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Abstract 32 
What drives us to search for creative ideas and why does it feel good to find one? While previous studies 33 
demonstrated the positive influence of intrinsic motivation on creative abilities, how reward and 34 
subjective values play a role in creative mechanisms remains unknown. The existing framework for 35 
creativity investigation distinguishes generation and evaluation phases, and mostly aligns evaluation to 36 
cognitive control processes, without clarifying the mechanisms involved. This study proposes a new 37 
framework for creativity by 1) characterizing the role of individual preferences (how people value ideas) 38 
in creative ideation and 2) providing a computational model that implements three types of operations 39 
required for creative idea generation: knowledge exploration, candidate ideas valuation (attributing 40 
subjective values), and response selection. The findings first provide behavioral evidence demonstrating 41 
the involvement of valuation processes during idea generation: preferred ideas are provided faster. 42 
Second, valuation depends on the adequacy and originality of ideas and determines which ideas are 43 
selected. Finally, the proposed computational model correctly predicts the speed and quality of human 44 
creative responses, as well as interindividual differences in creative abilities. Altogether, this 45 
unprecedented model introduces the mechanistic role of valuation in creativity. It paves the way for a 46 
neurocomputational account of creativity mechanisms. 47 
 48 

Significance statement  49 
How creative ideas are generated remains poorly understood. Here, we introduce the role of subjective 50 
values (how much one likes an idea) in creative idea generation and explore it using behavioral 51 
experiments and computational modelling. We demonstrate that subjective values play a role in idea 52 
generation processes, and show how these values depend on idea adequacy and originality (two key 53 
creativity criteria). Next, we develop and validate behaviorally a computational model. The model first 54 
mimics semantic knowledge exploration, then assigns a subjective value to each idea explored, and 55 
finally selects a response according to its value. Our study provides a mechanistic model of creative 56 
processes which offers new perspectives for neuroimaging studies, creativity assessment, profiling, and 57 
targets for training programs.  58 
 59 

Main Text 60 
 61 

1. Introduction 62 
 63 
Creativity is a core component of our ability to promote change and cope with it. Creativity is defined as 64 
the ability to produce an object (or an idea) that is both original and adequate (1–3). Originality is critical 65 
to the concept of creativity; it refers to something novel or unprecedented. However, to be considered 66 
creative, a production also needs to be adequate. Adequacy corresponds to how appropriate, efficient 67 
to the goal a created entity is. The cognitive mechanisms underlying the production of an idea that is 68 
both original and adequate are yet to be elucidated. This study aims to decipher some of the cognitive 69 
processes of creative thinking by developing a new computational model, composed of three main 70 
operations: idea exploration, (e)valuation, and selection.  71 
Creativity has been classically conceptualized and studied in neuroscience in the context of three main 72 
frameworks: the divergent thinking approach, the associative theory, and the insight problem-solving 73 
approach (4, 5). Generation tasks are typically used in those approaches, and the generated responses 74 
are overall assessed for originality and adequacy. It is largely admitted that creativity involves two 75 
interacting phases: generation and evaluation. Theoretical models including these two processes have 76 
been proposed (6, 7), such as the “two-fold model of creativity” (8), or the “blind-variation and selective 77 
retention model” (9, 10), a Darwinian-inspired theory stating that ideas are generated and evaluated on 78 
a trial and error basis, similarly to a variation-selection process. Additionally, neuroimaging findings 79 
support the distinction between generative and evaluative processes, notably with the involvement of 80 
the Default Network (DN) in relationship with generation and of the Executive Control Network (ECN) in 81 
relationship with evaluative and selection processes (11–13). However, what kind of processes 82 
underlies evaluation in the context of creativity (in other words, what evaluative processes drive 83 
selection) remains overlooked. 84 
Previous frameworks assumed that the originality and adequacy of ideas are evaluated to drive the 85 
selection of an idea during idea production (14). Existing theories also usually align evaluation with 86 
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controlled or metacognitive processes (i.e., monitoring and applying some control to select or inhibit 87 
early thoughts and adapt to the context) (6, 8, 11, 12, 15–19). However, how these processes work and 88 
result in idea selection remains unknown. Because evaluative processes in other domains involve 89 
subjective values that are assigned to options to guide selection (20), we hypothesize that evaluation in 90 
the context of creativity also requires building a subjective value. As previous work highlighted the 91 
importance of adequacy and originality in idea evaluation, we propose that this value is based on a 92 
combination of originality and adequacy of candidate ideas. Hence, we introduce valuation in the 93 
ideation process and dissociate them from other evaluation and generation processes. Valuation can 94 
be defined as a quantification of the subjective desire or preference for an entity (21) and consists in 95 
assigning a subjective value to an option, i.e., to define how much it is “likeable”.  96 
The neuroscience of value-based decision-making indeed demonstrated that valuation and other 97 
evaluation processes are distinct, experimentally dissociable, and have separate brain substrate (22, 98 
23). Indeed, valuation processes have been investigated for centuries by philosophers, economists, 99 
psychologists, and more recently by neuroscientists (24), outside of the creativity field. Advances in the 100 
neuroscience of decision-making have allowed the identification of a neural network, the Brain Valuation 101 
System (BVS), representing the subjective value of options an agent considers (24). The BVS activity 102 
reflects values in a generic (independent of the kind of items) and automatic (even when we are engaged 103 
in another task) manner (25). Interestingly, the BVS is often coupled with the ECN when a choice has 104 
to be made: in a top-down manner – the ECN modulates values according to the context (26); and in a 105 
bottom-up way – by integrating decision-value, it drives the choice selection (27). The new framework 106 
that we propose through the present study is that the BVS is automatically involved during creativity, 107 
and that evaluation processes in creativity involve valuation, implemented by that network, in interaction 108 
with exploration and selection processes, supported by other networks. 109 
Some studies have reported indirect arguments for the involvement of the BVS in creativity through a 110 
link with dopamine (28) or activation of the ventral striatum (16). Nevertheless, very little is known about 111 
the role of the BVS in creativity, and its interaction with the commonly reported brain networks (DN and 112 
ECN) for creativity has, to our knowledge, not been explored. In fact, the place of valuation processes 113 
in creativity still needs to be conceptualized and empirically investigated.  114 
Here, we formulate the unprecedented hypothesis that originality and adequacy are combined into a 115 
“subjective value” according to individual preferences, and that this subjective value drives the creative 116 
degree of the output. This value can impact the selection of an idea, and also possibly have a 117 
motivational role (29) on the exploration of candidate ideas. Taking into account previous research from 118 
both creativity and decision-making fields, we hypothesize that creativity involves i) an explorer module 119 
that works on individual knowledge representations and provide a set of options/ideas varying in 120 
originality and adequacy; ii) a valuator module that computes the likeability of candidate ideas (their 121 
subjective value) based on a combination of their originality and adequacy with the goal an agent tries 122 
to reach; iii) a selector module that applies contextual constraints and integrates the subjective value of 123 
candidate ideas to guide the selection. To test these hypotheses, we combined several methods of 124 
cognitive and computational neuroscience. We build a computational model composed of the explorer, 125 
valuator and selector modules, that we modelled separately (Figure 1) as detailed below.  126 
First, producing something new and appropriate (i.e. creative) relies in part on the ability to retrieve, 127 
manipulate or combine elements of knowledge stored in our memory (30, 31). Semantic memory 128 
network methods are a valuable approach to study these processes (32–35). Several semantic search 129 
mechanisms have been previously explored using for instance censored and biased random walks 130 
within semantic networks (36). The use of those models was essentially restricted to explaining fluency 131 
tasks (37) and retrieval of remote associates (38), but they have not yet been combined with decision 132 
models that could bring new insights into how individuals reach a creative solution. Based on this 133 
literature, we modelled the explorer module as a random walk wandering into semantic networks. 134 
Second, valuation and selection processes are typically studied using decision models. Utility (economic 135 
term for subjective value) functions can well capture valuation of multi-attribute options that weigh 136 
attributes differently depending on individuals (39–41). Hence, we modelled the valuator module of our 137 
model as a utility function that assigns subjective values to candidate ideas based on the subjective 138 
evaluation of their adequacy and originality, considered as the necessary attributes of creative idea.  139 
Third, the computed subjective value is then used to make a decision. Decision models assess value-140 
based choices and can be static like softmax (42), dynamic like drift-diffusion models (43), or biologically 141 
inspired (44). Simple models like softmax functions can explain many types of choices, ranging from 142 
concrete food choices to abstract moral choices, as soon as they rely on subjective values. Here, we 143 
reasoned that such a simple function can capture and predict creative choices (selector module), when 144 
taking as an input subjective values of candidate ideas. 145 
 146 
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Overall, by means of different approaches to test our hypotheses, we developed an original 147 
computational model (Figure 1) in which each module (explorer, valuator, selector) was modelled 148 
separately. We aimed at 1) determining whether subjective valuation occurs during idea generation 149 
(creativity task) and defining a valuator module from behavioral measures during the decision-making 150 
tasks; 2) Developing the explorer and selector modules, and characterizing which module(s) relies on 151 
subjective valuation (explorer and/or selector); 3) Simulating surrogate data from the full model 152 
composed of the three modules and comparing it to human behavior; and 4) assessing the relevance 153 
of the model parameters for creative abilities.  154 
 155 

