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ABSTRACT 

Newly Born proteins, devoid of detectable homology to any other proteins, known as orphan 

proteins, occur in a single species or within a taxonomically restricted gene family. They are 

generated by expression of novel Open Reading Frames, and appear throughout evolution. We 

used the recently developed programs for predicting protein structures, RoseTTAFold and 

AlphaFold2, to compare such Newly Born proteins to random polypeptides generated by 

shuffling sequences of native proteins, which have been called ‘Never Born’ proteins. The two 

programs were used to compare the structures of two sets of four Never Born proteins, one set 

that had been expressed and shown to be intrinsically disordered, and a second set that had been 

shown experimentally to possess substantial secondary structure. Since the programs rely to a 

large extent on multisequence alignment, the models generated were scored as being of low 

quality. However, a significant pattern emerged when the models generated by RoseTTAFold 

were examined. Specifically, all four members of Group 1 were shown to be very extended, as 

would be expected for intrinsically disordered proteins. In contrast, all four members of Group 

2 appeared to be compact, and possessed substantial secondary structure. As a further control, 

both programs predicted unfolded structures for three well characterized intrinsically 

disordered proteins. The two programs were used to predict the structures of two orphan 

proteins whose crystal structures have been solved, both of which display novel folds. 

RoseTTAFold predicted both structures very well, whereas AlphaFold2 predicted only one 

well. The two programs were used to predict the structures of five orphan proteins with well-

identified biological functions, one of which is predicted to be intrinsically disordered, and four 

to be folded. Both programs displayed the intrinsically disordered protein as an unfolded 

structure. RoseTTAFold displayed all four of those predicted to be folded as compact folded 

structures, with apparent novel folds, as determined by Dali and Foldseek. It is plausible that 

new biological functions may be implemented by orphan proteins due to their novel folds. 
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1. INTRODUCTION 

The accepted view is that protein sequences have evolved so as to incorporate the features 

required for optimal folding and function1. Specific amino acid or oligopeptide patterns appear 

to yield insights into phylogenetic differences between the three kingdoms: prokaryotes, 

archaea, and eukaryotes2. Surprisingly, however, evidence has been presented that ‘from a 

sequence similarity perspective, real unrelated proteins are indistinguishable from random 

amino acid sequences’3, This, at first sight, seems to be counterintuitive, because it might be 

anticipated that natural sequences would differ from random sequences in their folding 

characteristics. Indeed, this conclusion has been challenged4. 

Two studies have shown that the sequences obtained by random shuffling of native protein 

sequences can be expressed, and that in many cases the expressed polypeptide chains of these 

‘Never Born’ proteins5 fold in aqueous solution into compact structures that display resistance 

to proteolysis6, or substantial secondary structure elements7. For earlier studies using 

randomized sequences see8-10. 

Recently, more than 129 random sequences, of 100 amino acids each, were used to generate 

3D models via the RoseTTAFold tool. These initial models were optimized by Monte Carlo 

sampling in amino acid sequence space to yield “novel proteins spanning a wide range of 

sequences and predicted structures”11. These proteins were then expressed in E coli; 27 of them 

yielded monodisperse species with circular dichroism spectra consistent with a native structure. 

The 3D structures of three of them were determined, and all three displayed novel folds. 

The folding propensity of random sequences is of relevance in the context of the issue of orphan 

genes, and of the proteins that they express, viz., ‘Newly Born’ proteins, devoid of detectable 

homology to any other proteins, which occur in a single species or within a taxonomically 

restricted gene (TRG) family12-18. Such a possibility was considered to be impossible by 

François Jacob19. However, to quote – “The origin of novel protein-coding genes was once 

considered so improbable as to be impossible. In the last decade, and especially in the last five 

years, this view has been overturned by extensive evidence from diverse eukaryotic lineages”15. 

Both the term orphan gene, and the term orphan protein, are often loosely used in more than 

one context. In the present study, the term orphan gene refers to a gene for which evidence has 

been presented that it has arisen from what was previously a non-coding DNA sequence, and 

is expressed as an open reading frame (ORF). Thus, the orphan protein for which it codes is 

seen only in a single species or in one that is closely related taxonomically, i.e., in a TRG family. 

The general contention is thus that new genes may appear out of previously non-coding 
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genomic regions, a process known also as exonization20, and code for novel protein 

sequences21. The question that then arises is how new functional protein domains might evolve 

out of such random sequences12? It is fair to say that this is still an open question, and that much 

more experimental data are required. Of particular interest are studies of higher primates in 

which novel genes were identified that are shared by chimpanzees, gorillas and humans, 

whereas other de novo genes may, for example, be restricted to humans22-27. It should further 

be mentioned that it has been suggested that novel protein sequences may also be generated by 

ORFs present in long non-coding RNAs (lncRNAs)13,28. 

Very recently, the field of structural biology has undergone a revolution due to the development 

of the deep-learning-based protein structure prediction programs, AlphaFold2 (AF2)29 and 

RoseTTAFold (RTF)30. Both these algorithms have been shown to predict 3D structures for 

many natural sequences that closely resemble the experimental structures deposited in the 

PDB31-33. The major breakthrough yielding higher quality compared to previous methods was 

the novel way in which multisequence analysis was employed29. We were curious as to whether 

these powerful new tools for protein structure prediction might be of value for distinguishing 

natural from random sequences. Here, we use these AI programs to predict the structures of 

several natural sequences, and of random sequences generated by shuffling them, as well as 

those of ‘Newly Born’ orphan proteins. They are also used to predict the structures of the 

random sequences of ‘Never Born’ proteins expressed by Tretyachenko et al.7, some of which 

these authors had shown to fold into compact structures, others to belong to the category of 

intrinsically disordered proteins (IDPs)34. 

