, haplotype contigs, g1, g2, ..., gn are encoded by the one hot encodings of haplotype

bases, Hone-hot(gi), Hone-hot(gi+1), ..., Hone-hot(gn), and prediction outputs are multiplied by the CN

of each genomic contig.

ci = µ(gi)FCdi(CNN(Hone-hot(gi))) (13)

c =
n∑

i=1

ref(ci) (14)

CNN architecture We used a deepC architecture9 to predict Hi-C contacts per genome contig.

DeepC was previously adapted from DeepSEA36 that employs hundreds of convolution filters to

extract chromatin features. Specifically, five convolution layers (300, 600, 600, 900, and 900

hidden units) with various kernel widths (8, 8, 8, 4, and 4) and max-pooling schemes (4, 5, 5, 5,

and 2) were used to extract the chromatin features. The layers were pretrained using chromatin

profiling data (936 chromatin features). Then, 10 dilated gated convolutional layers (100 hidden

units) with various dilation schemes (1, 2, 4, 8, 16, 32, 64, 128, 256, and 1) were used for long-

range modeling, and the final fully connected layer output the contact value for each distance.

Transfer learning and data augmentation We used two transfer-learning steps in this study.

First, we used the pretrained weights of CNNdeepSEA from DeepC, which was trained using input

1-kb DNA sequences targeting 936 chromatin features. We then transferred the pretrained weights

of CNNdeepSEA and trained the convolutional neural network CNN = CNNdilated ◦ CNNdeepSEA for

the total Hi-C matrix prediction using 1-Mb + 40-kb genomic windows at a resolution of 40 kb,
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targeting a vector of 25 contact values, c = (c1, c2, ...c25). Then, we transferred the trained weights

from 1-Mb + 40-kb genomic windows to the 2-Mb prediction model, targeting a vector of 49

contact values, c = (c1, c2, ...c49). We excluded self-interaction (zero distance interaction in a

single 40-kb bin) because raw Hi-C data have high values in self-interaction that prevented the

learning of long range interactions.

We then used augmentation processes including a 20-kb shift and reverse complement training.

For the 20-kb shift, we mapped the Hi-C reads to +20-kb genomic bins. In detail, Hi-C reads were

mapped to the 1-kb to 40-kb coordinate in the first mapping process, and Hi-C reads were mapped

to the 21-kb to 60-kb coordinate in the second mapping, producing a doubled training data set.

We trained the model using the forward strand for the original Hi-C and the reverse strand for the

flipped Hi-C. For testing, we averaged the predictions of the forward and reverse strands.

Contig-specific normalization Normalization methods commonly used for the Hi-C matrix, such

as the iterative correction and eigenvector decomposition (ICE)12, consider CNAs and SVs as

biases. ICE normalization was employed to implicitly normalize the GC content bias, mappability

bias, and other experimental noise together with CNA and SV biases by introducing biases bi and

bj for each ith and jth bin. Here, c(i, j) is an observation of the total Hi-C contact, t(i, j) is the

normalized Hi-C contact, and N is the number of bins.

c(i, j) = bibjt(i, j) (15)

N∑
i=1,|i−j|>1

t(i, j) = 1 (16)
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When using the total Hi-C observation c(i, j) for cancer Hi-C, it can result in inaccurate production

of a normalized matrix for the reference sequence. In addition, Hi-C contacts from CNAs and SVs

should not be removed to discover 3D genome organization for rearranged contigs. Previously, we

obtained ĉ for n assembled contigs.

c(i, j) =
n∑

k=1

ĉk (17)

Here, we applied ICE normalization to ĉk, which is an assembled Hi-C contact free from CNA and

SV biases. Here, i′ and j′ are indices in contig coordinates for each k contig. The Iced Python

module was used for contig-specific ICE normalization.

ĉk(i
′, j′) = bki′bkj′ t̂k(i

′, j′) (18)

N ′∑
i′=1,|i′−j′|>1

t̂k(i
′, j′) = 1 (19)

Neo-TAD and neo-loop annotation We annotated the TADs and loops on the normalized contig

Hi-C matrix T̂k=(t̂k(i′, j′)) using spectralTAD37 and Peakachu38, respectively. We hierarchically

obtained primary to tertiary TADs using spectral clustering37. Neo-loops were annotated using the

CNN-based method Peakachu38 on the contig Hi-C obtained by InfoHiC, which is free of CNA and

SV biases and does not require any further steps of CN normalization or pseudo-assembly of SV-

derived contacts8. A TE or SE hijacking event of a gene in the neo-TAD was defined as follows:

1) an enhancer did not exist in the reference TAD prediction (with a ±40-kb offset to adjust errors

of TAD boundaries) and 2) interaction between the enhancer and the gene was predicted to exist

in the SV window.
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Sample preparation and data preprocessing For brain tumors, macrodissection was performed

on tumor areas with a tumor cell content of more than 90% stained with hematoxylin-eosin. Ge-

nomic DNA and total RNA were extracted from the freshly frozen tissues and peripheral blood

of patients using the Maxwell RSC DNA and RNA FFPE Kit (Promega, Madison, WI, USA), re-

spectively. The WGS library was prepared using the TruSeq Nano DNA Kit (Illumina, San Diego,

CA, USA) and sequenced using the Illumina NovaSeq6000 platform. The RNA-seq library was

prepared using the SureSelectXT RNA Direct Library Kit (Agilent Technologies, Santa Clara, CA,

USA) and sequenced using the Illumina NovaSeq6000 platform.

