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Summary 38 

Recent advances in automated segmentation using deep neural network models allow 39 

identification of subcellular structures. This study describes a new pipeline to train a convolutional 40 

network for rapid and efficient detection of structures of wide range in size and complexity. 41 

 42 

Abstract 43 

Three-dimensional electron-microscopy is an important imaging modality in contemporary cell 44 

biology. Identification of intracellular structures is laborious and time-consuming, however, and 45 

seriously impairs effective use of a potentially powerful tool. Resolving this bottleneck is therefore 46 

a critical next step in frontier biomedical imaging. We describe Automated Segmentation of 47 

intracellular substructures in Electron Microscopy (ASEM), a new pipeline to train a convolutional 48 

network to detect structures of wide range in size and complexity. We obtain for each structure a 49 

dedicated model based on a small number of sparsely annotated ground truth annotations from 50 

only one or two cells. To improve model generalization to different imaging conditions, we 51 

developed a rapid, computationally effective strategy to refine an already trained model by 52 

including a few additional annotations.  We show the successful automated identification of 53 

mitochondria, Golgi apparatus, endoplasmic reticulum, nuclear pore complexes, clathrin coated 54 

pits and coated vesicles, and caveolae in cells imaged by focused ion beam scanning electron 55 

microscopy with quasi-isotropic resolution.   56 
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Introduction 57 

Three-dimensional, high-resolution imaging provides a snapshot of the internal organization of a 58 

cell at a defined time point and in a defined physiological state.  Focused ion beam scanning 59 

electron microscopy (FIB-SEM) yields nearly isotropic, nanometer-level resolution, three-60 

dimensional images by sequential imaging of the surface layer of a sample, which is then etched 61 

away with an ion beam to reveal the layer beneath. FIB-SEM technology continues to develop, 62 

and it can be a particularly valuable contemporary tool for imaging the complete volume of a cell, 63 

but segmentation of the three-dimensional data sets and subsequent analysis of the results are 64 

substantial hurdles, as the images are far too large to interpret by inspection (Heinrich et al., 2021) 65 

 66 

The widespread success of machine learning in bioimage informatics has recently inspired the 67 

application of deep-learning approaches to automated segmentation. Examples using deep 68 

convolutional networks for data with anisotropic resolution include DeepEM3D (Zeng et al., 2017) 69 

and CDeep-3M (Haberl et al., 2018), for segmentation of mitochondria and Golgi apparatus with 70 

extensive post-processing (Mekuč et al., 2020, 2022), as well as cell-organelle segmentation in 71 

quasi-isotropic FIB-SEM data of beta cells (Müller et al., 2020). A pipeline created by the COSEM 72 

project (Heinrich et al., 2021) enables automated whole-cell segmentation of 35 organelles from 73 

relatively sparse but very precise 3D ground truth annotations from FIB-SEM data of cells 74 

prepared by high pressure freezing and freeze substitution (HPFS), obtained at 3-5 nm voxel size 75 

with approximately isotropic resolution The most common strategy used by the COSEM project 76 

involved training with ground truth annotations from 2-3 different classes of objects at the same 77 

time, typically at a high computational cost (500,000 or more training iterations) (Heinrich et al., 78 

2021).   79 

 80 

The current approaches all suffer from a demand for substantial computational resources, and 81 

they generally require a large set of precise manual annotations. Both requirements limit their 82 

practical applicability. We describe here the development and use of a new deep learning pipeline 83 

called Automated Segmentation of intracellular substructures in Electron Microscopy (ASEM), 84 

which can detect structures of a wide range in size and complexity using deep neural networks 85 

trained on a limited number of loosely marked ground truth annotations. ASEM includes a semi-86 

automated graph-cut procedure we developed to assist in the tedious task of ground truth 87 

preparation and a computationally efficient transfer-learning approach with a fine-tuning protocol 88 

that can be used without the need for high-end specialized CPU/GPU workstations.   89 

 90 
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We illustrate here the utility of ASEM by describing the results of its application to data from 91 

several types of cells, including FIB-SEM images made publicly available by the COSEM Project 92 

(Heinrich et al., 2021). We note that while cellular samples have traditionally been processed by 93 

chemical fixation (CF) and staining at room temperature, HPFS at cryogenic temperatures (as 94 

was the case for the COSEM Project data) yields a substantial increase in the preservation of 95 

many complex cellular features. We applied ASEM to three-dimensional FIB-SEM images of cells 96 

prepared by either CF or HPFS. We validated our approach by segmenting mitochondria, 97 

endoplasmic reticulum (ER) and Golgi apparatus, as these organelles had been studied 98 

previously in similar efforts (Mekuč et al., 2020, 2022)(Heinrich et al., 2021; Liu et al., 2020), and 99 

then used ASEM to recognize much smaller structures, nuclear pores and clathrin coated pits 100 

and vesicles. For nuclear pores in interphase, we can segment nearly all the pores in the nuclear 101 

membrane.  We can therefore directly analyze the range of membrane-pore diameters, even for 102 

a single cell in a particular physiological state. For clathrin coated pits, we show that a relatively 103 

restricted training set leads to accurate segmentation of coated pits at all stages of their 104 

maturation as well as coated vesicles, the final step after fission from the originating membrane, 105 

and we can derive morphological metrics consistent with the classical constant-growth assembly 106 

model (Ehrlich et al., 2004; Kirchhausen, 1993, 2009; Willy et al., 2021). 107 

 108 

All datasets, code and models are open-source (https://github.com/kirchhausenlab/incasem, 109 

https://open.quiltdata.com/b/incasem), so that other users working with images acquired with the 110 

same or somewhat different imaging conditions can generate their own predictive models and 111 

benefit from our pre-trained models, either directly or by adapting them by fine-tuning, without the 112 

need for specialized CPU/GPU workstations.  113 
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Results 114 

FIB-SEM imaging of cells  115 

We obtained three-dimensional focused ion beam scanning electron microscopy (FIB-SEM) data 116 

sets for different types of adherent mammalian cells grown in culture (Table S1).  The samples 117 

we imaged were prepared either by conventional chemical fixation and staining with osmium and 118 

uranyl acetate at room temperature (CF) or by fixation and similar staining at very low temperature 119 

using high pressure freezing and freeze substitution (HPFS), a protocol that substantially 120 

increases sample preservation (Hoffman et al., 2020; Studer et al., 2008; Xu et al., 2021). To 121 

image a volume of a cell, we used a block-face crossbeam FIB-SEM with nominal isotropic 122 

resolution of 5 or 10 nm per voxel; each image stack, obtained during 1-2 days of continuous FIB-123 

SEM operation, was about 15-20 GB in size and contained ~ 2000 registered sequential TIFF 124 

files and spanned a volume of roughly 2000^3 voxels corresponding to large parts of each cell. 125 

These volume datasets were used to train the deep learning pipeline for automated segmentation 126 

of subcellular structures and to explore the effects of different fixation and staining procedures on 127 

the outcome of the segmentation tasks.  128 

 129 

We also tested the performance of our deep learning models with a small number of FIB-SEM 130 

images from HPFS preparations of complete cells, obtained from the publicly available 131 

OpenOrganelle initiative (Xu et al., 2021) (Table S1). They were acquired by the COSEM team at 132 

Janelia Research Campus at a nominal resolution of 4 x 4 x 3-5 nm per voxel with a custom-133 

modified FIB-SEM as part of their concurrent efforts to develop methodology for automated 134 

organelle segmentation aided by deep learning.  135 

 136 

As described below, using the specific models generated with our deep learning pipeline (Fig. 1), 137 

we could reliably identify subcellular structures ranging in size and complexity from mitochondria, 138 

endoplasmic reticulum, Golgi apparatus to nuclear pores, clathrin coated pits, coated vesicles, 139 

and caveolae. 140 

 141 

Ground truth annotation 142 

The first step in any common machine-learning procedure is to create pixelwise "ground truth" 143 

annotations -- to be used for training a specific segmentation model. In the present work, we used 144 

a modest number of relatively loosely annotated manual segmentations of the subcellular 145 

structure of interest (see Methods for details). These segmentations came from arbitrarily chosen, 146 

diverse, and not necessarily overlapping regions from one or more cells (Table S2). As the 147 
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contrast and textural appearance of raw FIB-SEM images can vary substantially due to sample 148 

preparation and imaging conditions, we make heavy use of augmentations, a technique 149 

commonly used to train deep neural networks (Shorten and Khoshgoftaar, 2019). We applied a 150 

series of randomized transformations to each of the manual segmentations to generate a set of 151 

the required size (see Methods and Table S3).  The various applications described here validate 152 

this approach, which greatly reduces the manual annotation effort and makes broad application 153 

feasible. 154 

 155 

We obtained ground truth annotations for mitochondria and Golgi apparatus, portions of 156 

endoplasmic reticulum (ER), 19 endocytic clathrin coated pits at the plasma membrane, and 12 157 

nuclear pores on the nuclear envelope (Table S4). We annotated mitochondria using the carving 158 

module in Ilastik (Berg et al., 2019) and if required, edited the annotation manually using VAST 159 

(Berger et al., 2018), a volume annotation and segmentation tool for manual and semi-automatic 160 

labeling of large 3D image stacks (see example in Fig. S1 and Video 1). We annotated the more 161 

complex Golgi apparatus and ER with a dedicated graph cut-assisted, semi-automated annotation 162 

tool we developed and describe in Methods that accelerated the annotation time by 5-10-fold; 163 

when needed, we corrected the annotation locally with VAST (see example in Fig. S2). We 164 

generated manually, also with VAST, the ground truth annotations for clathrin coated structures 165 

and nuclear pores.  In all cases, we applied the data augmentation procedure to the curated 166 

manual annotations. 167 

 168 

Deep learning segmentation pipeline 169 

Our general training strategy (schematically represented in Fig. 1A) relied on a 3D convolutional 170 

neural network (CNN) architecture based on a 3D U-Net (Çiçek et al., 2016) (Fig. S3); this 171 

approach has been used previously for segmenting intracellular structures in electron microscopy 172 

data (Heinrich et al., 2021; Plaza and Funke, 2018). For each organelle class, we used a single, 173 

dedicated deep neural network, trained on augmented ground truth annotations generated from 174 

a small number of annotations contained within subvolumes (~ 2-80 µm3) of the FIB-SEM data 175 