 

2. MATERIALS AND METHODS 

2.1. Protein Sequences 

Protein sequences for crystal structures were retrieved from the PDB (https://www.rcsb.org), 

for the three IDPs, sequences from UniProt (https://www.uniprot.org), for the eight ‘Never 

Born’ proteins, from the supplementary information associated with the study of  Tretyachenko 

et al.7 (https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-017-15635-

8/MediaObjects/41598_2017_15635_MOESM1_ESM.pdf) and for the ‘Newly Born’ proteins 

from UniProt (https://www.uniprot.org). All of these sequences are listed in Table 1. 
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Table 1 

Category/Protein Amino Acid Sequence 

Crystal Structures  

Human carbonic  

anhydraese 

>6PEA Carbonic anhydrase 2 Homo sapiens (9606) 

MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLRIL 

NNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELHL 

VHWNTKYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNFDP 

RGLLPESLDYWTYPGSLTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPEELM 

VDNWRPAQPLKNRQIKASFK 

E. coli adenine 

phosphori-

bosyltransferase 

>2DY0 Adenine phosphoribosyltransferase E. coli  K12 (83333) 

GSSGSSGMTATAQQLEYLKNSIKSIQDYPKPGILFRDVTSLLEDPKAYALSIDLLVERYK 

NAGITKVVGTEARGFLFGAPVALGLGVGFVPVRKPGKLPRETISETYDLEYGTDQLEIHV 

DAIKPGDKVLVVDDLLATGGTIEATVKLIRRLGGEVADAAFIINLFDLGGEQRLEKQGIT 

SYSLVPFPGH 

S. cerevisiae 

ribosome  

anti- association  

factor EIF6 

>1G62 RIBOSOME ANTI-ASSOC FACTOR EIF6 S. cerevisiae (4932) 

MATRTQFENSNEIGVFSKLTNTYCLVAVGGSENFYSAFEAELGDAIPIVHTTIAGTRIIG 

RMTAGNRRGLLVPTQTTDQELQHLRNSLPDSVKIQRVEERLSALGNVICCNDYVALVHPD 

IDRETEELISDVLGVEVFRQTISGNILVGSYCSLSNQGGLVHPQTSVQDQEELSSLLQVP 

LVAGTVNRGSSVVGAGMVVNDYLAVTGLDTTAPELSVIESIFRL 

  

IDPs  

Drosophila 

gliotactin  

cytoplasmic domain 

>Q7KT70 Gli-Cyt C-Term 207aa of UniProt Q7KT70 

RNAKRQSDRFYDEDVFINGEGLEPEQDTRGVDNAHMVTNHHALRSRDNIYEYRDSPSTKT 

LASKAHTDTTSLRSPSSLAMTQKSSSQASLKSGISLKETNGHLVKQSERAATPRSQQNGS 

IAKVASPPVEEKRLLQPLSSTPVTQLQAEPAKRVPTAASVSGSSRSTTPVPSARSTTTHT 

TTATLSSQPAAQPRRTHLVEGVPQTSV 

human CDN1C-Cyclin-  

dependent kinase  

inhibitor 

>spP49918 CDN1C_HUMAN Cyclin-dependent kinase inhibitor 1  

MSDASLRSTSTMERLVARGTFPVLVRTSACRSLFGPVDHEELSRELQARLAELNAEDQNR 

WDYDFQQDMPLRGPGRLQWTEVDSDSVPAFYRETVQVGRCRLLLAPRPVAVAVAVSPPLE 

PAAESLDGLEEAPEQLPSVPVPAPASTPPPVPVLAPAPAPAPAPVAAPVAAPVAVAVLAP 

APAPAPAPAPAPAPVAAPAPAPAPAPAPAPAPAPAPDAAPQESAEQGANQGQRGQEPLAD 

QLHSGISGRPAAGTAAASANGAAIKKLSGPLISDFFAKRKRSAPEKSSGDVPAPCPSPSA 

APGVGSVEQTPRKRLR 

human osteopnotin >spP10451 OSTP_HUMAN Osteopontin OX=9606 GN=SPP1 PE=1 SV=1 

MRIAVICFCLLGITCAIPVKQADSGSSEEKQLYNKYPDAVATWLNPDPSQKQNLLAPQNA 

VSSEETNDFKQETLPSKSNESHDHMDDMDDEDDDDHVDSQDSIDSNDSDDVDDTDDSHQS 

DESHHSDESDELVTDFPTDLPATEVFTPVVPTVDTYDGRGDSVVYGLRSKSKKFRRPDIQ 

YPDATDEDITSHMESEELNGAYKAIPVAQDLNAPSDWDSRGKDSYETSQLDDQSAETHSH 

KQSRLYKRKANDESNEHSDVIDSQELSKVSREFHSHEFHSHEDMLVVDPKSKEEDKHLKF 

RISHELDSASSEVN 

  

‘Never Born’ 

Proteins - Group 1 

 