2. Results 156 
 157 
Sixty-nine subjects were included in the analyses (see Methods 4.1). The experiment consisted of 158 
several successive tasks (Figure 2, see Methods 4.2): the Free Generation of Associate Task (FGAT), 159 
designed to investigate generative processes and creative abilities, a likeability rating task, a choice 160 
task, an originality and adequacy rating task, and a battery of creativity assessment.  161 
 162 

2.1. Subjective valuation in idea generation and development of the 163 
valuator module  164 

 165 
2.1.1. FGAT behavior: the effect of task condition on speed and link with likeability 166 

 167 
In the First condition of the FGAT task, participants were asked to provide the first word that came to 168 
mind in response to a cue. In the Distant condition, they had to provide an original, unusual, but 169 
associated response to the same cues as in the First condition (see Figure 2 and Methods 4.2.1).  170 
We investigated the quality and speed of responses provided in the FGAT task in the First and Distant 171 
conditions. The quality of responses was investigated using their associative frequency obtained from 172 
the French database of word associations Dictaverf (see Methods 4.3.1), and using the ratings 173 
participants provided in three rating tasks requiring them to judge how much they liked an idea (likeability 174 
or satisfaction of a response to the FGAT Distant condition, see Methods 4.2.2), how much original they 175 
found it (originality), and how appropriate (adequacy). 176 
  177 
FGAT responses: associative frequency 178 
Consistent with the instructions of the FGAT conditions, we found that participants provided more 179 
frequent responses (i.e., more common responses to a given cue based on the French norms of word 180 
associations Dictaverf) in the First condition than in the Distant condition (log(FrequencyFirst)=-181 
3.25±0.11, log(FrequencyDistant)=-6.21±0.11, M±SEM, t(68)=18.93, p=8.10-29). Then, we observed that 182 
response time in the FGAT task decreased with the cue-response associative frequency, both in the 183 
First (b=-0.34±0.02, t(68)=-15.92, p=1.10-24) and Distant (b=-0.10±0.02, (68)=-6.27, p=3.10-8) 184 
conditions, suggesting that it takes more time to provide a rare response compared to a common one 185 
(Figure 3A). We also observed that the cue steepness (how strongly connected is the first associate of 186 
the cue, see Methods 4.3.1) also significantly shortened response time for First responses but not 187 
significantly for Distant responses (bFirst=-0.13±0.02, t(68)=-8.5, p=3.10-12; bDistant=-0.02±0.01, t(68)=-188 
1.16, p=0.25, Figure 3B).  189 
 190 
FGAT responses: adequacy and originality 191 
Using adequacy and originality ratings provided by the participants, we found that First responses were 192 
rated as more adequate than Distant responses (AdequacyFirst=86.47±0.99, AdequacyDistant=77.24±1.23, 193 
t(68)=9.29, p=1.10-13), but Distant responses were rated as more original than First responses 194 
(OriginalityFirst=33.80±1.74, OriginalityDistant=64.43±1.37, t(68)=-16.36, p=3.10-25). Note that the 195 
difference in originality ratings (First versus Distant responses) was greater than the difference in 196 
adequacy ratings (t(68)=-13.87, p=2.10-21), suggesting that Distant responses were found both 197 
adequate and original, i.e., creative, while First responses were mainly appropriate (Figure 3C).  198 
  199 
FGAT responses: likeability 200 
Last, we considered that response time and typing speed could reflect an implicit valuation of responses 201 
(45). To test whether an implicit subjective valuation of response happened during the FGAT creative 202 
condition (Distant), we investigated the link between response time, typing speed, and the likeability of 203 
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their own FGAT responses (see Methods 4.3.1). We found that response time in the Distant condition 204 
decreased with likeability (bDistant=-0.15±0.02, t(68)=-7.25, p=5.10-10) and that typing speed increased 205 
with it (bDistant=0.08±0.02, t(68)=3.88, p=2.10-4). Participants were faster for providing Distant FGAT 206 
responses they liked the most. The pattern was different in the First condition, in which we observed a 207 
significant increase of response time with likeability (bFirst=0.08±0.02, t(68)=3.78, p=3.10-4) and no 208 
significant effect of likeability on typing speed (bFirst=0.009±0.02, t(68)=0.36, p=0.72). The effects of 209 
likeability significantly differed at the group level between the First and Distant conditions (Distant versus 210 
First effect of likeability on response time: t(68)=-7.30, p=4.10-10; on typing speed: t(68)=2.21, p=0.03, 211 
Figure 3D).  212 
Note that the link between likeability rating and response time, or typing speed remains after removing 213 
confounding factors (adequacy and originality ratings, SI Table S1). 214 
 215 
Together, those findings suggest that likeability might have been cognitively processed during the FGAT 216 
task and influenced the behavior, particularly during the FGAT Distant condition, which is assumed to 217 
require an evaluation of the response before the participants typed their answers. We also found that 218 
likeability ratings drove choices (choice task, see SI Supplementary Results and Figure S1), suggesting 219 
that likeability is relevant both in the FGAT Distant condition, and in binary choices linked to creative 220 
response production. We next assessed how likeability ratings relied on adequacy and originality ratings. 221 
 222 

2.1.2. Likeability depends on originality and adequacy ratings 223 
 224 
To better understand how subjects built their subjective value and assigned a likeability rating to a cue-225 
response association, we focused on the behavior measured during the rating tasks. In the rating tasks, 226 
participants judged a series of cue-response associations in terms of their likeability, adequacy and 227 
originality (see Figure 2 and Methods 4.2.2). Here, we explored the relationship between those three 228 
types of ratings.  229 
We first observed that likeability increased with both originality and adequacy (Figure 4). Then, to 230 
precisely capture how adequacy and originality contributed to likeability judgments, we compared 12 231 
different linear and non-linear models (see Methods 4.3.4). Among them, the Constant Elasticity of 232 
Substitution (CES) model out performed (41) the alternatives (Estimated model frequency: Ef=0.36, 233 
Exceedance probability: Xp=0.87). CES combines originality and adequacy with a weighting parameter 234 
α and a convexity parameter δ into a subjective value (likeability rating) (see equation in Figure 1 and fit 235 
in Figure 4). Mean values of α and δ are detailed in SI.  236 
 237 
Overall, these results indicate that subjective valuation seems to occur during idea generation, as we 238 
observed significant relationships between response speed and likeability ratings in the generation task. 239 
Additionally, the rating tasks allow us to characterize the valuator module as the Constant Elasticity of 240 
Substitution utility function (CES), that builds a subjective value from adequacy and originality ratings.  241 
 242 