(Table S4). We used binary cross entropy as a loss function and trained each model for roughly 176 

100k iterations on a single GPU (~23h), after which the training/validation loss converged to a 177 

stable value (Fig. S4).  To avoid overfitting, we cross-validated the evolution of the model 178 

periodically during the training session, by monitoring the loss between the model prediction and 179 

the subset of ground truth annotations in validation blocks of the FIB-SEM image not used for 180 

training. The final model yielded a predicted map that assigned to each voxel a probability of 181 
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belonging to the structure (Fig. 1B), from which we derived a final binary map by setting a 182 

threshold value of 0.5. These models, unique for a given organelle or structure, were then used 183 

to find the specific cellular structure of interest in the FIB-SEM images of regions excluded from 184 

training or of fully naïve cells that had not been used for training at all. 185 

 186 

As previously noted by others, we also observed that the image contrast and texture of FIB-SEM 187 

data can vary substantially between different acquisitions, depending not only on cell type and 188 

mode of sample preparation (CF, HPFS), but unexpectedly also between adjacent cells of the 189 

same type in the same Epon block (Fig. S5). We found empirically that while the neural network 190 

could be trained to segment organelles successfully from samples prepared by the same mode 191 

of preparation, a model trained with ground truth annotations from HPFS cells failed when applied 192 

to CF treated cells, and vice versa.  Although routinely implemented in our pipeline, contrast 193 

normalization by contrast-limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987; 194 

Zuiderveld, 1994)  of FIB-SEM data sets from different cells failed to improve the predictions 195 

(Table S5). Novel use of local shape descriptors as an auxiliary learning task (Sheridan et al., 196 

2021) calculated from the ground truth annotations and representing high-level morphological 197 

notions such as object size and distance to object boundary also did not improve model prediction. 198 

As described below in detail, we resolved this problem by combining ground truth annotations 199 

from both data sets for training. 200 

   201 

Automated segmentation of organelles 202 

We first applied ASEM to perform automated segmentation of FIB-SEM images from cells 203 

prepared by CF of nominal 5 nm isotropic resolution and relatively high contrast (Fig. 2 and Video 204 

2); the summary shown in Table S6 illustrates the predictive performance obtained for models 205 

specific for mitochondria, ER and Golgi apparatus.  For mitochondria, we selected from Cell 1 a 206 

training block of about 462 x 106 voxels and used semi-automated annotation to generate ground 207 

truth annotations for the mitochondria contained within this volume, representing roughly 8% of 208 

all voxels (Table S6); Model performance was assessed every 1,000 iterations during the training 209 

phase by calculating the cross-entropy loss between the current prediction and the mitochondria 210 

ground truth within a validation block (not used during training). Additional smaller validation 211 

blocks (Table S4) containing mitochondria ground truth from naïve Cells 2, 3 and 6 were used to 212 

avoid overfitting during the training phase and to validate the model performance by measuring 213 

the validation losses. Validation losses rapidly converged within 20,000 - 40,000 training 214 

iterations, resulting in a relatively high F1 score (0.91) for Cell 1 and lower values for the data 215 
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from naïve Cells 2, 3 and 6 (0.47, 0.66, 0.81, cf. Table S6). Similar results were obtained when 216 

training with ground truth annotations from Cell 2 instead of Cell 1 (Table S6); the validation losses 217 

also converged within 20,000-40,000 training iterations with good F1 scores for Cell 2 (0.87) and 218 

naïve Cells 1 and 3 (0.89, 0.74) and a slightly lower score for Cell 6 (0.7) with no further 219 

improvement with additional training iterations.  220 

 221 

To find additional ways to enhance the generalization ability of the model, we modified the training 222 

pipeline to combine the ground truth annotations from Cells 1 and 2.  We first tested the 223 

performance of the mitochondria model using the validation blocks in naïve Cells 3 and 6. In this 224 

case, the new model had a significantly improved performance (Table S6), reflected by even 225 

higher F1 scores for naïve Cells 3 and 6 (0.75, 0.88), but only after 95,000 - 115,000 iterations 226 

(Fig. S4). A similar improvement in model performance was observed for ER predictions when 227 

we first combined ground truth annotations of Cells 1 and 2. The new ER model, then used to 228 

predict ER in Cells 1, 2 and naïve Cells 3 and 6, led to generally improved F1 scores of 0.95, 229 

0.90, 0.92 and 0.77, respectively (Table S6). Consistent with F1 scores smaller than the optimal 230 

value of 1, we observed by visual inspection a small number of false negative (yellow arrows) or 231 

false positive (red arrows) assignments as highlighted in Fig. 2A (see also Movie 2). Combining 232 

ground truth annotations from Cells 19 and 20 during training to predict the more complex Golgi 233 

apparatus in naïve Cells 3 or 6 marginally outperformed the models trained with either Cell 1 or 234 

Cell 2 (Table S6), also illustrated with one example of visual inspection of ground truth annotations 235 

and predictions showing instances of false positive assignments (red arrows, Fig. 2B). Thus, the 236 

predictive performance of a model could often be improved by using a model obtained by jointly 237 

training with ground truth annotations from two cells instead of training with data from one cell or 238 

the other.  239 

 240 

We also tested the performance of ASEM using FIB-SEM images and ground truth annotations 241 

acquired by the OpenOrganelle initiative (Xu et al., 2021) (Table S1). These cells were prepared 242 

by HPFS and imaged with higher isotropic resolution (4 x 4 x 3-5 nm) but lower contrast). We 243 

examined the ability of our training pipeline to segment these data sets and focused on 244 

mitochondria and ER but not Golgi due to a lack of a sufficient number of ground truth annotations 245 

for Golgi objects in the available OpenOrganelle datasets (Table S7). We generated independent 246 

models for mitochondria and ER, by training with corresponding combined ground truth 247 

annotations from Hela Cells 19 and 20, followed by model performance verification using unseen 248 

ground truth annotations from the same Hela cells or from different types of naïve cells not used 249 
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for training (Cell 21 Jurkat-1 and Cell 22 Macrophage-2, Table S7). Our pipeline performed well 250 

after ~ 100K training cycles and managed to segment mitochondria in unseen data from each of 251 

the two Hela cells used for training (F1 scores of 0.99, Table S7) and from unseen data from each 252 

of the naïve Cell 21 Jurkat-1 or Cell 22 Macrophage-2 (F1 scores of 0.94 and 0.93; Table S7). 253 

Automated segmentation of the ER was less efficient, requiring ~ 200K training cycles to reach 254 

the highest model performance (F1 scores of 0.91, 0.80, 0.48 and 0.81, respectively; Table S7). 255 

These first results indicate that our training strategy can create predictive models for successful 256 

identification of mitochondria, ER and Golgi apparatus in cells prepared by CF and of 257 

mitochondria and Golgi in samples prepared by HPFS.  258 

 259 

To test the strength of combining ground truth annotations from two cells to train and then predict 260 

on a naïve cell, we explored the tolerance of the training pipeline to modest variations in image 261 

resolution. The results are shown for the representative FIB-SEM images in Figs. 3 and 4 and 262 

Video 3 and 4 obtained for a naïve Cell 15 SVG-A prepared by HPFS acquired at an isotropic 5 263 

x 5 x 5 nm (Table S4); visual inspection of the images show successful predicted segmentations 264 

for mitochondria, ER and Golgi apparatus using models obtained by combined training with 265 

ground truth annotations from Hela cells 19 and 20 also prepared by HPFS and whose FIB-SEM 266 

images were acquired with mixed resolutions of 4 x 4 x 5.2 and 4 x 4 x 3.2 nm, respectively. 267 

 268 

Because models generated with mitochondria or ER ground truth annotations from cells prepared 269 

by CF were unable to predict well on cells prepared by HPFS and vice versa, we explored the 270 

possibility of combining training data from both sample preparation protocols, using the same 271 

training datasets from HEK293A Cells 1 and 2, prepared by CF, and Cells 19 and 20 Hela 272 

prepared by HPFS. The mitochondria and the ER models performed nearly as well as specialized 273 

single-organelle models on almost all validation data sets regardless of sample preparation 274 

protocol used (Fig. 5, panel A and Table S8). 275 

 276 

Fine-tuning 277 

To improve the predictive performance with images from naïve cells, we explored the effect of 278 

fine-tuning a pre-existing model on its segmenting accuracy, a simple implementation of transfer 279 

learning (Weiss et al., 2016). As described in Methods, we started with an already trained model 280 

and resumed model training for a low number of iterations (15,000) using only the new ground 281 

truth annotations from the naïve cell; the new ground truth annotations, although resembling those 282 

used for the first training, would typically have slightly different characteristics. 283 
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 284 

The following examples illustrate the range of results obtained upon implementation of fine-tuning 285 

using HPFS FIB-SEM data. The ER model, first obtained after ~ 180,000 training cycles using 286 

ground truth annotations from Hela Cells 19 and 20, was then fine-tuned for additional 12,000 or 287 

6,000 training cycles with small amounts of ground truth data from either naïve Cell 21 Jurkat-1 288 

or Cell 22 Macrophage-2; both fine-tuning cases showed a significant improvement in the F1 289 

precision scores, from 0.48 to 0.69 and from 0.81 to 0.90, without affecting recall (Fig. S6, Table 290 

S9); in other words, the model learned to correctly classify ER while at the same time reducing 291 

the number of false positives by rejecting structures that appeared similar but did not belong to 292 

the same semantic class (Fig. 5B). The next two cases of fine tuning illustrate little or no 293 

improvement in predictive model performance for mitochondria in cells prepared by HPFS or CF 294 

(Fig. 5C, S6 and Table S9). The model obtained after 95,000 training cycles using HPFS FIB-295 