1856 >1856 109aa 

MYQIEKADFTFDVRRRTAATDIENHAFNMVWLQSWCDVSIIKRTLDAYDEAYDAAFQRLK 

PAEWAIDDWVASIQRRRRHYVAYNLSKIKLPVRLEKLSGTTLEHHHHHH 

6387 >6387 109aa 

MIEHCYSKTVYYNLEQEKYDLEVTHIEGWMRAGRKDLADNLLEDSGHVFIPEVALQENHY 

REVHAKIGDAEMRVYKRELFPEPQIVEVLETPSQLFFAEIELEHHHHHH 

4090 >4090 109aa 

MVERDKPPNIWVYDAEPLQQGGIVWVHLAALYCANVDDYAPQDHLDITMYGFDHQKTNIL 

SFEDESVNAQSYWQYGIIFVKSHWGEDLQGAIVESWRDSRSLEHHHHHH 

2298 >2298 109aa 

MKWYGRGREDFGSPDVDVEKNCEGEVIYGTSQELYSNVVFDWWAGISEQPTIFIGSLTTP 

NTKDDMLWYRNDAKNPGHSILYNLINDYWEATEVSGIGNVVLEHHHHHH 

  

‘Never Born’ 

Proteins - Group 3 

 

665 >665 109aa 

MATKGADHGLAAPQPHAKWDTQIPAEGADREHRSGGGNERRFYNEGAKHAQATWAIPDEP 

AFHLQPAVGEGATTDQAGSLEDQWVRSLNNNDVDPTQADETLEHHHHHH 

8667 >8667 109aa 

MPQSLACAGTATRESQNDQLLDGHQPETYLDRMFPEELDEIDGVIPNYDMEWGKKSGLEV 
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SEKCFDPWFNYPTYEETPSDMSGPFKNALMKYRPTQNARPDLEHHHHHH 

3703 >3703 109aa 

MSLYKFGQRRAVDPLPRQCQRDKDYDAFIGGEQNCDNELSKSFPIVVMSVFLYDPTYNVD 

SEAQDNKLDHHGSEPTHGDTPTTSEDTRPGSDRVMRDVPQTLEHHHHHH 

933 >933 109aa 

MVREIDDKTISDYLARGADEGTTAYSLKIPTDKCLFAPTKKHLHGGDKSQEADPPTKSPM 

VEHQFGHEPDFPSCREPEDYPGSPLVELTGLNRLTQEPNEELEHHHHHH 

  

Orphan protein 

crystal structures 

 

T. maritima TM0875 >1O22 orphan protein TM0875 T. maritima (2336) 

MGSDKIHHHHHHMRLMDILEILYYKKGKEFGILEKKMKEIFNETGVSLEPVNSELIGRIF 

LKISVLEEGEEVPSFAIKALTPKENAVDLPLGDWTDLKNVFVEEIDYLDSYGDMKILSEK 

NWYKIYVPYSSVKKKNRNELVEEFMKYFFESKGWNPGEYTFSVQEIDNLF 

H. influenzae 

Hypothetical 

protein HI1480 

<1MW5 HYPOTHETICAL PROTEIN HI1480 H. influenzae  (727) 
GSHMSETDLLMKMVRQPVKLYSVATLFHEFSEVITKLEHSVQKEPTSLLSEENWHKQFLK 

FAQALPAHGSASWLNLDDALQAVVGNSRSAFLHQLIAKLKSRHLQVLELNKIGSEPLDLS 

NLPAPFYVLLPESFAARITLLVQDKALPYVRVSMEYWHALEYKGELNDPAANKARKEAEL 

AAATAEQ 

  

‘Newly Born’ 

Proteins - well 

characterized 

 

Human PBOV1- tumor- 

specific gene  

>spQ9GZY1 PBOV1_HUMAN Prostate & breast cancer overexpressed  

MRAFLRNQKYEDMHNIIHILQIRKLRHRLSNFPRLPGILAPETVLLPFCYKVFRKKEKVK 

RSQKATEFIDYSIEQSHHAILTPLQTHLTMKGSSMKCSSLSSEAILFTLTLQLTQTLGLE 

CCLLYLSKTIHPQII 

Human FLJ33706  

expressed in 

neurons (alt gene 

name C20orf203) 

>spQ8NBC4 CT203_HUMAN Uncharacterized protein C20orf203 

MFPRPVLNSRAQAILLPQPPNMLDHRQWPPRLASFPFTKTGMLSRATSVLAGLTAHLWDL 

GGGAGRRTSKAQRVHPQPSHQRQPPPPQHPGPYQERIWVGGEGWGEVGGLRLSKVGRRDR 

EVGRGLRAPAGRGRAMGGMPRMGTVGDFGQALSSLAWTSTCFQDFCLPSLPGKLPAPLIS 

KQQFLSNSSRSLFN 

Human NCYM - DNA 

binding transcrip -
tional activator  

homolog 

>spP40205 NCYM_HUMAN N-cym protein  

MQHPPCEPGNCLSLKEKKITEGSGGVCWGGETDASNPAPALTACCAAEREANVEQGLAGR 

LLLCNYERRVVRRCKIAGRGRAPLGTRPLDVSSFKLKEEGRPPCLKINK 

Mouse Gm13030 

involved in 

regulating the 

pregnancy cycle 

trA2APQ6 A2APQ6_MOUSE Predicted gene 13030 

MCRFHLLQAIKPPEKQMEQKSSALGSIMKLSQSHATETTWVLPSQGLRDYLLHPACFHHF 

RKEGRPDCRPANMIYGFDKTHPRRCCTDLLFQPRLLMLSRVLGPEQLQELLQIPDDLTSP 

SLSYGSNQNLSQALNFPKHVHTG 

Wheat - TaFROG - an 

IDP 

>trA0A0K1YY56 A0A0K1YY56_WHEAT Fusarium resistance orphan  

MVWSTSKQQGGEREESKQHKMVKEVKTPIFTHQLSFHSLPLNKVKNIEVDRLRLSFTTPK 

NSTLVPVDSGSDEESDEDRGCSDIDSNKPMDEGLDHICSGLHAIPRKNKARSAKKRSHKI 

SSRKFYKIFS 
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2.2. AlphaFold2 Predictions 

The protein AlphaFold2 predictions were performed  by the AlphaFold2_advanced Colab35 at 

https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_a

dvanced.ipynb. The defaults used were: 

• multisequence alignment, mmseq2,  

• template protein structures were not used. 