2.2. Computational modelling of the valuator module 243 
 244 
The goal of our computational model is to explain and predict the behavior of participants in the FGAT, 245 
by modelling an explorer that generates a set of candidate ideas, a valuator that assigns a subjective 246 
value to each candidate idea, and a selector that selects a response based (or not) on this subjective 247 
value. Our computational model thus needed to be able to predict likeability of any potential cue-248 
response associations, including those that have not been rated by our participants (see section 4.2.2), 249 
and those that have not been expressed by participants during the FGAT Distant condition (hidden 250 
candidate ideas). 251 
We found that adequacy and originality rating could be correctly predicted by associative frequency (see 252 
SI Supplementary Results and Figure S2). Adequacy ratings could be well fitted through a linear relation 253 
with frequency (Eflin=0.86, Xplin=1), and originality could be estimated through a mixture of linear and 254 
quadratic link with frequency. This result allows us to estimate adequacy and originality of any cue-255 
response association for a given participant. 256 
Importantly, we explored the validity of the valuator module using estimated adequacy and originality. 257 
We estimated likeability from the estimated adequacy and originality, using the individual parameters of 258 
the CES function mentioned above. We found a strong relationship between estimated and real 259 
likeability judgements (mean r=0.24±0.02, t(68)=11.04 p=8.10-17).  260 
 261 
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This result is not only a critical validation of our model linking likeability, originality and adequacy, but 262 
also allows defining a set of parameters for each individual for the valuator module. Thanks to that set 263 
of parameters, we were able to significantly predict the originality, adequacy, and likeability ratings of 264 
any cue-response association based on its objective associative frequency. Henceforth, in the next 265 
analyses, likeability, adequacy, and originality estimated through that procedure will be referred to as 266 
the “estimated” variables.  267 
 268 
In the next section, using computational modelling, we address the second aim of our study, which was 269 
to develop the explorer and the selector and determine which module the valuator drives the most. 270 
 271 

2.3. Computational modelling of the exploration and selection 272 
modules  273 

 274 
2.3.1. Model description and overall strategy 275 

 276 
As we do not have a direct access to the candidate ideas that participants explored before selecting and 277 
producing their response to each cue during the FGAT task, we adopted a computational approach that 278 
uses random walk simulations ran on semantic networks (one per FGAT cue) to develop the explorer 279 
module. We built a model that coupled random walk simulations (explorer) to a valuation (valuator) and 280 
selection (selector) function (Figure 1). The model takes as input an FGAT cue and generates responses 281 
for the First and Distant conditions, allowing us to ultimately test how similar the predicted responses 282 
from the model were to the real responses of the participants.  283 
In the following analyses, we decompose the model into modules (random walks and selection 284 
functions) and investigate by which variable (estimated likeability, estimated originality, estimated 285 
adequacy, associative frequency or mixtures) each module is more likely to be driven.  286 
 287 
To assess the validity of the model, we developed it and conducted the analyses on 46 subjects (2/3 of 288 
them) and then cross-validated the behavioral predictions on the 23 remaining participants.  289 
 290 

2.3.2. Modelling the explorer module using random walks on semantic networks 291 
 292 
For each cue, we built a semantic network from the Dictaverf database that was enriched from both First 293 
and Distant FGAT responses from all participants (see Methods 4.3.6). Then, to investigate whether 294 
exploration could be driven by likeability, we compared five censored random walks (RW), each with 295 
different transition probabilities between nodes (random, associative frequency, adequacy, originality or 296 
likeability, see Methods 4.3.6). For each random walk, subject, and cue, we computed the probability of 297 
the random walk to visit the First and the Distant responses nodes (Figure 5A). We found that the 298 
frequency-driven random walk (RWF) had the highest chance to walk through the First (mean probability 299 
= 0.30 ± 0.01; all p<10-33) and Distant (mean probability = 0.05 ± 0.004; all p<10-4) responses. This result 300 
suggests that the explorer module may be driven by associative frequency between words in semantic 301 
memory. According to this result, we pursued the analyses and simulations with the RWF as an explorer 302 
module for both First and Distant responses.  303 
 304 

2.3.3. Visited nodes with the RWF as a proxy for candidate responses 305 
 306 
To define sets of candidate responses that will then be considered as options by the selector module, 307 
we simulated the RWF model for each subject and each cue over 18 (see Methods 4.2.4 and 4.3.6). 308 
Each random walk produced a path: i.e., a list of words (nodes) visited at each iteration. Each node is 309 
associated with a rank (position in the path), which will then be used as a proxy of response time. As a 310 
sanity check, we compared the list of words obtained from those random walks to the participants’ 311 
responses to a fluency task on six of the FGAT cues (see Methods 4.2.4). For each subject, we identified 312 
the common words between the model path and the fluency responses. Then, using a mixed-effect 313 
linear regression with participants and cues as random factors (applied to both intercept and slope), we 314 
regressed the node model rank against its corresponding fluency rank. We found a significant fixed 315 
effect of the fluency rank (b= 0.12±0.03, t(649)=3.35, p=8.10-3, SI Figure S3), suggesting that those 316 
simulations provide an adequate proxy for semantic memory exploration.  317 
Together, results reported in sections 2.3.2 and 2.3.3 suggest that a censored random walk driven by 318 
the frequency of word associations provides a good approximation of semantic exploration during 319 
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response generation in the FGAT task and that likeability has a negligible role during that phase. Hence, 320 
valuation does not seem to play a significant role in the explorer module. 321 
 322 

2.3.4. Modelling the selector module as a decision function 323 
 324 
We then explored the possible factors driving individual decisions to choose a given response (selector 325 
module) among the word nodes visited by the explorer module.  326 
To investigate the selection of First and Distant responses among all nodes in each path, i.e., on which 327 
dimension responses were likely to be selected, we compared seven choice models with different 328 
variables as input: random values, node rank (first visited nodes have higher chances of being selected), 329 
estimated adequacy, estimated originality, interaction between estimated adequacy and originality, sum 330 
of estimated adequacy and originality, and estimated likeability (see Methods 4.3.7). We found that 331 
estimated adequacy was the best criterion to explain the selection of First responses (Efadequacy=0.89, 332 
Xpadequacy=1) and likeability was the best criterion to explain the selection of Distant responses 333 
(Eflikeability=0.66, Xplikeability=0.99) (Figure 5B). These results indicate that valuation (based on individual 334 
likeability) is needed to select a creative response in the creative condition of the FGAT (Distant). 335 
 336 

2.4. Validity of the full model: does it predict behavioral responses in 337 
the test group? 338 

 339 
After having characterized the equations and individual parameters of the valuator on all participants 340 
using the rating tasks, and of the explorer and selector modules on a subset of participants (n1=46), we 341 
checked whether this model could generate surrogate data similar to the behavior of the remaining 342 
participants (test group, n2=23). We simulated behavioral data and response time from the full model 343 
(explorer, valuator, selector), depicted in Figure 1 (See Methods 4.3.8).  344 
We analyzed the behavior of the simulated data the same way we analyzed the behavior of the real 345 
human data of the test group (see Methods 4.3.8). We found the same patterns at the group level (SI 346 
Table S2, Figure 6 and S4): 1) First responses were much more common than Distant responses (Figure 347 
6A, B); 2) the rank in path decreased with the group frequency of responses, both for First and Distant 348 
responses (Figure 6A, B), confirming that it takes more time to provide a rare response compared to a 349 
common one; 3) Ranks decreased with the cue steepness, both for First and Distant responses (Figure 350 
6C, D); 4) Ranks of the Distant responses decreased with estimated likeability. The effect was significant 351 
only for Distant responses and the difference between regression estimates for First and Distant 352 
responses was significant. (Figure 6E, F); 5) First responses were more appropriate than Distant 353 
responses, but Distant responses were more original than First responses. The difference in originality 354 
rating between First and Distant responses was bigger than the difference in adequacy (SI Figure S4).  355 
Additionally, we checked whether the surrogate data generated by the model for each participant was 356 
relevant at the inter-individual level. We estimated the selector parameters for the test group and 357 
conducted the analyses on all participants to increase statistical power. We found that the mean 358 
response time per participant across trials of the FGAT Distant condition was correlated with the mean 359 
rank of Distant responses across trials in the model exploration path (r=0.72, p=1.10-4). Similarly, the 360 
mean associative frequency (Dictaverf) of participants’ Distant responses was significantly correlated to 361 
the mean frequency of the model Distant responses (r=0.53, p=9.10-3). These results mean that the 362 
model successfully predicted individual behavioral differences in the FGAT task. 363 
 364 