SEM data from Hela Cells 19 and 20 showed similar F1 scores (0.93) for naïve Cell 21 Jurkat-1 296 

or Cell 22 Macrophage-2 before or after fine-tuning for 7,000 cycles. Similarly, a mitochondria 297 

model obtained after 95,000 training iterations using CF FIB-SEM data from Cells 1 and 2 and 298 

then fine-tuned for additional 6,000 fine-tuning training steps using ground truth annotations from 299 

Cells 3 or 6 showed either a significant increase (from 0.75 to 0.88) or no increase at all (0.88) in 300 

F1 scores, respectively (Fig 5D and Table S9). The fine-tuning strategy could not adjust 301 

mitochondria, ER or Golgi apparatus models generated using cells prepared by HPFS to predict 302 

in naïve CF treated cells, and vice versa. We conclude that fine-tuning can be beneficial for 303 

segmenting relatively large membrane-bound organelles particularly in cases where the pre-304 

trained model behaved poorly in naïve cells, but it could not resolve situations in which the staining 305 

characteristics of the samples were extremely different, even though they had been prepared by 306 

the same staining procedures. 307 

 308 

Automated segmentation of nuclear pores 309 

To test whether our pipeline can automatically identify and segment small subcellular structures, 310 

we trained the neural network with ground truth annotations from nuclear pores, structures 311 

embedded in the double-membrane nuclear envelope with membrane pore openings of ~100-312 

120 nm in diameter. We used FIB-SEM data with nominal 5 nm isotropic resolution from 313 

interphase SVG-A and Hela cells imaged using HPFS to ensure minimal perturbations in the 314 

structural organization of the nuclear pores and their surrounding inner and outer nuclear 315 

membranes. 316 

 317 
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We used VAST to generate ground truth annotations for ten nuclear pores from Cell 13a - SVG-318 

A (5 x 5 x 5 nm isotropic resolution) (Table S4). The segmentations, representing the inner and 319 

outer nuclear membrane envelope contours immediately adjacent to nuclear pores, also included 320 

5 additional pixels (~ 25 nm) of inner and outer nuclear membrane extending away from the 321 

nuclear pore opening (Fig. 6A). Training was performed with the augmented data generated from 322 

only eight nuclear pores (with two additional objects for validation), resulting in a nuclear pore 323 

model that performed well after 100,000 training cycles (F1=0.52, Precision=0.35, Recall=0.99, 324 

Table S8). In all cases, the high recall score was consistent with a perfect correspondence to all 325 

the voxels that defined the ground truth annotations. The relatively low F1 and precision scores 326 

reflected ‘fatter’ predictions due to voxels assigned to positions immediately adjacent to the ‘single 327 

row’ of voxels overlapping the nuclear pores in the ground truth annotations. Visual inspection 328 

confirmed accurate identification of all nuclear pores in naïve SVG-A cells 15 (Video 4) and 17 (5 329 

x 5 x 5 nm isotropic resolution) and Cell 19 Hela (4 x 4 x 5.2 nm) not used for training (Fig. 6B). 330 

Because of the high predictive accuracy attained with this simple nuclear pore model (Video 4), it 331 

was not necessary to improve the model using our more extended training pipelines.  332 

 333 

Based on ensemble cryo EM data from thousands of nuclear pores that provide a unique atomic 334 

model per data set (Schuller et al., 2021), combined with more selective images of single nuclear 335 

pores obtained using cryo tomography of yeast cells in different physiological states (Zimmerli et 336 

al., 2021), it is now believed that the diameter of the nuclear pore varies in response to the 337 

physiological state of the cell. It is not known, however, to what extent this size variability occurs 338 

within a single cell in a unique physiological state. Taking advantage of our automated 339 

segmentation pipeline that makes it practical to analyze hundreds of single nuclear pores, we 340 

explored the extent by which their membrane pore diameters varied within a single cell. Inspection 341 

of the nuclear membrane surrounding the pores viewed along the axis normal to the nuclear 342 

envelope confirmed the radial symmetry of the pore (Fig. 6B) with a relatively broad and 343 

continuous variation in membrane pore diameter, ranging from 60 to 130 nm (median 92 nm, with 344 

75-108 nm 10-90 percentile range: n= 934; 305, 135, and 494 pores from SVG-A Cells 15 and 345 

17, and Hela Cell 19, respectively) (Fig. 6C); these values were obtained by measuring in the raw 346 

images the distances between the peak signals at opposite ends of the nuclear membrane pore 347 

(see Methods and Fig. S7 A-D). The membrane pore sizes did not follow a normal distribution, 348 

but instead had a slight asymmetry contributed by smaller species. They were also distinct from 349 

the Gaussian fit (blue, Fig. 6C) corresponding to the expected size distribution if the data would 350 

have originated from a single pore size centered on the most abundant species. We found no 351 
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evidence to suggest presence of spatial correlation between pore diameter and different regions 352 

of the nuclear envelope within the cell, for example away from the cover slip or normal to this 353 

surface, nor did we find evidence of local clustering of pores with a favored size (Fig. 6D and 354 

S7E). 355 

 356 

Automated segmentation of clathrin coated pits, coated vesicles and caveolae 357 

As a further test of ASEM with relatively small structures, we chose clathrin coated pits, 30-100 358 

nm membrane invaginations in the plasma membrane and the trans Golgi network (TGN) involved 359 

in selective cargo traffic (Kirchhausen, 2000). We trained the model with ground truth annotations 360 

from 15 endocytic plasma membrane coated pits of different sizes and shapes thus representing 361 

different stages of clathrin coat assembly.  While the resolution of the FIB-SEM was insufficient 362 

to discern the familiar spikes or the hexagonal and pentagonal facets of a clathrin coat as seen 363 

in samples imaged by TEM, the presence of strong membrane staining, which we attribute to 364 

clathrin and associated proteins (Fig. 7A), made these invaginations recognizably distinct from 365 

caveolae, which are smaller (50 – 100 nm) flask-shaped invaginations and lack enhanced 366 

membrane staining (Fig. 7B). None of the cells had recognizable regions of strongly stained, flat 367 

membrane, often found on the coverslip-attached surface of cells in culture and in other 368 

specialized locations (Akisaka et al., 2008; Grove et al., 2014; Heuser, 1980; Maupin and Pollard, 369 

1983; Saffarian et al., 2009; Signoret et al., 2005). We used VAST to generate the coated-pit 370 

ground truth annotations, which were simply a collection of single traces loosely overlapping the 371 

endocytic membrane invagination (Fig 7A, blue).  372 

 373 

The coated pit model obtained after 80,000-100,000 training iterations combined 15 ground truth 374 

annotations we made, six from Cell 12 Hela and nine from Cell 13 Hela imaged by the COSEM 375 

project. Visual inspection of the predictions generated by this relatively simple training in parts of 376 

Hela cells 12 and 13 cells that had not been used for training showed accurate recognition of all 377 

endocytic coated pits (representative example in Fig. 7B); we obtained similar results from naïve 378 

SVG-A cells 15 (Video 4) and 17, and Hela cell 19. The model also identified all coated pits in the 379 

TGN (Fig. 7B).  It incorrectly identified caveolae as coated pits (Fig 7B), but we could detect no 380 

other incorrect predictions anywhere in the cell volume.  Sharply invaginating curvature of the 381 

stained membrane outline thus appears to be an important component of the pattern the model 382 

learned to recognize. 383 

 384 
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We used our additional annotated ground truth annotations from Hela Cells 12 and 13 that had 385 

not been included in the training set to calculate F1, recall and precision scores (Table S8). In all 386 

cases, the high recall score (0.99) demonstrated the almost perfect reconstruction of all voxels 387 

belonging to the ground truth annotations.  The relatively low F1 and precision scores (~ 0.65 and 388 

0.51) were due to incorrect voxel predictions immediately adjacent to the ‘single row’ of true voxel 389 

assignments overlapping the invaginated membrane in the ground truth annotations (Fig. 7A, B).  390 

 391 

The model also recognized vesicles near the plasma membrane and the TGN that an expert 392 

human observer would have interpreted from their staining to be clathrin coated vesicles, even 393 

though training of the model did not include ground truth annotations representing them (Fig. 7B).  394 

We confirmed that the model recognized all the presumptive coated vesicles in a cell, by visual 395 

inspection across the full volumes of Hela cells 12 and 13, as well as of three cells that did not 396 

contribute at all to the training set, SVG-A cells 15 and 17 and Hela cell 19. Training on endocytic 397 

coated pits thus also allowed recognition of endocytic coated vesicles and TGN coated pits.  398 

 399 

We took advantage of the large, combined set of three-dimensional image data from coated pits 400 

and vesicles to analyze assembly stages using the metrics depicted in Fig. S8).  We determined 401 

the depths and widths at ½ depth for each of the membrane invaginations in SVG-A cell 17 (Fig. 402 

7C). Caveolae, recognized by the absence of an enhanced membrane signal, were relatively 403 

small, with narrow distributions of depths and widths centered on 61 and 81 nm (Fig. 7C). 404 

Endocytic coated pits, identified by their enhanced membrane signals, were generally larger than 405 

caveolae and had wider distributions of depths and widths, which clustered into two groups.  406 

Coated pits with open necks (>40 nm) had shallow, ~ 50 nm invaginations; those with narrower 407 

necks (~ 10 to 40 nm) had deep, ~ 100-130 nm invaginations (Fig. 7D, left and central panel, and 408 

7E, right panel). Endocytic coated pits and vesicles were also larger than the corresponding 409 

structures emanating from internal membranes associated with the TGN (Fig. 7D, left panel).  410 

 411 

The eccentricity of the assembling pit, defined as the ratio of major and minor axes of the ellipsoid 412 

that fit best to a given membrane profile, showed a relatively narrow and overlapping distribution 413 

(Fig. 7D, right panel), ranging from 1 (symmetric) and 1.6 (less symmetric) for endocytic pits and 414 

vesicles.  Most of the pits and vesicles associated with internal membranes in SVG-A Cell 17 (Fig. 415 