 

2.3. RoseTTAFold predictions 

The program RoseTTAFold predictions were performed by the Robetta server using the 

RoseTTAFold option30 at: https://robetta.bakerlab.org. The defaults for this server were 

employed. 

 

2.4. Natural protein sequences 

We selected for this study three native proteins whose crystal structures had been 

experimentally determined. The sequence information for these proteins was obtained from the 

UniProt database (https://www.uniprot.org), and the crystal structures from the PDB 

[https://www.rcsb.org]. (1) Carbonic anhydrase (Human) (P00918, 6pea); (2) Ribosome anti-

association factor EIF6 (Saccharomyces cerevisiae) (Q12522, 1g62); (3) Adenine 

phosphoribosyltransferase from E. coli (P69503, 2dyo).  

 

2.5. Randomized sequence generation 

Three to five randomized sequences were generated from each natural sequence, maintaining 

the original amino acid composition of each protein, using the tool for Scrambling Protein or 

Peptide Sequences (https://peptidenexus.com/article/sequence-scrambler). 

 

2.6. Structure prediction and comparison 

Each of the natural and randomized sequences was submitted to  the AlphaFold2 Colab 

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/beta/AlphaFold2_a

dvanced.ipynb) and RTF (https://robetta.bakerlab.org) servers for structure prediction. For each 
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sequence, five most probable models were predicted by each server. The predicted structures 

for natural sequences were aligned with the experimental structures using PyMol [The PyMOL 

Molecular Graphics System, Version 2.1 ATI-4.8.101, Schrödinger, LLC]. The models of each 

of the randomized sequences were aligned with the model with the highest rank predicted by 

AF2, or with the number 1 model predicted by RTF. 

AF2 produces a per-residue estimate of its confidence on a scale of 0-100. This confidence 

measure is called pLDDT, and corresponds to the model’s predicted score on the IDDT-C 

metric36. It is stored in the B-factor fields of the PDB files available. pLDDT is also used to 

color-code the residues of the model in the 3D structure viewer (Fig. 1).  

 
 

Fig. 1 Color coding scheme based on the PDBe AlphaFold Database [https://alphafold.ebi.ac.uk] 

 

For models predicted by RTF, the RMSD values are inserted in place of B-factors in the PDB 

files generated. These were converted into pLDDT values using a Python program that we 

wrote, based on the formulae described by37 and as seen at https://phenix-

online.org/version_docs/dev-4380/reference/process_predicted_model.html. 

 

RMSD = 1.5 * exp(4*(0.7-LDDT/100))    [1] 

LDDT = 100*((7-(ln(RMSD) – ln (1.5))/4))   [2] 

 

To keep the coloring scheme consistent for all structures shown, B-factors, in the original PDB 

files for 3D experimentally determined structures, were converted to pLDDT using the 

following equations: 

 

B = (rmsd2)*((8*(2))/3.0)     [3] 

rmsd = sqrt((3*B/(8* 2))      [4] 

LDDT = 100 * ((7- (ln (sqrt((3*B/(8*p2))) – ln (1.5))/4)) [5] 
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For all structures, we then applied the color scheme used in the PDBe AlphaFold2 database. 

[https://alphafold.ebi.ac.uk] shown in Fig. 1, via the coloraf.py plugin for PyMol 

(https://github.com/cbalbin-bio/pymol-color-alphafold).  

 

2.7. Detection of novel and unique folds 

Dali 38,39 (at http://www2.ebi.ac.uk/dali) and Foldseek40 (at https://search.foldseek.com/search) 

were used to check if the folds were novel. 

 

2.8. Morphs for the 5 top models 

In order to help compare the 5 top models from AF2 and RTF, a morph was generated via 

PyMol after the 5 top models had been aligned on top of each other via the PyMol align 

command. 

 

2.9. Prediction of intrinsically disordered regions 

The prediction of intrinsically disordered regions was carried out by use of (1) FoldIndex 41, 

using:  https://fold.proteopedia.org/cgi-bin/findex]; (2) NetSurfP342, using: 

https://services.healthtech.dtu.dk/service.php?NetSurfP-3.0]; (3) IUPRED343, using: 

https://iupred.elte.hu.  

 

2.10. Amino Acid Compositions 

Amino acid compositions were calculated using the Expassy ProtParam tool 

[https://web.expasy.org/protparam]. 

 

2.11. BLASTP Sequence Search  

BLASTP sequence searches were done using the NIH-NLM site 

[https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins]. 
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3. RESULTS 

As already mentioned in the Introduction, several studies have shown that the sequences 

obtained by random shuffling of native protein sequences can be expressed, and that in many 

cases the expressed polypeptide chains fold in aqueous solution into compact structures that 

display resistance to proteolysis6 or substantial secondary structure elements7. We considered 

that it would be of interest to see how the deep-learning-based protein structure prediction 

programs, RTF and AF2, would predict the structures of such shuffled sequences. Fig. 2a 

displays the crystal structure of human carbonic anhydrase (pdb 6pea), together with the 

structures predicted by AF2 and RTF. Both algorithms predict structures very similar to that of 

the experimental structure, with a high pLDDT score. Fig. 2b shows the results of applying the 

two algorithms to a shuffled 6pea sequence. In both cases the pLDDT score is low. 