2.5. Relevance of model parameters for creative abilities 365 
 366 
Finally, to assess the relevance of the individual model parameters in relation to the FGAT task for 367 
creative abilities, we defined two sets of variables: FGAT parameters and scores reflecting the valuator, 368 
selector and explorer individual characteristics, and Battery scores related to several aspects of 369 
creativity (see Methods 4.2.4 and SI Methods). We conducted a canonical correlation analysis between 370 
those two sets in all participants and found one canonical variable showing significant dependence 371 
between them (r=0.61, p=0.0057). When assessing which variables within each set had the highest 372 
coefficient to the canonical score, we found that the two likeability parameters (α and δ, from the 373 
valuator), the inverse temperature (choice stochasticity, from the choice task, see SI results and 374 
Methods 4.3.3) of the Distant response selection (from the selector) and the First response associative 375 
frequencies were significantly contributing the FGAT canonical variable. Additionally, fluency score from 376 
the fluency task and from the alternative uses task (AUT), creativity self-report, and PrefScore (self-377 
report of preferences regarding ideas) significantly contributed to the Battery canonical variable. No 378 
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significant contribution was observed from creative activities (C-Act) and achievements (C-Ach) in real 379 
life scores (Table S3, Figure 7). Overall, this significant canonical correlation indicates that measures of 380 
valuation and selection relate to creative behavior. 381 
 382 

3. Discussion 383 
 384 

3.1. Summary 385 
 386 
In the current study, we investigated the role of valuation based on adequacy and originality in idea 387 
generation and creativity. We found that people built subjective values of ideas based on their adequacy 388 
and originality that guided their preference and impacted their idea generation during the FGAT task. 389 
There was a signature of this value in the response speed of the participants during the FGAT task. 390 
Then, we investigated whether preferences were more likely to impact semantic exploration or response 391 
selection using a computational model combining random walk on semantic networks (explorer), the 392 
subjective valuation of candidate responses (valuator), and decision for response selection (selector). 393 
We found that semantic exploration was more likely to be driven by the associative frequency between 394 
words, independently of the individual goal (providing the first response that comes to mind vs. providing 395 
a creative response). On the contrary, response selection was driven by adequacy for an uncreative 396 
goal and by likeability for a creative goal. Critically, we have shown that our computational model is able 397 
to predict the main behavioral patterns of human participants solely by using individual preference 398 
parameters, estimated from rating tasks. Finally, we confirmed the relevance for creative abilities of the 399 
individual parameters computed with our model. 400 
 401 

3.2. Preferred associations are produced faster when thinking 402 
creatively  403 

 404 
Using the FGAT task, previously associated with creative abilities (13), we found that Distant responses 405 
were overall more original and slower in response time than First responses. In addition, response time 406 
decreased with steepness (only for First) and cue-response associative frequency. Those results are in 407 
line with the notion that it takes time to provide an original and rare response (46, 47). 408 
Critically, we identified that the likeability of Distant responses was negatively linked to response time 409 
and positively linked to typing speed. Interpretation of response time can be challenging as it could 410 
reflect the easiness of choice (48), the quantity of effort or control required for action (49), motivation 411 
(45), or confidence (50). In any case, this result, surviving correction for potential confounding factors 412 
(see Results 2.1.1), represents evidence that subjective valuation of ideas occurs during a creative 413 
(hidden) choice. To our knowledge, this is the first time that such a result has been demonstrated. With 414 
our computational model, we attempt to provide an explanation of a potential underlying mechanism 415 
involving value-based idea selection. 416 
 417 

3.3. Subjective valuation of ideas drives the selection of a creative 418 
response 419 

 420 
The striking novelty our results reveal is the role of the valuator module coupled with the selector module 421 
in idea generation. These modules are directly inspired by the value-based decision-making field of 422 
research (24, 51). To make any kind of goal-directed choice, an agent needs to assign a subjective 423 
value to items or options at stake, so that they can be compared and one of them can be selected (52). 424 
Here, we hypothesized that providing a creative response involves such a goal-directed choice that 425 
would logically require the subjective valuation of candidate ideas. After finding a behavioral signature 426 
of subjective valuation in response time and typing speed, we have shown that Distant response 427 
selection among a set of options was best explained by likeability judgments. This pattern was similar 428 
to the behavior observed in the choice task, explicitly asking participants to choose the response they 429 
would have preferred to give in the FGAT Distant condition. Valuation is closely related to motivation 430 
process, as it is assumed that subjective values would energize behaviors (53). Previous studies have 431 
highlighted the importance of motivation in creativity (54, 55). However, those reports were mainly based 432 
on interindividual correlations, while our study brings new evidence for the role of motivation in creativity 433 
with a mechanistic approach. Our findings support the hypothesis that the Brain Valuation System is 434 
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involved in creative thinking and paves the way to later investigate its neural response during creative 435 
experimental tasks.  436 
 437 
Our study also reveals some of the mechanisms about how individual preferences are built and used to 438 
make creative choices. Using the rating tasks and comparing several valuation functions, we identified 439 
how originality and adequacy ratings were taken into account to build likeability, and determined 440 
preference parameters (relative weight of originality and adequacy and convexity of preference) to 441 
predict the subjective likeability of any cue-response association. Subjective likeability relied on 442 
subjective adequacy and originality. The identified valuation function linking likeability with adequacy 443 
and originality, i.e., the Constant Elasticity of Substitution utility function, has been previously used to 444 
explain moral choices or economic choices (56, 57, 41), making it an appropriate candidate for the 445 
valuator module of our model. Overall, these results indicate that likeability is a relevant measure of the 446 
individual values that participants attributed to their ideas, and inform us on how it relies on the 447 
combination of originality and adequacy. 448 
 449 
The second novelty of our study is to provide a valid full computational model composed of an explorer, 450 
a valuator and a selector module. We characterized these modules, and brought an unprecedented 451 
mechanistic understanding of creative idea generation. This full model is able to generate surrogate 452 
data similar to the real human behavior, both at the group and inter-individual level.  453 
 454 