7D, right panel) had eccentricities close to 1; in those cases, the major axis of most pits was 416 

orthogonal to the plane from which the pits invaginated. Similar results were obtained for SVG-A 417 

cell 15 and Hela cells 12 and 13 (Fig.  S19, A-C).   These results are consistent with a budding 418 
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mechanism in which stepwise growth of the clathrin coat drives invagination of the membrane, 419 

ultimately creating a constriction, as the curved clathrin lattice approaches closure, that is narrow 420 

enough for dynamin to pinch off the nascent vesicle (Kirchhausen et al., 2014).  421 
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Discussion 422 

The automated 3-D image segmentation pipeline embodied in ASEM overcomes three critical 423 

hurdles for making FIB-SEM more practical and more broadly useful than currently available 424 

procedures. (1) Our graph-cut based annotation approach facilitates and simplifies the manual 425 

stages of the analysis, especially when combined with data augmentation that minimizes the 426 

number of hand-curated annotations. Between 8 and 16 annotated ground truth annotations 427 

encompassing the complete volumes of smaller objects or partial volumes of larger ones were 428 

generally enough when augmented as described. We used rough rather than voxel-precise 429 

labeling to delineate the outline of the subcellular structures for which we were training. While this 430 

strategy was effective for our training pipeline, it was much less time-consuming than the precise 431 

delineation efforts used by COSEM. We could then readily correct any erroneous voxel 432 

detections, either by manual intervention or by automatic post-processing. (2) For the applications 433 

described here, ASEM requires far less computational effort than does COSEM or other 434 

approaches, largely because we restrict the training to a single type of structure and thus create 435 

a separate model for each type.  Consequently, we found that about ~100,000-150,000 training 436 

iterations were sufficient for accurate prediction, whereas COSEM required five times as many. 437 

(3) We can substantially improve the success rate in a completely naïve cell by using a model 438 

trained on ground truth annotations from another cell and re-training by a simplified transfer-439 

learning approach with a very small number of ground truth annotations from the new cell, thereby 440 

adapting the model to a cell with slightly different imaging characteristics at the cost of modest 441 

additional segmentation and computational effort. In the examples here, just 5,000-10,000 training 442 

iterations were enough to increase prediction accuracy throughout the rest of that cell. 443 

 444 

To test the robustness and flexibility of ASEM, we used the model trained with ER ground truth 445 

annotations from cells in interphase for identifying and segmenting ER in an early anaphase 446 

mitotic cell.  The model, which had correctly identified and segmented the complete ER in a naïve 447 

interphase cell, also accurately identified and segmented the ER in the mitotic cell. The result is 448 

non-trivial, because relatively extended, fenestrated, double-membrane sheets, with small 449 

interconnecting tubules, dominate the morphology of the mitotic ER, while tubules of varying 450 

lengths, connecting much smaller sheets, are the principal structures in the interphase ER.  451 

Segmenting the mitotic ER required less than an hour; it would have taken a human annotator 452 

several weeks.  Previous analyses were limited to small cell volumes precisely because of this 453 

constraint.  We further showed that automatic segmentation of the Golgi apparatus with ASEM 454 

confirmed the results described by the COSEM Project team (Heinrich et al., 2021).  The Golgi is 455 
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not a stack of closely packed, uniform cisternae, as often diagrammed in textbooks. Rather, each 456 

member of the stack is a complex, perforated structure of variable shape, surrounded by many 457 

small vesicles.    458 

 459 

We used automatic segmentation of mitochondria, ER and Golgi apparatus primarily for 460 

comparison with published results from other methods, to validate the features of ASEM designed 461 

to accelerate and simplify the entire pipeline.  We turned to smaller subcellular structures as tests 462 

of new and potentially more challenging applications.  Nuclear pores are more homogenous than 463 

larger organelles, and thus in principle easier to recognize, but any one pore has much less spatial 464 

information than does a Golgi stack or a mitochondrion, and as we have found, the diameter of 465 

the membrane pore varies even across the nucleus of single cells at a fixed time point, despite 466 

the likely invariance of much of the nuclear pore complex protein assembly.  Clathrin coated pits 467 

are both small (on the scale of the ER and Golgi apparatus) and variable, in size and as well as 468 

in assembly stage.  In both cases, by training ASEM with a large set of ground truth annotations 469 

generated by data augmentation from a very small number of hand-annotated objects, we could 470 

automatically identify essentially all the objects in the cell, despite the variable diameter of the 471 

nuclear membrane pore and the variable size and stage of completion of a clathrin coated pit.  472 

Moreover, a model trained on plasma-membrane coated pits identified coated pits in the Golgi 473 

and free clathrin coated vesicles in the cytosol.   474 

 475 

The osmium-uranyl staining in current FIB-SEM sample preparation, for both CF and HPFS, 476 

preferentially marks lipid headgroups, proteins and nucleic acids.  Although with the training set 477 

used here, the model did not distinguish between clathrin coated pits and caveolae, the eye clearly 478 

picks up the much heavier staining of the former (Fig. 7).  The model correctly retrieved clathrin 479 

coated vesicles, as well as coated pits in the TGN, and distinguished them from COPI and COPII 480 

vesicles which carry cargo between the Golgi apparatus and the ER, perhaps because they are 481 

smaller structures, of substantially sharper curvature than the clathrin coated structures the model 482 

had learned to recognize.  How well the model will find protein-dominated structures -- e.g., virus 483 

assembly intermediates -- remains to be determined. 484 

 485 

Imaging the entire volume of a single cell at ~5 nm resolution can answer questions that are much 486 

harder to tackle by methods such as cryo-tomography that access at somewhat higher resolution 487 

only a small slice of a cell.  One example is our finding, that nuclear pores vary in size across the 488 

nuclear membrane and hence that the variability identified by cryo-tomography is present at an 489 
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arbitrary time point in a single cell.  The deep-learning protocols we have developed, and the 490 

readily implemented and freely accessible analysis tools we provide, form an experimental 491 

pipeline that will run entirely on commercially available workstations.  We suggest that EM volume 492 

imaging will prove to be a powerful complement to the live-cell fluorescence volume imaging 493 

afforded by lattice light-sheet microscopy. 494 

  495 
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Material and methods 496 

Chemical Fixation, dehydration and embedding 497 

Cells plated on glass coverslips were processed for chemical fixation (CF) by incubation for 30 498 

minutes at room temperature with 0.2% glutaraldehyde (Electron Microscopy Science, 499 

Cat.16220) and 2.5% paraformaldehyde (PFA, Electron Microscopy Science, Cat. 15700) 500 

dissolved in 0.1M PIPES buffer (pH 7.4, Sigma-Aldrich, Cat. P6757), followed by a rinse with 0.1M 501 

PIPES buffer. A 2% OsO4 aqueous solution (Electron Microscopy Sciences) dissolved in 0.1M 502 

PIPES, pH 7.4 was used to stain the cells for 1 hour at RT, followed by incubation for another 1 503 

hour at RT in a solution containing 2.5% potassium ferrocyanide (Sigma-Aldrich) in 0.1 M PIPES, 504 

pH 7.4. The cells were rinsed three times at five-minute intervals with deionized ultrapure water 505 

followed by a 30-minute incubation at RT with a filtered (Whatman, 0.2 μm) freshly prepared 506 

solution of 1% thiocarbohydrazide (Electron Microscopy Sciences) made by dissolving it at 60°C 507 

for 15 minutes. The cells were again rinsed three times at 5-minute intervals, followed by another 508 

incubation with 2% OsO4 aqueous solution for 1 hour at RT. The cells were again rinsed three 509 

times at five-minute intervals with ultrapure water, followed by two rinses with 0.05 M maleate 510 

buffer, pH 5.15 (Sigma-Aldrich), and finally incubated with 1% uranyl acetate (Electron 511 

Microscopy Sciences) dissolved in 0.05 M maleate buffer pH 5.15 for 12 hours at 4°C. 512 

 513 

A resin mixture containing methylhexahydrophthalic anhydride (J&K Scientific) and cycloaliphatic 514 

epoxide (ERL 4221, Electron Microscopy Sciences) at a weight ratio of 1.27:1, mixed with the 515 

catalyzing agent (Hishicolin PX-4ET, Nippon Chemical Industrial) at a 1:100 ratio by volume, was 516 

prepared in a water bath sonicator at RT for 15 minutes.  517 

 518 

During the same period, the glass coverslips with the attached CF samples were placed face up 519 

on wet ice and then rinsed twice for five minutes with ultrapure water, followed by dehydration 520 

using a graded series of ethanol solutions (30, 50, 70, 90%) each step lasting three minutes, then 521 

three washes in 100% absolute ethanol for 10 minutes ending with three washes with anhydrous 522 

acetone (Sigma-Aldrich) for 10 minutes at RT. 523 

 524 

The glass cover slips with the attached, dehydrated CF samples immersed in anhydrous acetone 525 

were placed in a wide-mouth glass jar, mixed with the resin at a 1:1 volumetric ratio, and gently 526 

rocked on a plate rocker for 12 hours at room temperature.  The resin mixture was then removed 527 

by aspiration and replaced with 10 ml of freshly prepared resin mixture and further incubated with 528 

gentle rocking for another two hours; this step was repeated thrice, each time with freshly 529 
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prepared resin. Finally, the glass cover slips with the attached cells were placed on top of cut off 530 

caps from 1.5 mL Eppendorf tubes containing freshly prepared resin was oriented with the cells 531 

towards the cap, and the resin allowed to polymerize for 12 hours at 100°C. Upon resin hardening, 532 

the caps were immersed in boiling water for 5 minutes and then quickly transferred into liquid 533 

nitrogen leading to separation of the glass cover slip from the resin and retention of the cells in 534 

the polymerized resin. 535 

 536 

High pressure freezing, freeze-substitution and embedding 537 

Cells were plated on 6 x 0.1 mm sapphire disks in MEM (Corning™ 10009CV) supplemented with 538 