Nevertheless, RTF predicts a compact structure, containing substantial secondary structure 

elements, with dimensions not much larger than those of the native structure, whereas AF2 

predicts a considerably more unfolded structure, with a much lower percentage of secondary 

structure elements (Table 2). Figs 3 and 4, respectively, show similar representations for 

adenine phosphoribosyltransferase (E coli K12) (PDB-ID 2dy0), and for ribosome anti-

association factor EIF6 from Saccharomyces cerevisiae (PDB-ID 1g62). 

 
2a 

 

 
2b 

Fig. 2 a. Crystal structure of human carbonic anhydrase, pdb 6pea (left), and structures predicted by RTF (center) 

and AF2 (right); b. Structure of a randomized sequence of pdb 6pea as predicted by RTF (left) and AF2 (right). 
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3a 

 

 
3b 

Fig. 3 a. Crystal structure of adenine phosphoribosyltransferase from E. coli K12, pdb 2dy0 (left), and structures 

predicted by RTF (center) and AF2 (right); b. Structure of a randomized sequence of 2dy0 as predicted by RTF 

(left) and AF2 (right).  

 

 
4a 

 

 
4b 

Fig. 4 a. Crystal structure of ribosome anti-association factor EIF6 from Saccharomyces cerevisiae, pdb 1g62 

(left), and structures predicted by RTF (center) and AF2 (right); b. Structure of a randomized sequence of pdb 

1g62 as predicted by RTF (left) and AF2 (right). 
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Table 2 

Category/Protein Numb of AAs IDa pLDDT 

   Xtalb RTFc AF2d 

Crystal structures      

Human carbonic anhydraese 260 6pea/P00918 86 87 94  

Human carbonic anhydrase Ran_01    29 20 

E. coli adenine phosphoribosyltransferase 190 2dy0/P69503 92 86 96  

E. coli adenine phosphoribosyltransferase Ran_01    42 46 

S. cerevisiae ribosome anti-association factor EIF6 225 1g62/Q12522 81 88 96 

S. cerevisiae ribosome anti-association factor EIF6 Ran_01    17 29 

      

IDPs       

Drosophila gliotactin cytoplasmic domaine 207 Q7KT70  9 52 

human CDN1C-Cyclin-dependent kinase inhibitor 316 P49918  11 58 

human osteopnotin 314 P10451  6 50 

      

‘Never Born’ Proteins - Group 1      

#1856 109   39 49 

#6387 109   25 36 

#4090 109   26 43 

#2298 109   45 49 

      

‘Never Born’ Proteins - Group 3      

#665 109   37 58 

#8667 109   30 47 

#3703 109   23 53 

#933 109   25 53 

      

Orphan protein crystal structures      

Thermatoga maritima TM0875 170 1o22/Q9WZX8 81 77 77 

Thermatoga maritima TM0875 Ran_01    28 32 

H. influenzae Hypothetical protein HI1480 187 1mw5/P44209 75 67 45 

H. influenzae Hypothetical protein HI1480 Ran_01    24 48 

       

‘Newly Born’ Proteins - well characterized      

Human PBOV1- tumor-specific gene 135 Q9GZY1  35 46 

Human FLJ33706 expressed in neurons (alt gene symbol C20orf203) 194 Q8NBC4  29 51 

Human NCYM - DNA binding transcriptional activator homolog 109 P40205  26 45 

Mouse Gm13030 involved in regulating the pregnancy cycle 143 A2APQ6  26 37 

Wheat - TaFROG -an IDP 130 A0A0K1YY56  29 60 

 

aID: 4 letter code is PDB ID (https://www.rcsb.org), while longer length ID corresponds to UniProt accession ID 

(https://www.uniprot.org 
bCalculated from the pdb entry (https://www.rcsb.org)  
cCalculated from RTF model 1 
dCalculated from AF2-Colab highest ranked model 
3C-term 207 residues of Drosophila gliotactin cytoplasmic domain 

 

The fact that the shuffled protein sequences, as well as several of the ‘Newly Born’ proteins 

(see below), were predicted by AF2 to display long unfolded stretches, prompted us to examine 

how RTF and AF2 would predict the structures of bona fide intrinsically disordered proteins 

(IDPs). Fig. 5 shows the predictions for three such proteins, the cytoplasmic domain of the 

ChE-like adhesion molecule (CLAM) from Drosophila, gliotactin44, human CDN1C-cyclin-

dependent kinase inhibitor45, and human osteopontin46. In all three cases, both RTF and AF2 

predict highly unfolded structures, as might be anticipated. However, in all the models 

substantial -helical stretches are predicted, with their percentage in the RTF models being 

significantly higher than in the AF2 models. 
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5a 

 

 
5b 

 

 
5c 

 
Fig. 5 3D structure predictions for 3 IDPs using RTF and AF2. a. Gli-Cyt, RTF (left), AF2 (right); b. CDN1C, 

RTF (left), AF2 (right); c. Osteopontin, RTF (left), AF2 (right). 