3.4. A computational model that provides a mechanistic explanation 455 
of idea generation 456 

 457 
The computational model presented in the current study is consistent with previous theoretical 458 
frameworks involving two phases in creativity: exploration and evaluation/selection (7–10). The explorer 459 
module was developed using random walks as it had been successfully done in previous studies to 460 
mimic semantic exploration (58). Here, we found that the simulated semantic exploration was driven by 461 
associative frequency between words, but was not biased by subjective judgments of likeability, 462 
adequacy or originality. This result is consistent with a recent study showing that a random walk applied 463 
to a semantic network was sufficient to predict the pattern of responses in a fluency task (38). In that 464 
study, the authors also demonstrated that creative abilities were linked to the network structure rather 465 
than to the search process, replicating a previous result (30). Here, we could not draw any conclusion 466 
about the link between the individual semantic network structure and creative abilities, since we did not 467 
have access to individual semantic networks and used the same semantic network for all participants. 468 
Nevertheless, we have shown that a frequency biased random walk yielded higher probabilities of 469 
reaching real individual responses compared to other biased random walks. This result is consistent 470 
with the associative theory of creativity (59), which assumes that creative search is facilitated by 471 
semantic memory structure, and with experimental studies linking creativity and semantic network 472 
structure (60) or word associations (61). Indeed, the random walks that we compared could be combined 473 
in three groups: purely random, structure-driven (frequency-biased) and goal-directed (cue-related 474 
adequacy, originality and likeability biased). Here, we found that the structure-driven random walk 475 
outperformed the random and goal-directed random walks, providing further evidence that semantic 476 
search has a spontaneous, bottom-up component, and with previous studies that used free fluency tasks 477 
(60) or word association tasks (61). 478 
 479 
Overall, our computational approach does not explore the neural mechanism of creative response 480 
generation per se, yet it has several strengths. First, it considers creativity as a plural mechanism (three 481 
modules) occurring in each individual. Second, it adds to previous research a new framework to explore 482 
creativity by combining semantic search and value-based response selection. Third, it allows behavioral 483 
predictions at the individual and group level. Classically, creativity is investigated as an ability varying 484 
across individuals, and differences between low and high creative abilities are investigated. Although 485 
this approach has allowed the discovery of key results about human creativity - such as the importance 486 
of semantic network structure or the impact of motivation - it prevents understanding how the human 487 
brain implements idea generation and selection, independently of its creative performance. 488 
Computational cognitive modelling is now widely used in cognitive neuroscience but it has rarely been 489 
applied to neuroscience of creativity. The use of model fitting procedure, model selection and surrogate 490 
data generation, in accordance with guidelines suggested by previous work (62), has a high potential 491 
for better understanding underlying mechanisms of creativity as demonstrated in our study. 492 
 493 
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3.5. Limitations 494 

Some limitations to this study need to be acknowledged. First, the present study assesses creative 495 
cognition in the semantic domain. To fully validate our computational model and the core role of 496 
preference-based idea selection, it is necessary to apply similar analyses on other domains such as 497 
drawing or music. Second, to build our model, we made many assumptions, such as the structure of 498 
semantic networks, and each of them should be tested explicitly in future studies. Third, our main result 499 
concludes on the role of motivation and preferences in idea selection, but their role in the exploration 500 
process per se remain to be further understood. Fourth, our model is for now quite serial and needs 501 
more development. For instance, the number of ideas considered at each step was fixed in our model, 502 
but one should also consider that a smaller number of ideas are evaluated at each step and that the 503 
whole process is restarted if a threshold value is not reached. Thus, our model will need some further 504 
extension, notably by adding iterations and a “stop” criterion. 505 

 506 
3.6. Conclusion 507 

 508 
The present study reveals the role of individual preferences and decision making in creativity, by 509 
decomposing and characterizing the exploration and the evaluation/selection processes of idea 510 
generation. Our findings demonstrate that the exploration process relied on associative thinking while 511 
the selection process depended on the valuation of ideas. We also show how preferences are formed 512 
by weighting adequacy and originality of ideas. By assessing creativity at the group level, beyond the 513 
classical interindividual assessment of creative abilities, the current study paves the way to a new 514 
framework for creativity research and places creativity as a complex goal-directed behavior driven by 515 
reward signals. Future neuroimaging studies will examine the neural validity of our model. 516 
 517 

4. Materials and Methods 518 
 519 

4.1. Participants 520 
The study was approved by an official ethics committee. Seventy-one participants were recruited and 521 
tested thanks to the PRISME platform of the Paris Brain Institute (ICM). They gave informed consent, 522 
and were compensated for their participation. Inclusion criteria were: being right-handed, native French 523 
speakers, between 22 and 40 years old, with correct or corrected vision and no history of neurological 524 
or psychiatric disease. Two participants were excluded because of a misunderstanding of the 525 
instructions, bringing the final number of participants to 69 (41 females and 28 males; mean age: 526 
25.8±4.5; mean level of education: number of study years following French A-levels: 5.0±1.6). 527 
 528 

4.2. Experimental design 529 
Each participant performed three types of tasks of creative generation and evaluation of ideas, which 530 
were followed by a battery of tests classically used in the laboratory and assessing the participant’s 531 
creative abilities. All tasks and tests were computerized and administered in the same fixed order for all 532 
participants.  533 
 534 

4.2.1. Free Generation of Associations Task (FGAT)  535 
 536 
The Free Generation of Associations Task (hereafter referred to as FGAT) is a word association task, 537 
previously shown to capture aspects of creativity (13) (63). It is composed of two conditions, presented 538 
successively, always in the same order. Cue words selection is detailed in SI.  539 
 540 
FGAT-first condition 541 
After a 5-trials training session, participants performed the 62 trials of the first condition block (hereafter 542 
referred to as FGAT-first). They were presented with a cue word and instructed to provide the first word 543 
that came to mind after reading the cue word. They had 10 seconds to find a word and press the 544 
spacebar and then were allowed 10 seconds maximum to type it on a keyboard. This condition was 545 
used to explore the participants’ spontaneous semantic associations and served as a control condition 546 
that is not a creative task per se.  547 
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  548 
FGAT-distant condition 549 
In a different following block, participants were administered 62 trials of the second condition of the task 550 
(hereafter referred to as FGAT-distant). On each trial, they were presented with a cue word as in the 551 
previous condition and instructed to press the spacebar once they had thought of a word unusually 552 
associated with the cue. They were asked to find a distant but understandable associate and to think 553 
creatively. They had 20 seconds to think of a word and press the spacebar and then were allowed 10 554 
seconds maximum to type it. This condition was used to measure the participants’ ability to produce 555 
remote and creative associations intentionally.  556 
 557 

4.2.2. Rating tasks 558 
 559 
After the FGAT task, participants performed two rating tasks. In the first block, they had to rate how 560 
much they liked an association of two words (likeability rating task). Then, in a separate block performed 561 
after the Choice task (see below), they had to rate the originality and the adequacy (originality and 562 
adequacy rating task) of the same associations as in the likeability rating task.  563 
 564 
Likeability Rating task 565 
After a 5-trial training session, participants performed 197 trials in which they were presented with an 566 
association of two words (cue-response, see below) and asked to rate how much they liked this cue-567 
response association in a creative context, i.e., how much they like it or would have liked to find it during 568 
the FGAT Distant condition. A cue-response association was displayed on the screen, and 0.3 to 0.6 569 
seconds later, a rating scale appeared underneath it. The rating scale’s low to high values were 570 
represented from left to right, without any numerical values but with 101 steps and a segment indicating 571 
the middle of the scale (later converted in ratings ranging between 0 and 100). Participants entered their 572 
rating by pressing the left and right arrows on the keyboard to move a slider across the rating scale, with 573 
the instruction to use the whole scale. Once satisfied with the position of the slider, they pressed the 574 
spacebar to validate their rating and went on to the subsequent trial. No time limit was applied, but 575 
participants had the instruction to respond as spontaneously as possible. A symbol (a heart for likeability 576 
ratings) was placed underneath the scale as a reminder of the dimension on which the words were to 577 
be rated. 578 
 579 
Originality and Adequacy Ratings 580 
Another Rating task was performed after the Choice task. After a 5-trial training session, participants 581 
performed a block of 197 trials. They were asked to rate the same set of associations as in the likeability 582 
task, but this time in terms of originality and adequacy, and in a different random order. In the 583 
instructions, an original association was described as ‘original, unusual, surprising’. An adequate 584 
association was described as ‘appropriate, understandable meaning, relevant, suitable’. Note that the 585 
instructions were given in French to the participants and the adjectives used in here are the closest 586 
translation we could find.  587 
For each cue-response association, participants had to rate originality and adequacy dimensions one 588 
after the other, in a balanced order (in half of the trials, participants were asked to rate the association’s 589 
adequacy before its originality, and in the other half of the trials, it was the opposite). The order was 590 
unpredictable for the participant. Similar to the likeability ratings, the rating scale appeared underneath 591 
the association after 0.3 to 0.6 seconds, with a different symbol below it: a star for originality ratings and 592 
a target for adequacy ratings, as depicted in Figure 2. 593 
 594 
Cue-word associations 595 
The 197 cue-response associations presented in the rating tasks and choice task were built with 35 596 
FGAT cue words randomly selected for each participant, at the end of FGAT with a MatLab script that 597 
implemented an adaptive design with the following rules. Each cue word was associated with seven 598 
words, amounting to 245 possible associations in total. The seven associated words for each cue word 599 
were selected from the participant’s answers and from another dataset collected previously in the lab 600 
that gathers the responses of 96 independent and healthy participants on a similar FGAT task (See SI 601 
Supplementary Methods for a full description).  602 
 603 