10% Fetal Bovine Serum (Atlanta Biologicals S11150). Two sapphire discs (Technotrade 539 

international 616-100), one or both containing attached cells facing inwards, were separated by 540 

a 100 μm stainless steel spacer (Technotrade international 1257-100) and processed for high 541 

pressure freezing on a Leica EM ICE high pressure freezer (Leica microsystems). Following high 542 

pressure freezing, the sapphire discs were placed under liquid nitrogen and transferred into the 543 

top of cryotubes placed in liquid nitrogen and containing frozen 2% OsO4, 0.1% uranyl acetate 544 

and 3% water in acetone; freeze substitution (FS) was carried using an EM AFS2 automatic freeze 545 

substitution device (Leica Microsystems) according to a pre-programmed FS schedule (-140°C to 546 

-90°C for 2h, -90°C to -90°C for 24h, -90°C to 0°C for 12h and 0°C to 22°C for 1h). Samples were 547 

then removed from the AFS2 device, rinsed 3 times in anhydrous acetone, 3 times in propylene 548 

oxide (Electron Microscopy Sciences), 3 times in 50% resin (24g Embed 812, 9g DDSA, 15g 549 

NMA, 1.2g BDMA; Electron Microscopy Sciences 14121) dissolved in propylene oxide, and finally 550 

transferred into embedding molds (EMS 70900) containing 100% resin; the resin was then 551 

allowed to polymerize for 48 hours at 65°C. The sapphire disc was then separated from the resin 552 

block by sequential immersion in liquid nitrogen and boiling water. 553 

 554 

FIB-SEM imaging 555 

The polymerized resin blocks were cut from the molds and glued, with the free face facing away, 556 

onto the top of aluminum pin mount stubs (Ted Pella), using conductive silver epoxy adhesive 557 

(EPO-TEK H20S, Electron Microscopy Sciences).  The free face was then coated with carbon (20 558 

nm thickness) generated from a high purity carbon cord source (Electron Microscopy Sciences) 559 

using a Quorum Q150R ES sputter coater (Quorum Technologies) and the resin block loaded on 560 

the microscope specimen stage of a Zeiss Crossbeam 540 microscope for FIB-SEM imaging. 561 

After eucentric correction, the stage was titled to 54° with a working distance of 5 mm for 562 

coincidence of ion and electron beams. A cell of interest was located on the free face of the resin 563 
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block by SEM, after which a thin layer of platinum was deposited using the gas injection system. 564 

A coarse trench was then milled adjacent to the cell using the 30 kV/30 nA gallium ion beam. This 565 

block face was polished with a 30 kV/7 nA gallium beam before starting the interlaced sequence 566 

of FIB milling with a 30 kV/3 nA gallium beam and SEM imaging with a 1.5 kV/400 pA electron 567 

beam advanced in 5 nm steps. The X/Y pixel size was 5 nm to create isotropic voxels.  For 568 

samples prepared by HPFS, we added registration marks on top of the platinum layer generated 569 

with a 1.5 kV/50 pA gallium beam, followed by contrast enhancement of the marks by irradiation 570 

with a 1.5 kV/5 nA electron beam and final deposition of second platinum layer. FIB-SEM images 571 

were collected using the Inlens detector with a pixel dwell time of 10-15 us. The FIB-SEM images 572 

were aligned post-acquisition with the Fiji plugin Register Virtual Stack Slices, using the 573 

translation (Feature extraction model and Registration model) and shrinkage constraint options 574 

(Schroeder et al., 2021).  575 

 576 

FIB-SEM data at 10 nm were acquired using a backscatter electron detector (EsB) with a grid 577 

voltage set to 808 V to filter out scattered secondary electrons, with a dwell time of 3 μs, line 578 

averaging of 8, and pixel size of 10 x 10 nm (X/Y). FIB milling was performed with the 30 kV/30 579 

nA gallium ion beam in 10 nm steps to create isotropic 10 x 10 x 10 nm (XYZ) voxels. The 580 

sequential FIB-SEM images were registered using the Fiji plugin StackReg with Rigid Body 581 

transformation. 582 

 583 

Ground truth annotation  584 

All our ground truth annotations were binary masks located at least 47 voxels away from the 585 

boundaries of the 3D FIB-SEM image. This ensured that training of the neural network was done 586 

with sufficient semantic context within the image resulting in improved model predictions. 587 

 588 

Ground truth annotations for mitochondria, Golgi apparatus and endoplasmic reticulum were 589 

generated by using the carving module of Ilastik (Berg et al., 2019) or our graph cuts-based semi-590 

automated annotation tool, and when needed, by further manual editing using VAST (Berger et 591 

al., 2018) to remove voxels that did not belong to the structure of interest or to add voxels for 592 

regions that had not been included in the original binary mask. 593 

 594 

Ground truth annotations for the relatively complex three-dimensional substructure of the Golgi 595 

apparatus included membrane boundaries and the lumen for the characteristic 3-6 closely 596 

stacked fully enclosed membrane lamellae, the fenestrated and somewhat swollen trans-Golgi 597 
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network stack, and the variable number of small vesicles clustered next to the Golgi 598 

apparatus. They were created with our semi-automated graph-cut annotation tool. 599 

 600 

Ground truth annotations for endocytic clathrin coated pits and for caveolae were manually 601 

generated in consecutive planes using VAST, by drawing along the contours following the plasma 602 

membrane invaginations characteristic of these structures.  603 

 604 

Ground truth annotations for nuclear pores were manually generated plane by plane using VAST, 605 

by drawing along the contours of the nuclear outer and inner membrane adjacent to the nuclear 606 

pore. 607 

 608 

Graph-cut annotation tool 609 

We developed a new tool to aid an expert annotator in marking sparse and coarse labels one 610 

plane at a time in a sub-volume to generate the segmentation required to generate ground truth 611 

annotations for a chosen organelle and separate it from the background (see Figure S2). 612 

 613 

This tool was written in Python and adopted to suit the annotation needs associated with 3D FIB-614 

SEM data. It is publicly available at https://github.com/kirchhausenlab/gc_segment, accompanied 615 

by detailed usage instructions and best practices. A graph-cut segmentation strategy was 616 

subsequently adopted to generate segmentations from these annotations. In effect, the annotator 617 

generated sparse and coarse annotations for organelles and the background (sparse over z-618 

planes, coarse in terms of adhering to organelle boundaries) inside sub-volumes extracted 619 

manually from the 3D volume. Even though the annotations were coarse, the annotator took care 620 

not to mis-label any voxel. The maxflow algorithm (Boykov et al., 2001)was then employed to 621 

segment organelles based on these annotations. 622 

 623 

The objective energy function for our problem was formulated based on early work on graph-cut 624 

segmentation in computer vision (Boykov and Kolmogorov, 2004). As the sub-volumes are 625 

characteristically large, they were first divided into supervoxels using the SLIC algorithm (Achanta 626 

et al., 2012). In simple terms, supervoxels were formed by grouping adjacent voxels together 627 

based on a similarity criterion, which for our problem setting was chosen as agreement in 628 

grayscale values. 629 

 630 
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To describe our energy function, we introduce the following notation. The subscripts ! and " 631 

denote supervoxels; the subscripts # and $ denote voxels. Let G = '(!, (", … ,  (#, … , ($, be the 632 

annotation vector for a sub-volume consisting of - voxels and let A = (0!, 0", … , 0%, … , 0&) be the 633 

vector corresponding to the unknown labelling of the 2 supervoxels in the volume. The labelling 634 

represents the distinction between organelle and background and is thus binary. For (# ∈ {0,1} 635 

and 0% ∈ {0,1}, the labels 0 and 1 represent background and organelle, respectively. The vector 636 

0 represents the deduced labelling (or segmentation) for each supervoxel. We define an objective 637 

energy function over 0; the vector 0 that results in the least energy is the deduced labelling. The 638 

energy function is 639 

 640 

!(#) = &(#) + ()(#)  ,	641 

where  642 
R(0) =9β;%(0%)

%
+ γP'(0%) ,  and 643 

 644 

B(0) = 9 A%,)δ(0%, 0))
%,)∈+

	645 

 646 

Here, D(#!, #") is set equal to 1 if ## ≠ #$ and 0 otherwise. . signifies the set of voxels adjacent 647 

to each other and hence deemed neighbors. Adjacency means that two supervoxels share a 648 

boundary with each other. β, γ, and λ are weights given to the individual terms.  649 

F% and ;% represent unary terms of the energy function, as they depend only on one supervoxel, 650 

while A{%,)} represents pair-wise terms. The terms F#, and ;#, can similarly be defined for voxels, 651 

and then used to define the aggregated terms F%,  ;%, and  A{%,)}. 652 

 653 

The unary terms are defined by two factors, (a) the grayscale values of voxels and their agreement 654 

with the annotated foreground and background voxels, as in earlier work (Boykov and 655 

Kolmogorov, 2004; Boykov et al., 2001), and (b) the distance of the voxels from the nearest 656 

annotation of foreground and background. The pair-wise terms are also defined according to 657 

earlier work, based on the distance between two supervoxels, defined as the distance between 658 

the arithmetic center of two supervoxels. 659 

 660 

The variables 0% represent a segmentation of the organelle in the 3D sub-volume. The objective 661 

of the semi-automatic segmentation is to find the vector 0 that minimizes the energy function 662 
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G(0). As the defined energy function is sub-modular, it can be optimized using graph cuts 663 

(Kolmogorov and Zabin, 2004). An efficient algorithm to optimize such functions, called maxflow 664 

(Boykov and Kolmogorov, 2004), was used to find the optimum vector A. 665 

 666 

There are hyper-parameters in our formulation, namely H, I, and J. These were empirically 667 

defined as H = 1, I = 1, and J = 10. 668 

 669 

Data preprocessing for deep learning 670 

Cell image stacks underwent the following steps before they were ready for training: 671 

1. Conversion from TIFF format to the block-wise storage format ZARR. 672 

The size of a FIB-SEM dataset corresponding to a stack of registered TIFF files 673 