 

We then turned our attention to modeling some of the ‘Never Born’ proteins generated and 

expressed by7. As shown in Fig. 6, they predicted, using a repertoire of bioinformatic tools, that 

some of the sequences, which they subsequently expressed would be ordered/folded, with a 

high content of secondary structure elements (Group 1), whereas others would be 

disordered/unfolded, with a low content of secondary structure elements (Group 3). 
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Fig. 6 Selection of sequences from the set of ‘Never Born’ proteins taken for experimental characterization.  

Secondary structure is plotted on the y-axis vs relative disorder on the x-axis. Members of Group 1 (green circles) 

fall into the category of ordered/folded proteins, and members of Group 3 (red circles) fall into the category of 

disordered/unfolded proteins (taken with permission from the paper of Tretyachenko et al, 2017).  

 

Again, we used both RTF and AF2 to model the structures; the data for four members of Group 

1 are displayed in Fig. 7, and for four members of Group 3 in Fig. 8. For all four members of 

Group 1, RTF predicts compact structures, with a high percentage of secondary structure. The 

structures predicted by AF2 are more open, with a much higher percentage of disordered 

stretches. Both RTF and AF2 predict highly unfolded structures for all four members of Group 

3 modelled, though significant amounts of helical elements are observed, especially in the 

models generated by RTF.  

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2022. ; https://doi.org/10.1101/2022.08.02.502493doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502493


 15 

 
7a 

 

 
7b 

 

 
7c 

 

 
7d 

 
Fig. 7 3D structure predictions for 4 members of Group 1 of ‘Never Born’ proteins. a. #1856, RTF (left), AF2 

(right); b. #6387, RTF (left), AF2 (right); c. #4090, RTF (left), AF2 (right); d. #2298, RTF (left), AF2 (right). 
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8c 

 

 
8d 

 
Fig. 8 3D structure predictions for 4 members of Group 3 of ‘Never Born’ proteins. a. #665, RTF (left), AF2 

(right); b. #8667, RTF (left), AF2 (right); c. #3703, RTF (left), AF2 (right); d. #933, RTF (left), AF2 (right). 

 

Despite the fact that research on orphan proteins is a hot topic, largely due to its evolutionary 

implications, we were able to identify only three crystal structures of orphan proteins in the 

PDB. Fig 9a shows the crystal structure of orphan protein TM0875 from Thermatoga maritima 
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(PDB 1o22)47, alongside high-quality predictions of its structure by both RTF and AF2. The 

authors pointed out that this is a novel and unique fold, and application of the Dali 38,48 and 

Foldseek40 servers reveals that it still maintains this status based on a much large number of 

experimental structures in the PDB, as well as in the entire AlphaFold Database  

(https://alphafold.ebi.ac.uk). Fig. 9b shows the results of applying the two prediction algorithms 

to a shuffled 1o22 sequence. In both cases the pLDDT score is low. Nevertheless, RTF predicts 

a compact structure, containing substantial secondary structure elements, with dimensions not 

much larger than those of the native structure, whereas, again, AF2 predicts a more open 

structure. 

Fig 10a shows the crystal structure of the other orphan protein deposited in the PDB, that of the 

hypothetical protein HI1480 from Haemophilus influenzae (PDB 1mw5)49, alongside the 

structures predicted by RTF and AF2. In this case, too, the authors pointed out that this is a 

novel and unique fold, and application of the Dali and Foldseek servers again reveals that it still 

maintains this status based on the much large number of experimental structures now available, 

as well as the entire AlphaFold Database. In this case, however, whereas RTF predicts a large 

portion of the crystal structure fairly well, AF2 generates a very poor prediction, with a pLDDT 

of 45. Fig 10b shows the results of applying the two algorithms to a shuffled 1mw5 sequence. 

In both cases the pLDDT score is low. Nevertheless, RTF predicts a compact structure, 

containing substantial secondary structure elements, with dimensions about the same size as 

the native structure, whereas AF2 predicts a somewhat more open structure, with little 

secondary structure. 

Solution of the crystal structure of Cthe_2751, a third singleton from Clostridium 

thermocellum, revealed an all -helical topology similar to those observed for nucleic acid 

processing proteins50. Thus, perhaps not surprisingly, not all orphan proteins display novel 

folds.  
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9a 

 

 
9b 

 
Fig. 9 a. Crystal structure of the Orphan protein TM0875 from Thermatoga maritima, pdb 1o22 (left), and 

structures predicted by RTF (center) and AF2 (right); b. Structure of a randomized sequence of pdb 1o22 as 

predicted by RTF (left) and AF2 (right). 

 

 
10a 

 

 
10b 

 
Fig. 10 a. Crystal structure of the orphan protein Hypothetical protein HI1480 from Haemophilus influenzae, pdb 

1mw5 (left), and structures predicted by RTF (center) and AF2 (right); b. Structure of a randomized sequence of 

pdb 1mw5 as predicted by RTF (left) and AF2 (right). 
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We thought that it would be of interest to use RTF and AF2 to predict the structures of orphan 

proteins for which no experimental structure was available, in order to see whether they would 

yield novel folds. To this end we selected four proteins whose characterization as orphan 

proteins appeared to be robust, which have been shown to have clear biological functions, and 

for which the necessary sequence data are available. These proteins were: 

• PBOV1, a human tumor-specific gene that mitigates the clinical outcome51 

• FLJ33706 (alternative gene symbol C20orf203), expressed in neurons within the human 

brain52 

• NCYM, a DNA-binding transcriptional activator homolog in Homo sapiens53 

• GM13030, uncharacterized protein LOC105734733 from Mus musculus, involved in 

regulating the pregnancy cycle54 

As an initial step in characterizing these four proteins, we utilized two software programs, 

IUPred343 and NetSurfP342, to investigate whether they were intrinsically disordered or folded. 