4.2.3. Choice task 604 
 605 
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Between the likeability rating task and the adequacy-originality rating task, participants performed a 606 
binary choice task. They had to choose between two words the one they preferred to be associated with 607 
a cue in a creative context, i.e., in the FGAT Distant context. Instructions were as follows: ‘For example, 608 
would you have preferred to answer “silver” or “jewellery” to “necklace” when generating original 609 
associations during the previous task?’ (There was additionally a reminder of the FGAT Distant 610 
condition, in the instructions). Details of the task can be found in SI Supplementary Methods.  611 
 612 

4.2.4. Battery of creativity tests 613 
 614 
A battery of creativity tests run on Qualtrics followed the previous tasks, in order to assess creative 615 
abilities and behavior of the participants. It was composed of the alternative uses task (AUT), the 616 
inventory of Creative Activities and Achievements (ICAA), a self-report of creative abilities, a scale of 617 
preferences in creativity between adequacy and originality (SPC) and a fluency task on six FGAT cues. 618 
There are described in detail in the Supplementary Methods.  619 
 620 

4.3. Statistical analysis and computational modelling 621 
 622 
All analyses were performed using Matlab (MATLAB. (2020). 9.9.0.1495850 (R2020b). Natick, 623 
Massachusetts: The MathWorks Inc.). Model fitting and comparison were conducted using the VBA 624 
toolbox (https://mbb-team.github.io/VBA-toolbox/) (65).  625 
 626 

4.3.1. Analyses of the FGAT responses 627 
 628 
The main behavioral measures of interest in the FGAT task are the response time (pressing the space 629 
key to provide an answer), the typing speed (number of letters per second), and the associative 630 
frequency of the responses. This frequency was computed based on a French database called Dictaverf 631 
(http://dictaverf.nsu.ru/)(66) built on spontaneous associations provided by at least 400 individuals in 632 
response to 1081 words (each person saw 100 random words). Frequencies were log-transformed to 633 
take into account their skewed distribution toward 0. Cues varied in terms of steepness (the ratio 634 
between the associative frequency of the first and distant associate of a given cue word), which also 635 
constituted a variable of interest. The ratings provided by subjects on their own responses (adequacy, 636 
originality, and likeability) were also used as variables of interest. 637 
Linear regressions were conducted at the subject level between normalized variables. Significance was 638 
tested at the group level using one sample two-tailed t-test on coefficient estimates.  639 
 640 

4.3.2. Model fitting and comparison 641 
 642 
Every model/module was fitted at the individual level to ratings and choices using the Matlab VBA-643 
toolbox, which implements Variational Bayesian analysis under the Laplace approximation (67, 68). This 644 
iterative algorithm provides a free-energy approximation to the marginal likelihood or model evidence, 645 
which represents a natural trade-off between model accuracy (goodness of fit) and complexity (degrees 646 
of freedom) (69, 70). Additionally, the algorithm provides an estimate of the posterior density over the 647 
model free parameters, starting with Gaussian priors. Individual log-model evidence were then taken to 648 
group-level random-effect Bayesian model selection (RFX-BMS) procedure (68, 71). RFX-BMS 649 
provides an exceedance probability (Xp) that measures how likely it is that a given model (or family of 650 
models) is more frequently implemented, relative to all the others considered in the model space, in the 651 
population from which participants were drawn (68, 71). 652 
 653 
We conducted the first model comparison to determine which variable (Adequacy A, Originality O or 654 
Likeability L) best explained choices (Methods 4.3.3). The second model comparison was performed to 655 
identify which utility function (valuator module) best explained how originality and adequacy were 656 
combined to compute likeability (Methods 4.3.4). The third one aimed at establishing relationships 657 
between adequacy and originality ratings and associative frequency of cue and responses (Methods 658 
4.3.4). The fourth one aimed at identifying the best possible input variable for the selector module 659 
(Methods 4.3.7). 660 
 661 

4.3.3. Relationship between choices and ratings 662 
 663 
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Logistic regression was applied to choices as a dependant variable, with likeability (L), originality (O) or 664 
adequacy (A) ratings as regressors. Choices were analyzed at the subject level and tested for 665 
significance at the group level (random-effect analysis) using two-tailed, paired, Student’s t-tests. The 666 
softmax function used to determine which variable (V) among likeability, adequacy or originality ratings 667 
was better explaining the proportion choices for left options (P(Left)) against right options is the following: 668 

𝑃(𝐿𝑒𝑓𝑡) =
1

1 + 𝑒!
"!"#$!"%&'($!#

$)(*&)"

 669 

 670 
With d being a constant term aiming at capturing any bias towards one side and bchoice the temperature 671 
(choice stochasticity).  672 
 673 

4.3.4. Valuator module: combining likeability originality and adequacy of the rating tasks with 674 
responses associative frequency  675 

 676 
The ratings were used to estimate the likeability of a given response to a cue from its adequacy and 677 
originality, themselves estimated from its associative frequency.  678 
 679 
Likeability ratings relationship with adequacy and originality ratings 680 
First, we fitted 12 different functions to likeability ratings capturing linearly (or not) the relationship 681 
between likeability (L) and adequacy (A) and originality (O):  682 
 683 

- Linear models: 684 

 685 
- Linear with interaction term models: 686 

 687 
- Non-linear models (with the same non-linearity on both dimensions): 688 

 689 
The first non-linear model is also referred as Constant Elasticity of Substitution (CES) (57) 690 

 691 
- Non-linear models (with different non-linearity on both dimensions): 692 

 693 
Greek letters correspond to free parameters estimated with the fitting procedure described below; i 694 
refers to a given cue-response association. 695 
 696 
Adequacy and originality ratings relationship with associative frequency 697 
Second, we investigated how adequacy and originality were linked to associative frequency between a 698 
cue and a response Fci. For each dimension X (A or O), we compared three models:  699 
 700 

𝜇%&  corresponds to the linear regression coefficient and 𝜇%
'  to the quadratic regression coefficient.  701 

 702 
4.3.5. Model identification group and test group 703 

 704 
We randomly split our group of participants into two subgroups, one group to develop the explorer and 705 
selector modules (2/3 of the group: 46 subjects) and one group to validate the full module (combination 706 
of the explorer, valuator and selector modules) by comparing its behavioral prediction to the actual 707 
behavior of the participants (23 subjects).  708 
 709 
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4.3.6. Modelling the explorer module 710 
 711 
Construction of semantic networks 712 
The Dictaverf database consists of 1081 cue words associated with 23340 other words and is organized 713 
as a matrix M of i rows and j columns, with associative frequencies directed from the cue-words i to the 714 
response-words in j. We used this database combined with FGAT responses to build a symmetric 715 
adjacency matrix C of word associations for each cue word, applying the following procedure. 716 

1) A list of all FGAT responses (First and Distant) from the current and the former datasets of the 717 
lab was created for each cue.  718 