Paired-end WGS reads (100 bp) from the T47D, MCF7, and SKBR3 cell lines and paired-end

WGS reads (150 bp) from brain tumors including the medulloblastoma case were mapped to the

human reference genome (GRCh37) using BWA-MEM39 with default parameters (version 0.7.15).

Somatic SNVs and indels were detected using Mutect40 and Platypus41 respectively, and anno-

tated using ANNOVAR42. Paired-end RNA-seq reads (101 bp) from brain tumors were mapped to

GRCh37 using STAR43, and gene expression was quantified using Cufflinks44.

Data availability

WGS data of TCGA samples are available from dbGaP (accession code phs000178.v11.p8) [https:

//www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study id=phs000178.v11.p8]. RNA-seq gene

expression data of TCGA samples were downloaded from the GDC data portal. Hi-C fastq files of

breast cancer cell lines are available from the sequencing read archive (SRA); MCF7, BT474, and

SKBR3 Hi-C data (accession codes PRJNA430222); HCC1954 (accession code PRJNA479882);
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and T47D (PRJNA438511), respectively. The WGS fastq files of the T47D, MCF7, and SKBR3

cell lines are available from the SRA: T47D (PRJNA380394), MCF7 (PRJNA486532), and SKBR3

(PRJNA476239). WGS bam files of the HCC1954 and BT474 cell lines were downloaded from

TCGA in the GDC data portal and CCLE in Google Cloud Storage, respectively. SV calls of

HCC1954 from linked-read sequencing data (10X Genomics) were downloaded from https://cf.

10xgenomics.com/samples/genome/HCC1954T WGS 210/HCC1954T WGS 210 large svs.vcf.gz.

SV calls for SKBR3 from long-read sequencing data (PacBio)45 were downloaded from http://

labshare.cshl.edu/shares/schatzlab/www-data/skbr3/reads lr skbr3.fa ngmlr-0.2.3 mapped.bam.sniffles1kb

auto l8 s5 noalt.vcf.gz. Hi-C fastq files of NPC cells are available from SRA (accession code PR-

JNA798046). CTCF ChIP-seq data of NPC cells and ChIA-PET data of a neuroblastoma cell

line are available from ENCODE (accession code ENCSR125NBL and ENCSR514HBO, respec-

tively).

Code availability

InfoHiC is available on GitHub https://github.com/dmcb-gist/InfoHiC.
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Figure legends

Fig. 1: Schematic diagram of InfoHiC. a, InfoHiC prediction of the total Hi-C matrix from

multiple genomic contigs. Genomic contigs were derived from the haplotype breakpoint graph

(haplotype 1 in blue and haplotype 2 in green), and the HSCN matrix was employed to encode the

SNP composition and CN of each contig. contig 2 has tandem duplication, and the CNN predicts

a neo-TAD (green) from contig 2. Hi-C predictions from contig 1, 2, and 3 were successively

merged into the haplotype Hi-C and the total Hi-C matrix. b, InfoHiC prediction of chromosomes

8 and 14 in the T47D cell line. SVs (T1, C1, D1, and D2) are annotated in the haplotype graph and

karyotypes with two copies of der(8)t(8;14). The upper diagonal matrix represents the InfoHiC

prediction and the lower diagonal matrix represents the Hi-C experiment of T47D. SV-induced

Hi-C contacts are outlined by each genomic contig. c, Contig Hi-C prediction by InfoHiC. Three

contig Hi-C matrices were annotated with SVs (T1, C1-D1, and D2), neo-TAD (green), and neo-

loop (cyan) annotation; reference coordinates are shown below at the mega-base scale.

Fig. 2: Performance comparison between InfoHiC and deepC. InfoHiC and deepC were com-

pared for training usage of the T47D cell line in test sets 1 and 2. Methods were validated using an

internal test set (T47D) at the top and external test sets (SKBR3, MCF7, HCC1954, and BT474) at

the bottom. Distance-stratified correlations (line) are shown according to the mega-base scale dis-

tance range (0-2 Mb), and the Pearson correlation (dot) for each genomic window was compared

between deepC or deepC-SV (bottom) and InfoHiC (left).