Fig. 11 shows data obtained using IUPred3. It can be seen that, except for short stretches at 

their N- and C-termini, three of the proteins are predicted to be completely folded, while 

FLJ33706 has a short, disordered stretch in the middle of its sequence. NetSurfP3, too, predicts 

these proteins to be folded, except at their extremities. It also indicates substantial -helical 

content, and a few -strands. The number of amino acids for these four orphan proteins ranges 

from 109 for NCYM to 194 for FLJ77306, and their Pi values range from 8.91 for Gm13030 

to 11.74 for FLJ77306, which contains 10% Arg residues. 
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Fig. 11 IUPRED3 predictions of order/disorder in five well-studied Orphan proteins. PBOV1; FLJ33706; NCYM; 

GM13030; TaFROG. Sequences above the horizontal line are classified as disordered, and below the line as 

ordered. 

 

As seen in Fig. 12, RTF predicts compact structures, with substantial helical content, for all 

five proteins. AF2 predicts a compact structure, with substantial helical content, for PBOV1, 

which differs substantially from that predicted by RTF. For the other three proteins, AF2 

predicts structures that are largely disordered, thus being in disagreement with the predictions 

of both IUPred3 and NetSurfP3. Finally, we examined how the two algorithms would model 

the structure of the orphan protein from wheat (Triticum aestivum), TaFROG55, which was 

predicted to be an IDP using FoldIndex41 (as seen at: https://fold.proteopedia.org/cgi-

bin/findex), an assignment that we confirmed using both IUPred3 (Fig. 11) and NetSurfP3 (not 

shown). Both RTF and AF2 predicted unfolded structures that differ substantially from each 

other, with that predicted by AF2 being much more disordered (Fig. 12). 
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12e 

 
Fig. 12 3D structure predictions for 6 orphan proteins using RTF and AF2. A. PBOV1, RTF (left), AF2 (right); 

b. Q8NBC4, RTF (left), AF2 (right); c. NCYM, RTF (left), AF2 (right); d. Gm13030, RTF (left), AF2 (right); e. 

TaFROG, RTF (left), AF2 (right). 

 

 

4. DISCUSSION 

Both AF2 and RTF use multiple sequence alignment of homologous proteins extensively as an 

important element for structure prediction29,30. The pLDDT values that they obtain for 

structures of proteins that lack homologs generally indicate lower reliability of the models29,30. 

We thus feared that the low pLDDT scores that we obtain for the ‘Newly Born’ proteins and for 

the ‘Never Born’ proteins, both of which are categories which are devoid of homologs, might 

lack significance. However, for the two experimentally determined orphan proteins in the PDB, 

1o22 and 1mw5, RTF predicts both structures accurately, with relatively high pLDDT scores, 

and AF2, too, predicts 1o22 well, although it predicts 1mw5 rather poorly. It is plausible, 

however, that high pLDDT scores were obtained with RTF for orphan proteins for which 

structural data were available, while much lower scores were obtained for those for which 

structural data were lacking, is due to the fact that the structures that had already been 

experimentally determined were used in the training sets for the prediction algorithms. 

We feel, therefore, that, despite the low pLDDT scores obtained, the prediction by RTF that all 

four orphan proteins are globular, in agreement with the assignments of both IUPRED3 and 

NetSurfP3, is significant, even though the details of the particular folds predicted may not be 

accurate. As a positive control, for the orphan protein, TaFROG, which has experimentally been 

shown to be an IDP, both RTF and AF2 predict unfolded conformations.  

Monzon et al.56 recently examined 250 proteins sequence families in the AntiFam resource57, 

which are thought to be spurious proteins. Specifically, they are believed to be ORFs either on 
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the opposite strand or in a different, overlapping reading frame, with respect to the true protein-

coding or non-coding RNA gene57. They conjectured that proteins belonging to these families 

would not fold into well folded globular structures. Using AF2 they confirmed this prediction 

with one exception. To the best of our knowledge these spurious proteins were not examined 

with RTF. The findings of Monzon et al.56 are in contrast to our observations for the well 

characterized orphan proteins that were discussed above, which have been shown to have 

biological functions. 

In the Introduction, we referred to a recent study from the Baker lab11, in which 129 random 

sequences were modeled with RTF. These models, presumably with low reliability scores, 

served as useful starting models for optimization into folded proteins. Thus, although these 

models have low pLDDT scores, and thus most likely differ significantly in detail from the 

actual structures, they can provide good low-resolution starting points. 

The experimental evidence demonstrates that all the ‘Never Born’ Group 1 proteins display 

significant secondary structure in solution, and this is corroborated by the RTF predictions for 

the four members of the group that we examined, though much less so by AF2. In contrast, for 

the ‘Never Born’ Group 3 proteins, which the physicochemical evidence classifies as IDPs, 

both RTF and AF2 predict them to be unfolded. 

Thus, for the purposes of our study, despite the low pLDDT scores for the structures predicted 

by RTF for both the ‘Newly Born’ and ‘Never Born’ proteins, we feel that the conclusions that 

we draw are valid. 