(approximately 2000 planes) was about 20GB. These TIFF stacks were converted into a 674 

ZARR 3-D compressed array (Alistair et al., 2021) to increase the efficiency for 675 

 further pre-processing steps and, most importantly, for the neural network training. 676 

2. Cropping of the dataset to exclude empty regions outside the cell and to speed up all 677 

further preprocessing steps. 678 

3. Block-wise adjustment of brightness and contrast with 3D contrast-limited adaptive 679 

histogram equalization (CLAHE, (Zuiderveld, 1994)) using scikit-680 

image.exposure.equalize_adapthist with kernel size 128 and clip limit 0.02 (see 681 

figure S3). 682 

4. Application of morphological operations to automatically clean up ground truth annotations 683 

based on biological assumptions, implemented with the python libraries scikit-684 

image.morphology (Walt et al., 2014) and scipy.ndimage (Virtanen et al., 2020).  For 685 

mitochondria and Golgi apparatus, small objects were removed (less than 27 voxels); for 686 

endoplasmic reticulum, holes were removed (less than 20,000 voxels, corresponding to 687 

0.0025 µm3.); no clean-up was required for nuclear pores or clathrin coated pits.  688 

5. Automatic creation of a coarse voxel-wise mask to mark voxels outside of the cell, using 689 

a combination of operations from the python libraries scikit-image.morphology and 690 

scipy.ndimage. The parameters and combination of operations were adapted visually to 691 

each dataset. Operations included intensity thresholding, binary opening and closing, 692 

filling small holes, and removing small objects. 693 

6. Optional: Correction for systematic biases in annotations. We observed that our semi-694 

automatic annotations carry biases that can be corrected automatically. For mitochondria 695 

and Golgi apparatus, most of the annotations did not include the membrane, which we 696 
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wanted to consider as part of the organelle. Note that this correction depended on the 697 

characteristics of a specific dataset (e.g., contrast of membranes): mitochondria 698 

annotations were dilated by one voxel (5 nm), Golgi apparatus annotations were dilated 699 

by three voxels (15 nm); ER, nuclear pores and clathrin coated pits annotations were not 700 

dilated. 701 

7. Defining a metric exclusion zone. Although step (6) allowed us to add most of the 702 

organelles’ membrane to the annotation, the ground truth was often not voxel accurate at 703 

the organelle boundaries. A neural network model trained with such data cannot produce 704 

voxel-accurate predictions at the organelle boundaries, leading to misleading evaluation 705 

scores (e. g., F1, see Fig. S10). Following previous works (Haberl et al., 2020; Lucchi et 706 

al., 2012), we avoided this issue by defining an exclusion zone around our semi-automatic 707 

imprecise annotations, created by dilating and eroding the annotations and taking the 708 

logical difference between the two outcomes. The size of both dilation and erosion 709 

depends on the specific structure, as follows — four voxels for mitochondria, two voxels 710 

for Golgi apparatuses, one voxel each for endoplasmic reticulum, and three voxels dilation 711 

plus one voxel erosion for clathrin coated pits and nuclear pores. 712 

 713 

All operations required only local context, meaning that they could be applied block-wise, and the 714 

computation could be parallelized to multiple CPU cores. To avoid artefacts at the block boundary, 715 

we provided sufficient spatial context to each block with the python library DAISY 716 

[https://github.com/funkelab/daisy], which was used for multi-process computation on all cores of 717 

a CPU. These computations were performed on Intel Xeon workstation processors with 20-40 718 

physical cores. Detailed instructions on the use of the preprocessing pipeline are provided at  719 

https://github.com/kirchhausenlab/incasem#Prepare-your-own-ground-truth-annotations-for-fine-720 

tuning-or-training. 721 

 722 

Deep learning 723 

Model architecture 724 

A 3D U-Net (Çiçek et al., 2016) based on the architecture used in Funke et al. (2018) was defined, 725 

with three downsampling layers with a factor of two, and two convolutional layers on each 726 

downsampling level. Refer to Figure S3 for details. In total, the network had ~6 million parameters. 727 

It was implemented in PyTorch (Paszke et al., 2019) 728 

 729 
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Training: Overview of pipeline  730 

The pipeline to feed blocks to the neural network was based on (Buhmann et al., 2021) and 731 

implemented using GUNPOWDER [https://github.com/funkey/gunpowder], a library that 732 

facilitates machine learning on large multi-dimensional arrays. 733 

 734 

We trained one model per organelle; that is, for model training data, foreground refers to voxels 735 

corresponding to only one type of organelle. For each iteration during the training phase, a block 736 

of 204 x 204 x 204 voxels was randomly sampled from the electron microscopy dataset, together 737 

with the corresponding block of ground truth. The blocks were augmented by voxel-wise 738 

transformations, e.g., random intensity shifts, and geometric transformations, e.g., random 739 

rotations and deformations. The blocks were processed through the network, which returned as 740 

an output block a 3D probability map of 110 x 110 x 110 voxels, centered with respect to the 741 

larger input block. The input blocks contained an additional 47 voxels per side to provide the 742 

context required by our convolutional neural network architecture. The output probability map was 743 

compared with the ground truth using cross-entropy loss, which was minimized by iteratively 744 

updating the model parameters by stochastic gradient descent. 745 

 746 

Training: Data sampling 747 

Our dataset annotations were highly imbalanced. Because our structures of interest were small, 748 

only a few voxels formed the so-called foreground (FG), with a large portion of the dataset 749 

consisting of arbitrary background (BG=1-FG) (e.g., cytosol, nucleus, other organelles). 750 

Imbalanced datasets are known to be problematic for convergence of neural network training, 751 

and we confirmed this empirically while working with our datasets. As a rule of thumb, it is 752 

desirable to sample blocks having a foreground to background ratio roughly equivalent to the 753 

global ratio of the two. To make use of all available training data, while keeping the number of 754 

unbalanced training blocks as low as possible, we implemented the following scheme (using 755 

operations available in GUNPOWDER): 756 

1. Reject blocks that contain more than 25% out-of-sample voxels. 757 

2. Calculate the FG/BG ratio for each incoming block. 758 

3. Reject a block with probability 0.9 if fewer than 5% of the voxels in it (ratio in step (2)) are 759 

labeled as foreground. 760 
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 761 

Training: Data augmentation 762 

It was impractical to process and store tens of thousands of augmented FIB-SEM blocks, required 763 

to train the 3D neural network model. Instead, during each training cycle, we augmented the 764 

number of ground truth annotations by randomly applying the transformations listed in Table S8 765 

to the training block. 766 

 767 

Training: Pipeline details 768 

After data augmentation, we shifted the scale of the data in the input block (204 x 204 x 204 769 

voxels), such that the input intensities were in [-1, 1]. Each block accepted by the neural network 770 

was then propagated through the network leading to outputs of spatial dimensions 110 x 110 x 771 

110 voxels, centered with respect to the larger input block. The neural network assigned 772 

complementary FG and BG probability to each voxel. The probability map was then compared to 773 

the ground truth annotations with the binary cross-entropy loss. We balanced the loss contribution 774 

of foreground and background voxels inversely proportional to their occurrence, clipped at a value 775 

of 1:100.  The training loss was backpropagated, and the network parameters were updated using 776 

the Adam optimizer (Kingma et al., 2014) with 0.00003 learning rate and 0.00003 weight decay. 777 

The network parameters were saved at the end of every 1000 training iterations.  778 

 779 

Training: Computational requirements 780 

Eight CPU cores were used in parallel for data fetching and augmentation, while a single GPU 781 

(Nvidia A100 on a DGX-A100 system) was used for training. Typically, a training iteration lasted 782 

1-1.3 sec, and 100,000 iterations (28 h, including periodic validation tests) were sufficient to train 783 

our 3D neural network model. 784 

 785 

Validation: Procedure 786 

To avoid overfitting, we assessed the model’s performances during the training phase on both 787 

training dataset and validation dataset, where the latter dataset was not used to update the model 788 

parameters.  Every 1,000 iterations we saved the training model, froze its weights, and calculated 789 

the loss on a small set of ground truth blocks. These were hold-out blocks from the cells that 790 

contained the training data, or blocks originating from naïve cells not represented in the training 791 

data. By comparing training and validation losses (see plot in Figure S5) we usually identified 792 

three different regimes: under-fit, fit and over-fit. When the model under-fitted, both training and 793 

validation loss decreased with the training iteration. In the fit regime (Figure S5, in grey), typically 794 
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from more than 20,000 training iterations, the validation loss was approximately constant, while 795 

the training loss slightly reduced. In the over-fit regime, the training loss continued to drop, but 796 

the validation loss started to rise. We considered the model saved at the training iteration in the 797 

middle of the fit regime to be the one that could best generalize better, i.e., make optimal 798 

predictions on previously un-seen data. This is a standard procedure in Machine Learning, known 799 

as "early stopping".  800 

 801 

Validation: Performance metrics 802 

The performance of the models obtained by the 3D U-net neural networks was determined by 803 

comparing the predicted binary segmentation with respect to ground-truth using the following 804 

three metrics: (1) precision (percentage of voxels predicted as subcellular structure that is the 805 

substructure), (2) recall (percentage of substructure voxels correctly predicted as substructure) 806 

and (3) F1 index score (harmonic mean of precision and recall, see Figure S10). These metrics 807 

were also used by other state-of-the-art supervised learning methods, such as COSEM, allowing 808 

for a quantitative comparison. 809 

 810 

Using the true positives TP, false positives FP and false negatives FN, we define precision, recall 811 

and F1 as: 812 

#KLMNONPQ = ./
./01/  KLMRSS = ./

./01$  T1 = 2 	#34567689	×345;<<#345676890345;<< =	
./

./0(1/01$)/" 813 

 814 

Prediction: Data preprocessing 815 

As for training, the segmentation of new FIB-SEM datasets required certain preprocessing steps 816 