2) Then, for each response in the list: 719 
a. If it was already associated with the cue in Dictaverf, for example, “learning” in response 720 

to “school”, then: C(school,learning) = C(learning,school) = M(school,learning). 721 
b. If it was not associated with the cue in Dictaverf: we looked for it in the whole database 722 

and identified all potential intermediate nodes between the cue and the word (any other 723 
words associated with both the cue and the response). For instance, one subject 724 
responded “anxiety” to “school”. “Anxiety” was not directly linked to “school” in M, but it 725 
was connected to “studies”, which was connected to “school”. Then, “anxiety” was 726 
added as a row (and column for symmetry) in the matrix C, and frequency between 727 
“Anxiety” and “studies” was defined as the frequency between “studies” and “anxiety” 728 
from M. “Studies” was also added as a row (and column) in C and the frequency 729 
between “studies” and “school” was set as the frequency between “school” and 730 
“studies”:  731 
C(anxiety, studies)=C(studies, anxiety)=M(studies, anxiety)  732 
and  733 
C(studies, school)=C(school, studies)=M(studies, school). 734 
In this example, when then building a network based on C (see below), “anxiety” is thus 735 
connected to “school” via the node “studies”. 736 
This procedure was applied to all potential intermediate nodes, independently of the 737 
number of intermediates.  738 
 739 

This procedure yielded 62 symmetric C matrices (one per cue) with a size of around 1022 by 1022 words 740 
(ranging between 689 and 1186). The first row and column of each matrix correspond to the cue on 741 
which the matrix has been built (SI Figure S5 for visual explanation).  742 
 743 
Sixty-two networks N were built based on those C matrices as unweighted and undirected graphs (two 744 
nodes were linked by an edge if the frequency of association between them was higher than 0).  745 
 746 
Random walks variants and implementation 747 
We used censored random walks that start at a given cue and walk within its associated network N. 748 
Censored random walks have the property to not return to previously visited nodes. In case of a dead-749 
end, the censored random walk starts over from the cue but does not go back to previously visited 750 
nodes. The five following variants of censored random walks were applied to the semantic networks to 751 
simulate potential paths.  752 

- The random walk random (RWR) was a censored random walk starting at the cue and with 753 
uniform distribution of probabilities of transition from the current node to each of its neighbours 754 
(excluding previously visited nodes).  755 

- The random walk frequency (RWF) was a censored random walk biased by the associative 756 
frequency between nodes, where the probability of transition from one node to another one is 757 
defined as follows: 758 

with 𝑃(./ the probability of transition to node j, 𝐹(. the frequency of the association in the C matrices 759 
described above with the current node i, and j all the other nodes linked to the current node n.  760 

- Three additional censored random walks were run. They were biased by adequacy (RWA), 761 
originality (RWO), or likeability (RWL) of association between nodes and cue, where the 762 
probability of transition from one node to another one is defined as follows: 763 

 764 

𝑃(./ =
𝐹(.
∑ 𝐹(..
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 765 
with 𝑃(.% the probability of transition from node i to node j, 𝑋,. the estimated adequacy, originality, or 766 
likeability of the node j with the cue node c, j are all the nodes linked to the current node i.  767 
 768 
Estimated adequacy, originality and likeability of all the network nodes (𝑋() were computed based on 769 
the results of the model comparison performed in the first section (see Methods 4.3.4). The following 770 
equations were consequently used:  771 

 772 

 773 
With 𝐹,( as the frequency of association between the node and the cue.  774 
Note that if a given node was not directly linked to the cue, we computed 𝐹,( 	as the cumulative product 775 
of the frequency of association of the nodes belonging to the shortest path between the cue and the 776 
node. For example: Fschool-anxiety = Fschool-studies x Fstudies-anxiety. 777 
Also, if one node (cue-word association) has actually been rated by the participant, 𝜇0, 𝜇1& , 𝜇1

' , 𝛼, and 𝛿 778 
were estimated without that particular cue-word association (leave-one-out procedure) to avoid double-779 
dipping. For example, if the cue-response “School-Anxiety” was rated at trial t by a participant, the 780 
predicted adequacy, originality, and likeability of trial t for that participant were computed with parameters 781 
estimated with all trials except trial t. This procedure lengthens the processing time of the random walks 782 
RWA, RWO and RWL but has the advantage of avoiding double-dipping.  783 
 784 
The number of steps performed by each random walk was constant across cues and participants and 785 
was defined by the median of fluency score among the group, i.e., 18 steps, resulting in no more than 786 
17 visited nodes.  787 
 788 
Probability of reaching First and Distant responses for each participant and cue 789 
We computed the probability of reaching the First and Distant responses (Targets T) from a starting 790 
node cue (c) for each type of random walk as follows: 791 

𝑃,,34 @A𝑃(,.

.43

(4,
(,.∈6

7

648

 792 

 793 
With G representing all possible paths between c and T, ranging from the shortest one (a) to the longest 794 
one (z) (limited to 18 steps) and i and j all pairs of nodes belonging to each path, linked by a transition 795 
probability Pi,j. In other words, it corresponds to the sum of the cumulative product of edge weights for 796 
all the possible paths between the cue and the target shorter than 18 steps. 797 
 798 

4.3.7. Decision functions as the selector module 799 
 800 
Next, we intended to decipher the criteria determining the selection of a given response. 801 
For each subject and cue, we simulated RWF as described above and retained the paths that contained 802 
both the First and Distant response of the subject for further analyses (the number of excluded cues 803 
ranged between 0 and 31 trials over 62, M=9.04 trials, exclusion mainly due to missing responses from 804 
participants either in the FGAT First or Distant condition).  805 
For each subject, we built two response matrices RF and RD of the same size n by t, t being the number 806 
of cues (equivalent of trials within one FGAT condition) retained (53 cues per subject on average) and 807 
n the number of nodes visited by the RWF (fixed at 18) (See SI Figure S6 for visual explanation). Those 808 
matrices were filled with zeros, except for nodes and trials that corresponded to the actual participant 809 
response. RF contains ones for cells actually corresponding to the subject’s First response (one 1 per 810 
column), and RD contains ones for cells corresponding to the subject’s Distant response. In order to 811 
determine the variable on which the selector module was likely to rely on, we built and compared seven 812 
matrices of values Mx of size n by t: 813 

𝑃(.% =
𝑋,.
∑ 𝑋,..

	

𝐴( = 𝜇0𝑙𝑜𝑔	(𝐹,()	

𝑂( = 𝜇1& 𝑙𝑜𝑔(𝐹,() + 	𝜇1
'  𝑙𝑜𝑔(𝐹,()-	

𝐿( = (𝛼𝑂() + (1 − 𝛼)𝐴(
))

*
) 	
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- Mr: random values in the matrix  814 
- MP: matrix with value decreasing with the order in the path  815 
- MA: matrix with estimated adequacy of each visited node in the path 816 
- MO: matrix with estimated originality of each visited node in the path 817 
- ML: matrix with estimated likeability of each visited node in the path 818 
- MA+O: Sum of A and O 819 
- MA*O: Product of A and O 820 

 821 
MA+O and MA*O were added as controls for likeability, which relies on a non-linear weighted sum of 822 
adequacy and originality (CES). 823 
Using the VBA toolbox, we fitted the following multivariate softmax functions to RF and RD separately for 824 
the seven different matrices: 825 
 826 

  827 
P is the probability of the node i to be selected as a response (R) First (F) or Distant (D) among all the 828 
possible nodes k belonging to the n options from the paths at trial t (for a given cue). X corresponds to 829 
the values within the seven different input matrices. 𝛽/and 𝛽9are free parameters estimated per subject, 830 
corresponding to the temperature (choice stochasticity).  831 
We then compared the seven models for the First and Distant response separately and reported the 832 
results of the model comparison in the results. 833 
 834 