A principal conclusion that can be drawn from the data presented above is that orphan proteins 

often display novel folds, which do not overlap with folds already present in the PDB. Indeed, 

the total number of distinct protein folds has been the topic of heated controversy58,59. In the 

present study, novel folds are observed for two of the three orphan proteins for which crystal 

structures exist (Figs 9 and 10), and in the four orphan proteins that were predicted to be folded, 

using both IUPred3 and NetSurfP3. Thus, RTF predicted novel folds for all four. One of the 

structures predicted by AF2 was folded, and bore some rough similarity to that predicted by 

RTF, while the remaining three were predicted by AF2 to be largely unfolded, despite the 

predictions of IUPred3 and NetsurfP3.  

One of the major reservations that has been made with respect to orphan proteins being ‘Newly 

Born’ proteins, coded for by sequences that were previously non-coding sequences, is that the 

genes in question might have undergone such rapid evolution that their homology to their 
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predecessors was no longer recognizable60,61. The fact that, with one exception, the orphan 

proteins studied here display novel folds, substantially weakens this argument. 

Examination of the predicted structures of random sequences produced by shuffling of native 

sequences by Tretyachenko et al.7 took advantage of the fact that these authors had already 

performed spectroscopic studies on a set of such polypeptides that they had expressed in E. coli, 

and had shown that one could distinguish categories corresponding to folded proteins (Group 

1), and to IDPs (Group 3), as illustrated in Fig. 9. 

We used RTF and AF2 to model 4 representatives of each group, as shown above. As expected, 

those classified as IDPs in Group 3 were indeed largely unfolded for both RTF and AF2, with 

the AF2 models being significantly larger. Those in Group 1 were in all cases much more 

compact, but those predicted by RTF were more compact than those predicted by AF2, and 

contained very few unfolded stretches, whereas substantial unfolded stretches were observed 

in three out of four of the structures modelled by AF2. It will be interesting to find out whether 

the folds predicted for the ‘Never Born’ proteins in group 1 are novel folds rather than ones that 

already have appeared in nature.  

In retrospect, it is not surprising that many random polypeptide sequences of a suitable amino 

acid composition, at a first approximation with a high content of hydrophobic residues, and a 

low net charge62, will yield a compact structure containing substantial secondary structure 

motifs, as shown by7. It is possible that this is due to the fact that the sequences retained the 

amino acid compositions of the natural proteins from which they were generated, thus not being 

completely random. 

The paradigm change introduced by Kuwajima and Ptitsyn in the 1980s63,64 resulted in the 

realization that the newly synthesized polypeptide that emerges from the ribosome does not 

persist as an extended unfolded polypeptide, unless it is an IDP, but rather collapses to what is 

termed a ‘Molten Globule’ (MG), a compact structure somewhat larger than the fully folded 

native structure (Fig. 13). The MG contains substantial secondary structure elements, but lacks 

the precise tertiary interactions of the native structure. Small proteins may spontaneously 

undergo transition to the native state, whereas larger proteins may require the assistance of 

molecular chaperones to complete the folding process. The spectroscopic data of Tretyachenko 

et al.7 only tell us that compact structures, with secondary structure elements, have been 

produced by their shuffled polypeptide sequences. When a native protein unfolds to a MG, or 

to some other partially unfolded species, hydrophobic amino acid side chains that are buried in 

the hydrophobic core become exposed. The degree of their exposure can be checked by use of 
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the amphiphilic probe, 1-anilinonaphthalene-8-sulfonate (ANS), whose fluorescence is 

enhanced upon interaction with the hydrophobic residues65. It would, therefore, be interesting 

to compare the ANS fluorescence of the ‘Never Born’ proteins generated by Tretyachenko et 

al.7 to that of typical globular proteins in their native state. It is worth mentioning that in an 

early study on folding of polypeptides with random sequences of simplified amino acid 

composition, NMR data indicated loose packing of the folded state8.  

In any event, one can speculate that ‘Newly Born’ proteins might, initially, assume a MG-like 

conformation that would resemble that of the ‘Never Born’ proteins, and that mutations, 

coupled with natural selection, might convert some of them into ‘native’ orphan proteins with 

novel biological activities. This can be considered analogous to what occurred in the study in 

which the hallucinatory proteins were generated11. 

 
 

Fig. 13 A schematic model of the native (a) and molten globule (MG) (b) states of a protein molecule. For the sake 

of simplicity, only two -helices are represented. According to this model, the MG preserves the mean overall 

structural features of the native protein, but differs from the native state mainly in being more loosely packed, and 

thus having a volume larger by ca. 10%, and exposing more hydrophobic surfaces (reproduced from http://what-

when-how.com/molecular-biology/molten-globule-molecular-biology). 

 

Why does RTF do relatively well in predicting plausible compact structures for randomized 

sequences, whereas AF2 often makes predictions that are either clearly wrong or implausible? 

In a recent brief survey of the principles underlying AF266 it was emphasized that AF makes 

extensive use of detection of conserved interactions of residues that are remote from each other 

in the linear sequence. This approach was earlier proposed, and implemented with a certain 

degree of success, by Marks and Sander67. Obviously, such conserved interactions of distant 

residues would not exist in randomized sequences. Nor would such conserved interactions be 

available in orphan proteins, which lack ancestral homologs and, furthermore, mostly display 

novel folds. Apparently, even if RTF makes use of such conserved long-distance interactions, 
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it is able to successfully model the overall shape of novel proteins consistently even in the 

absence of such information. 

The principal observation in this study is the demonstration that, based on the RTF predictions, 

orphan proteins may have novel folds, derived from their unique sequences, which are 

associated with the appearance of novel biological functions. It will be interesting to express 

and purify more of these proteins, so as to determine their experimental structures. 
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