Fig. 3: InfoHiC analysis of breast cancer cell lines. a, Statistics of the number of neo-TADs in

each sample and a histogram of overlapping TAD counts of neo-TADs. b, Boxplots of RNA-seq
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Log2(FPKM+1) values depending on neo-TAD classes (top) and neo-loop classes (bottom) in each

sample. Boxplot center lines are medians, box limits are upper and lower quartiles, and whiskers

are 1.5x interquartile ranges. c, InfoHiC prediction of chromosomes 8, 12, and 20 in the HCC1954

cell line. Hi-C contacts from different genomic contigs (contig 1, 2, 3, and 4) were annotated in the

upper diagonal matrix of the total Hi-C (InfoHiC prediction). Lower diagonal matrix represents

the Hi-C experiment for HCC1954. Contig Hi-C matrices of each contig are shown below with

reference coordinates at the mega-base scale. Dotted white lines represent SV breakpoints. Contig

4 has a neo-TAD (green), where the hijacked SE (crimson) and the IDO1 gene (black) interact with

each other.

Fig. 4: InfoHiC analysis of patients with TCGA BRCA. a, Frequencies of neo-TADs (apricot)

and enhancer hijacking events (blue) associated with overexpression across chromosomes. Each

peak represents the neo-TAD or enhancer hijacking frequency of each gene. The representative

peaks were annotated using gene symbols. b, Boxplots of RNA-seq Log2(FPKM-UQ+1) values

depending on neo-TAD classes (top) and neo-loop classes (bottom) in patients with BRCA accord-

ing to integer CNs. Boxplot center lines are medians, box limits are upper and lower quartiles, and

whiskers are 1.5x interquartile ranges. c, InfoHiC prediction of contig Hi-C matrices of patients

with BRCA. Neo-TADs are shown in green, with hijacked SEs (crimson) and the MYO1D gene

(black). d, Gene expression of MYO1D of patients with BRCA (dot) using WGS data (n=90). A

linear regression line between FPKM-UQ values and integer CNs is shown with the corresponding

confidence interval range (green). Neo-TAD (apricot) and SE hijacking samples (blue) are shown

in different circle sizes according to the Cook’s distance. Cut-off region of the FPKM-UQ value
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for overexpression is shown in the background (blue). e, Kaplan–Meier curve for BRCA survival

with RNA-seq data (n=1,098). P value was calculated using the log-rank test and adjusted using

the BH procedure across neo-TAD overexpression genes.

Fig. 5: Super-enhancer (SE) hijacking events of PRDM6, GFI1B, and GFI1 found in patients

with medulloblastoma. a, A haplotype graph of chromosome 5 of the patient with medulloblas-

toma (PD2107). SVs were annotated with head-to-tail (HT), tail-to-head (TH), tail-to-tail (TT),

and head-to-head (HH) orientations. b, FPKM values of the PRDM6, GFI1B, and GFI1 transcripts

versus integer CNs measured in the brain tumor cohort. Linear regression lines are shown with

the corresponding confidence interval ranges (blue), and the FPKM values of patients (PD2105,

PD2107, PD2109, and PD2110) with SE hijacking events are shown above (apricot). c, Hi-C ex-

periment of neuro-progenitor cells (NPCs) and InfoHiC prediction of the 3D genome of patient

PD2107. Reference TADs and neo-TADs are annotated (green) with CTCF motifs (arrowheads)

near the boundaries, and PRDM6 (purple) and SE (apricot) are shown below. The pairwise inter-

actions of the CTCF ChIA-PET data are indicated by blue lines. d, 3D genome models of the SE

hijacking events of PRDM6, GFI1B, and GFI1 derived from various types of SVs.

35

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502462


Figure 1

0

10

20

30

40

50

chromosome 8 chromosome 14

Contig 1

HSCN
encoding

Total Hi-C
prediction

Experiment

Convolutional 
neural network

Contig Hi-C
prediction

Haplotype Hi-C
prediction

HSCN1 HSCN2

Contig 2
Contig 3

Contig 1 Contig 2 Contig 3

a

Prediction

Haplotype 1 Haplotype  2

1
2
3

1
2
3

Reference-view conversion

Neo-TAD

C1T1 D1

D2

C1-D1

T1

D2

b

ch
r8

ch
r1

4

32.4 23.3 43.141.4 27.3 47.1

C1-D1
T1

D2

Contig 2 (C1-D1)Contig 1 (T1) Contig 3 (D2)

InfoHiC prediction

Hi-C experiment

Haplotype
graph

Total Hi-C

c
Neo-TAD
Neo-loop

25.0 26.736.6 38.0

Refe
ren

ce
 w

ind
ow

SV w
ind

ow

38.1 39.2 39.434.435.6 40.5

chr14

chr8

45.1 45.243.5 46.9

ch
r1

4

Contig 1

Contig 3
Contig 2

36

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502462doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502462


Figure 2
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Figure 3
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Figure 4
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Figure 5
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