4.3.8. Cross-validation of the model: comparing the surrogate data to human behavior 835 
 836 
To simulate the behavior of the remaining 23 subjects, we combined all the previously described 837 
modules together and released some constraints imposed by the model investigation. We applied RWF 838 
with 18 steps on the built networks (see Methods 4.3.6) and assigned values to each visited node 839 
according to each subject’s valuator module parameters. The list of visited nodes (candidate responses) 840 
for each cue and each subject was simulated without the constraint of containing participants' First and 841 
Distant responses. The selection was made using an argmax rule on adequacy (winning value for the 842 
selector module) for the First response and on likeability (winning value for the selector module) for the 843 
Distant response (as we do not have the selection temperature parameters 𝛽/and 𝛽9 for those 844 
remaining subjects). We ran 100 simulations per individual following that procedure. 845 
The rank in the path was used as a proxy for response time, and we analyzed surrogate data in the 846 
exact same way as subject behavior.  847 
For statistical assessment, regression estimates of ranks against frequency, steepness, and estimated 848 
likeability were averaged across 100 simulations per individuals, and significance was addressed at the 849 
group level (one representative simulation was used in Figures 6 and S4). For this analysis, group 850 
frequency of response was computed instead of Dictaverf associative frequency to 1) avoid any 851 
confounds with the structure of the graph, built with Dictaverf, and 2) compare the distribution of 852 
frequencies relative to the group.  853 
 854 

4.3.9. Canonical correlation 855 
 856 
To investigate the link between creative abilities and our task and model parameters, we extracted the 857 
individual task scores and model parameters and grouped them together, into the labelled “FGAT scores 858 
and parameters”. We grouped the scores obtained from the battery of creativity test and labelled them 859 
“Battery scores”. We conducted a canonical correlation between those two sets of variables and 860 
checked for significance of correlation between the computed canonical variables of each set. Note that 861 
a canonical correlation analysis can be compared to a Principal Component Analysis, in the sense that 862 
common variance between two data sets is extracted into canonical variables (equivalent of principal 863 
components). Canonical variables extracted for each data set are ordered in terms of strength of 864 
correlations between the two data sets. Each variable within a data set has a loading coefficient that 865 
indicates its contribution to the canonical variable. Here, we extracted the coefficients of each variable 866 
on its respective canonical variable and reported them. 867 

𝑃B𝑅(,:/ D =
𝑒!%&,$/$,

∑ 𝑒(!%-,$/$,)>
?4* 	

	 𝑃B𝑅(,:9 D =
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Figures 1027 
 1028 
Figure 1. Schematic representation of the computational model.  1029 
 1030 

 1031 
The model takes as input a cue, that “activates” a semantic memory network. Semantic search (exploration) is 1032 
implemented as a biased random walk, in which node transition probability P is determined by the frequency of 1033 
association F between the node i and its connected nodes j. The visited nodes (option 1 to n) are evaluated in terms 1034 
of adequacy (A), originality (O) and the valuator assigns a likeability (L) to each of them, CES stands for Constant 1035 
Elasticity of Substitution, see Results. A response is selected in function of the FGAT condition: in the First condition 1036 
(F), the selection is based on adequacy and in the Distant condition (D), the selection is based on likeability. 1037 
Equations results from the different model comparisons conducted in the study and are detailed in the manuscript. 1038 
Text in black corresponds to our framework and hypotheses while text green corresponds to the results obtained in 1039 
our study. 1040 
 1041 
 1042 
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 Figure 2: Experimental design 1044 

 1045 
A. Chronological order of successive tasks. B. From top to bottom, successive screen shots of example trials are 1046 
shown for the three types of tasks (left: FGAT task, middle: choice task, right: rating tasks). Every trial started with 1047 
a fixation cross, followed by one cue word. In the FGAT task, when participant had a response in mind, they had to 1048 
press the space bar and the word “Response?” popped out on the screen. The FGAT task had two conditions. 1049 
Participants had to press a space for providing the first word that came to their mind in the First condition and an 1050 
unusual, original but associated word in the Distant condition. In the choice task, two words were displayed on the 1051 
screen below the cue. Participants had to choose the association they preferred using the arrow keys. As soon as 1052 
a choice was made, another cue appeared on the screen and the next trial began. In the rating tasks, one word 1053 
appeared on the screen below the cue. Then a scale appeared on the screen, noticing subjects that it was time for 1054 
providing a response. In the likeability rating task, participants were asked to indicate how much they liked the 1055 
association in the context of FGAT-distant. In the adequacy and originality rating tasks, each association was first 1056 
rated on either adequacy and originality and then on the remaining dimension. Order was counterbalanced (see 1057 
Methods for details). 1058 
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 Figure 3: Behavioral results of the FGAT task.  1060 
 1061 

A. Correlation between response time (RT) in the FGAT task and the response frequency for the First (yellow) and 1062 
Distant (orange) conditions. B. Correlation between response time (RT) in the FGAT task and the cue steepness 1063 
for the First (yellow) and Distant (orange) conditions. C. Heatmaps of First (top), Distant (middle) and Distant-First 1064 
(bottom) proportions of responses per bin of adequacy and originality ratings. D. Correlation between response time 1065 
(top) and typing speed (bottom) in the FGAT task and likeability ratings of the FGAT responses for the First (yellow) 1066 
and Distant (orange) conditions. In A, B, D, circles indicate binned data averaged across participants. Error bars 1067 
are intersubject s.e.m. Solid lines correspond to the averaged linear regression fit across participants, significant at 1068 
the group level (p<0.05). Dotted lines indicate that the regression fit is non-significant at the group level (p>0.05). 1069 
In A and D top, transparent bars correspond to the average number of responses per bin of frequency (A) or 1070 
likeability (D).  1071 
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Figure 4. Behavioral results of the rating tasks: building the valuator module  1073 

Average likeability ratings (left) and fit (right) are shown as functions of adequacy and originality ratings. Black to 1074 
hot colors indicate low to high values of likeability ratings (left) or fitted subjective value (SV, right). The value 1075 
function used to fit the ratings was the CES utility function.  1076 
  1077 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502491doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502491
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 24 

Figure 5: Random walks predictions and selection model comparison. 1078 

A. Violin plots of the probability of each random walk (RW) to reach the First and Distant participant responses in 1079 
the semantic networks. RWR: random, RWF: frequency biased, RWA: adequacy-biased, RWO: originality biased, 1080 
RWL: likeability biased. Violins represent the distribution of the averaged probabilities across trials for the subgroup 1081 
of participants used to develop the model (n=46). B. Estimated model frequency of selection models for First (dark 1082 
colors) and Distant (lighter colors) responses. Red line indicate chance level.  1083 
 1084 
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 Figure 6. Response speed for the participants and surrogate data of the test group (n=23) 1086 
 1087 

A, B. Correlation between response time RT (A) or node rank (B) in the FGAT task and the response frequency for 1088 
the First (yellow) and Distant (orange) conditions. C, D. Correlation between response time RT (C) or node rank (D) 1089 
in the FGAT task and the cue steepness for the First (yellow) and Distant (orange) conditions. E, F. Correlation 1090 
between response time RT (E) or node rank (F) in the FGAT task and likeability ratings (E) or estimated likeability 1091 
(F) of the FGAT responses for the First (yellow) and Distant (orange) conditions. Circles indicate binned data 1092 
averaged across participants. Error bars are intersubject s.e.m. Solid lines corresponds to the averaged linear 1093 
regression fit across participants, significant at the group level (p<0.05). Dotted lines indicate that the regression fit 1094 
is non-significant at the group level (p>0.05). In A, B, E and F, transparent bars correspond to the average number 1095 
of responses per bin of frequency (A, B) or likeability (E, D). Note that the surrogate data presented in the Figure 1096 
correspond to one simulation (among 100) that is representative of the statistics obtained over all simulations and 1097 
reported in the text. 1098 
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 Figure 7: Canonical correlation between the FGAT parameters/metrics and creativity tests belonging to a 1100 
battery 1101 

Top left. Correlation between the first canonical variables of the battery of tests and of the FGAT parameters/metrics. 1102 
Each dot represents one participant. Top right: correlation coefficient between each battery test and the canonical 1103 
variable of Battery. Bottom left: correlation coefficient between each FGAT parameters/metrics and the canonical 1104 
variable of FGAT. Stars indicate significance (p>0.05). 1105 
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