(refer to Data preprocessing for deep learning for details): 817 

1. Conversion from TIFF format to block-wise storage format ZARR. 818 

2. Crop the dataset to exclude empty regions outside the cell. 819 

3. Create an approximate voxel-wise mask to mark voxels outside of the cell. 820 

4. Image data normalization with CLAHE (see Figure S3). 821 

 822 

Prediction: Pipeline 823 

As first step, the trained model at the iteration determined by early stopping (see Validation: 824 

Procedure, above) was loaded with frozen weights. The dataset to segment was scanned block 825 

by block and fed into the model, without performing data augmentation. Since the architecture of 826 

the 3D U-Net neural network is fully convolutionaland since each predicted voxel has access to 827 

sufficient context, we could produce the predictions block-wise independently and in parallel. 828 
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 829 

The model performed a forward pass, producing as output a 3D voxel-wise probability map, saved 830 

to disk in ZARR format. A threshold of 0.5 was applied to the predicted probability map to extract 831 

a binary segmentation map (organelle/background). Although our pipeline allowed the user to set 832 

this threshold to an arbitrary value from zero to one, we set it to the default value of 0.5 in every 833 

experiment to avoid introducing any post-processing bias. The segmentation map was later 834 

visualized in neuroglancer [https://github.com/google/neuroglancer], superimposed on the 835 

electron microscopy image.  Finally, we converted the predicted segmentations back to TIFF 836 

format and reverted the initial dataset cropping to obtain a segmentation that was globally aligned 837 

with the originally acquired image stack from the microscope. 838 

 839 

Prediction: Computational requirements 840 

A prediction was performed on a single GPU (Nvidia A100 on a DGX-A100 system), backed by 841 

multiple CPU cores, employed to parallelly load and pre-process the data. When using five CPU 842 

cores, our hardware processed 350 blocks (204 x 204 x 204 voxels) in slightly less than five 843 

minutes. Typically, the prediction of one cell image stack, acquired at 5 nm isotropic resolution, 844 

took between 40 minutes and 90 minutes, depending on its volume. 845 

 846 

Fine-tuning 847 

To fine-tune a trained model on a naïve cell, we performed the following steps: 848 

1. One block of ground-truth block (minimum 204 x 204 x204 voxels) within the cell to fine-849 

tune was annotated. 850 

2. A model previously trained on the same organelle, whose weights were frozen at the first 851 

train iteration of the fit region, was loaded for continued training. 852 

3. A training of 15’000 iterations was launched, using as training data only the new prepared 853 

ground-truth block. All fine-tuning training hyperparameters were set identical to the 854 

original training. 855 

4. The model was saved every 1’000 iterations. The best model iteration was picked based 856 

on the original validation dataset from the fine-tuning target cell. 857 

 858 

Details to perform fine-tuning training using our pipeline are provided at 859 

https://github.com/kirchhausenlab/incasem#Fine-tuning.  860 

 861 

Brief example of fine-tuning 862 
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We started by preparing a small ground-truth block of the cell to fine-tune. Because the volume 863 

of the additional ground truth was much smaller than the volume of the ground truth fed to the 864 

pre-trained model (from ~1/69 to ~1/3, Table S9), the additional annotation effort was not very 865 

demanding. In the case of CF datasets, for the fine-tuning of mitochondria in Cell 3 BSC-1 and 866 

Cell 6 SUM 159, we loaded the segmentation map performed by the pre-trained model (model 867 

1847) and refined it by manual editing in VAST. Conversely, to fine-tune HPF OpenOrganelle 868 

datasets in the prediction of mitochondria and ER, we picked one additional COSEM ground-truth 869 

crop, previously excluded from the training and validation data. We loaded the pre-trained model 870 

at the first training iteration within the fit regime (i.e., the iteration after which the validation loss 871 

was fairly stable, Fig. S4); for example, in Fig. S4, CF Mitochondria model, we loaded the model 872 

at the training iteration 95,000. We resumed training of the model using only the additional ground 873 

truth block and data augmentation. Typically, after a few thousand training iterations (about ~1/15 874 

of the training iterations needed to produce the pre-trained models), the fine-tuned model learned 875 

to segment the fine-tune dataset more precisely, with an increased overall F1 score (Table S9). 876 

We noticed that fine-tuning was beneficial mainly when the initially trained model behaved poorly, 877 

such as in the case of HPFS ER, Cell 21 Jurkat-1, for which F1 increased by 0.21. 878 

 879 

To understand how fine-tune training helped to improve segmentation, we compared the 880 

segmentation performed by the pre-trained model versus the one produced by the fine-tuned 881 

model (Figure 5-D). In the case of CF, mitochondria, only a few portions of mitochondria were 882 

occasionally missed by the pre-trained model, but they were eventually retrieved by the fine-tuned 883 

models. In HPF ER, fine-tuning reduced the number of false positives, resulting in a neater 884 

segmentation map, suitable for further biological studies. 885 

 886 

To quantify the impact of fine-tune training, we calculated precision and recall in addition to F1 887 

(Figure S6). Typically, fine-tuning enhanced precision, without affecting recall: the fine-tuned 888 

model learned to classify cell components that looked like the organelle under study, but did not 889 

actually belong to the same semantic class, reducing the number of false positives. 890 

 891 

As baseline, we compared the fine-tuned model with one having randomly initialized weights and 892 

trained using the same (small) ground truth volume. We found that for most datasets and 893 

organelles (ER Cell 21 Jurkat-1, ER Cell 22 Macrophage-2, mitochondria Cell 21 Jurkat-1, 894 

mitochondria Cell 3 BSC-1, mitochondria Cell 6 SUM 159), the models trained using randomly 895 

initialized weight reached substantially lower F1 scores, even when trained much longer, with up 896 
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to 200,000 training iterations. Only in one case (mitochondria Macrophage-2), did the model 897 

achieved approximately the same F1 score, but only after training for 160,000 iterations, 20 times 898 

more than the number required by the corresponding fine-tuned model. 899 

 900 

We concluded that fine-tune training is a useful tool to apply whenever the segmentation of a 901 

naïve cell falls short. By taking advantage of pre-trained models and preparing a small ground 902 

truth volume, one can train more accurate models, at a small fraction of the ground truth 903 

annotation and computational costs usually required. 904 

 905 

Analysis of nuclear pores 906 

Automated orientation of nuclear pores on the nuclear envelope 907 

We determined the nuclear pore membrane diameters from top-down FIB-SEM views towards 908 

the nuclear envelope of each of the nuclear pores. This orientation process was automated with 909 

the following steps. First, we generated a 3D binary mask corresponding to the predicted 910 

probability with a threshold of 0.5 for each one of the nuclear pores identified by the 3D U-net 911 

nuclear pore model (Fig. S7A).  Second, we determined for each mask its volume, principal axis, 912 

and centroid coordinates. A filtering step was included to eliminate masks with small volume or 913 

short axis due to incompleteness of the predicted mask. Third, we used median filtering of the 3D 914 

point cloud data to remove outliers, thus creating a virtual ‘low resolution’ 3D surface of the nuclear 915 

envelope by alpha-shape triangulation of the centroids (Akkiraju et al.) (Fig. S7B, top). Fourth, we 916 

obtained a vector normal to each triangle within the triangulation (Fig. S8B, bottom). Finally, we 917 

used the angular information of this vector to reorient the coordinates of the raw image of the 918 

nuclear pore closest to the triangulation to position the nuclear membrane on a view normal to 919 

the observer (Fig. S7C).  920 

 921 

Determination of nuclear pore membrane diameter 922 

The diameter of the membrane pore, defined by the contact between the nuclear membrane and 923 

the pore opening, was determined from the distance separating the two peak signals measured 924 

along a line transecting the middle of the nuclear envelope immediately surrounding the nuclear 925 

pore (d1 and d2 in Fig. S7D). The nuclear pore membrane diameter was expressed as the median 926 

of eighteen radial measurements 10° apart.  This calculation increased the precision of the 927 

measurement by taking advantage of the known radial symmetry of the nuclear pore and the 928 

surrounding nuclear envelope on the axis normal to the nuclear envelope; the standard deviation 929 

for each pore diameter measurement (e.g., experimentally determined uncertainty) was 6 nm. 930 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502534doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502534


 931 

Analysis of clathrin coated pits and coated vesicles  932 

The model trained on endocytic clathrin coated pits in cell 12 and cell 13 was used to predict 933 

clathrin coated structures in cells 12, 13, 15, and 17. The predictions were gated at a probability 934 

of 0.5 and the corresponding masks then used to locate the clathrin coated structures. These 935 

structures were classified as endocytic clathrin coated pits and coated vesicles if located at the 936 

plasma membrane or within 400 nm, respectively; ‘secretory’ coated pits and coated vesicles 937 

denote the remaining similar structures located in the cell interior.  Each prediction was confirmed 938 

by visually inspection of the corresponding image along the three orthogonal directions.  939 

 940 

Measurements of neck, height, and width from the pits (Fig. S8A) and major and minor axis of the 941 

ellipses best fitting the pits and coated vesicles (Fig. S8A,B) were determined by the following 942 

sequential steps: (1) select the view displaying the largest outline by inspection of 9 consecutive 943 

planes along each of the three orthogonal views centered on the centroid of the pit or vesicles; 944 

(2) manually measure the neck height and widths of the pits; (3) establish the outline of the pit or 945 

vesicle in the section chosen in the first step; the darker pixels where the pit or vesicle was present 946 

were selected manually (Fig. S9C, red square in the left panel), segmented into a binary mask 947 

with an Otsu intensity threshold (Otsu, 1979), and skeletonized (Fig. S8C, middle panel); (4) 948 

establish the ellipse best fitting the skeletonized outline of the pit or vesicle (Fig. S8C, right panel); 949 

(5) obtain major and minor axis of the ellipse.  950 

 951 

Statistical analysis 952 

The normality of the nuclear pore size distribution was examined using the Shapiro-Wilk test (Fig. 953 

6C). The comparison of size distributions between nuclear pore diameters from values 954 

determined experimentally and simulated from the median value with an uncertainty of 6 nm using 955 

the nonparametric Kolmogorov-Smirnov test showed they were statistically different (p<0.0001). 956 

 957 

Data availability 958 

The datasets of raw and normalized FIBSEM cells images, ground truth annotations, probability 959 

maps predicted by the models and corresponding segmentation masks are publicly available at 960 

the AWS INCASeM bucket [https://open.quiltdata.com/b/incasem]. 961 

 962 

Code availability 963 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 3, 2022. ; https://doi.org/10.1101/2022.08.02.502534doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.02.502534


The software and step-by-step instructions to use it are publicly available at 964 

https://github.com/kirchhausenlab/gc_segment (Graph-cut annotation tool) and 965 

https://github.com/kirchhausenlab/incasem (Deep-learning pipeline). 966 

 967 

Trained neural network models are available at https://open.quiltdata.com/b/incasem/tree/ with 968 

usage instructions at https://github.com/kirchhausenlab/incasem.    969 
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Supplemental material 1119 

Supplemental material consists of Figs. S1-S10 and Tables S1-S9.  1120 
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Figure and Video legends 970 

Figure 1. Pipelines used for training and deep-learning neural network prediction 971 

Schematic representation of the deep-learning approach for recognizing subcellular structures in 972 

FIB-SEM volume images using a 3D U-net encoder-decoder neural network.  973 

(A) For training, three-dimensional stacks containing FIB-SEM data, augmented as described in 974 

Methods, are provided as input images to the 3D U-Net; in this example, the stack includes a 975 

limited number of three-dimensional ground truth annotations for the ER in the form of binary 976 

masks (yellow). The ER predicted by the 3D U-net model is a probability 3D map, whose accuracy 977 

is evaluated as a prediction error by measuring the cross-entropy loss. The model parameters 978 

are iteratively updated during training until convergence of the probability error is achieved. 979 

(B) For prediction, small three-dimensional stacks with data not used for training covering the 980 

complete FIB-SEM volume image of a naïve cell (or from the remaining regions of the cell used 981 

for training) are provided as input to the 3D U-net model trained in (A). In this example, the 982 

predicted ER is a three-dimensional probability map centered on the three-dimensional stack. 983 

This arrangement standardizes the three-dimensional context for all predicted voxels within the 984 

FIB-SEM image.   985 

 986 

Figure 2. Performance of the deep-learning network to predict in naïve cells 987 

Visual comparisons between predictions (crimson) by 3D U-net models trained using combined 988 

data from two HEK293A cells to recognize (A) ER or (B) Golgi apparatus and corresponding 989 

ground truth annotations (purple) in the naïve BSC-1 and SUM 159 cells not used for training 990 

(Table S1). The representative images from single plane views from FIB-SEM volume data are 991 

from cells prepared by CF isotropically acquired at 5 nm resolution; red and yellow arrows 992 

highlight small regions containing voxels of false positive and false negative assignments. Scale 993 

bar, 500 nm (See Videos 1 and 2). 994 

 995 

Figure 3. Network predictions of mitochondria, ER and Golgi apparatus 996 

Single plane view from a FIB-SEM volume image from naïve cell 15 (SVG-A) not used for training 997 

prepared by HPFS and visualized during interphase at 5 nm isotropic resolution. The small region 998 

contains representative model predictions for mitochondria (cyan), ER (yellow) and Golgi 999 

apparatus (magenta) obtained from three 3D U-net models, each trained with organelle-specific 1000 

ground truth annotations, without fine-tuning, from interphase cells 19 (Hela-2) and 20 (Hela-3) 1001 

prepared by HPFS. Scale bar, 2 um.  1002 

 1003 
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Figure 4. Predictive ER model resolves the structural complexity of the ER network during 1004 

different stages of the cell cycle 1005 

(A) Representative examples of ER predictions in naïve cell 15 (SVG-A) processed during 1006 

interphase as described in Fig. 3 showing the characteristic network of ER sheets connected at 1007 

branch points to ER tubules. ER tubules were more abundant towards the periphery of this cell, 1008 

ER sheets were more abundant closer to the nucleus. For clarity, manual VAST editing was used 1009 

to eliminate pixels due to false positive predictions associated with the nuclear envelope. Scale 1010 

bar, 1 um. 1011 

(B) Representative examples of ER predictions from a mitotic naïve cell 8 (SUM 159) prepared 1012 

by CF and imaged isotropically at 10 nm; the ER model was trained with ER ground truth 1013 

annotations from interphase cells 1 and 2 (HEK293A) prepared by CF visualized isotropically at 1014 

5 nm resolution. It shows successful recognition of an extensive network of fenestrated ER sheets 1015 

(red arrow heads) connected to ER tubules, characteristic of mitotic cells. Ground truth 1016 

annotations used to train the interphase ER model did not contain ER fenestrations, as they are 1017 

barely present during stage of the cell cycle. Darker regions corresponding to chromosomes are 1018 

outlined with yellow dotted lines. Scale bar, 3 um (see Video 3). 1019 

 1020 

Figure 5. Effects of extensive combination of data sets and fine-tuning during training 1021 

(A-D) Examples to highlight the effect on the predictive performance of (A, C, D) mitochondria 1022 

and (A, B) ER and models trained with data from cells prepared by CF or HPFS, with substantial 1023 

differences in general appearance and contrast.  The images show several comparisons between 1024 

ground truth annotations and predictions from models trained as described in the insets with data 1025 

obtained from cells prepared by different sample preparation protocols. Details of the cell and 1026 

training protocols are in Tables S1, S2 and S8. Voxels corresponding to false positive (cyan 1027 

arrows) and false negative (red arrows) predictions are indicated. Scale bar, 500 nm. 1028 

(A) Predictions from cross-domain models, for which the training data and predictions were done 1029 

using cells prepared with different sample preparation protocols, were less accurate than those 1030 

obtained from the specialized models, for which training, and predictions were done using cells 1031 

prepared with the same sample preparation protocol. Predictions from the generalist models, 1032 

obtained by training using ground truth annotations from cells prepared by CF and HPFS, 1033 

performed as well as the predictions from the specialized models.  1034 

(B-D) Effect on the predictive performance of the models by fine tuning during training. 1035 

 1036 

Figure 6. Identification of nuclear pores and variations in their membrane pore diameter 1037 
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A nuclear pore model was generated by training without fine tuning used ground truth annotations 1038 

of nuclear pores from cell 13a SVG-A prepared by HPFS and imaged at 5 nm isotropic resolution.  1039 

(A) Orthogonal views of a representative nuclear pore not used for training show ground truth 1040 

annotations and model prediction.  Scale bar, 50 nm. 1041 

(B) Nuclear pore predictions for all the pores on the nuclear envelope of naïve cell 19 (Hela-2) 1042 

prepared by HPFS and visualized during interphase at 4 x 4 x 5.3 nm isotropic resolution (left 1043 

panel); the inset highlights the characteristic doughnut shape of the nuclear pore. Scale bar, 2 1044 

um. Representative orthogonal views (right panels) of a nuclear pore and model prediction. Scale 1045 

bar, 50 nm. 1046 

(C) Histogram of nuclear membrane pore diameters of nuclear pores measured in naïve cells 15, 1047 

17 and 19 (N=934) identified by the nuclear pore model.  Each membrane pore diameter 1048 

determined in the raw image represents the average value from 18 measurements spaced 18° 1049 

apart (see inset and Methods). The Gaussian fit (blue) shows the expected size distribution if the 1050 

data had come from membrane pores of a single diameter centered on the experimentally 1051 

determined median (most abundant species); the bar width (6 nm) corresponds to the expected 1052 

error of the measurements (see Methods). 1053 

(D) Three-dimensional distribution of nuclear pores on the nuclear envelope of cell 19, color coded 1054 

as a function of membrane pore diameter.  1055 

 1056 

Figure 7. Identification of clathrin coated pits, coated vesicles and caveolae. 1057 

A coated pit model was generated by training with ground truth annotations from Cell 12 (Hela-2) 1058 

prepared by HPFS and imaged at ~ 5 nm isotropic resolution. 1059 

(A) Orthogonal views of a representative endocytic clathrin coated pit (CCP) not used for training 1060 

showing ground truth annotations and model prediction.  Scale bar, 50 nm. 1061 

(B) Orthogonal views of a caveola, an endocytic clathrin coated pit (CCP) and a clathrin coated 1062 

vesicle (CCV) at the plasma membrane, and a coated pit (CCP) and vesicle (CCV) associated 1063 

with membranes from the secretory pathway.  Each panel shows the ground truth annotation and 1064 

the model prediction.  An example of a COPI vesicle not predicted by the coated pit model is also 1065 

shown. Views are from naïve cell 17 SVGA prepared by HPFS and imaged with ~ 5 nm isotropic 1066 

resolution.  1067 

(C) Violin plots of width and height for caveolae (CAV) and endocytic clathrin coated pits (CCP) 1068 

in the raw images of the structures identified by the coated pit model in cell 17 (see also Figure 1069 

S8, and Clathrin coated pits and vesicles, Methods).  1070 
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(D) Violin plots of major and minor axis and eccentricity of the fitted ellipse of all pits and vesicles 1071 

in the raw images of the structures identified by the coated pit model in cell 17 (see also Figure 1072 

S8, and Clathrin coated pits and vesicles, Methods).  1073 

(E) The left-hand panel shows the distribution of height versus neck width for endocytic clathrin 1074 

coated pits in cell 17, identified by the coated pit model. The plot shows two clusters, which 1075 

correspond to early and late coated pits, respectively, as illustrated by the schematics (see also 1076 

Figure S8, and "Clathrin coated pits and vesicles" in Methods). The right-hand panel shows 1077 

histograms for height and major axis of the fitted ellipse for late endocytic coated pits and coated 1078 

vesicles, respectively. 1079 

 1080 

Video 1. Ground truth annotations for mitochondria, ER and Golgi apparatus 1081 

Passing through a FIB-SEM volume with contrast equalized using CLAHE. Image is from Cell 1 1082 

HEK293A prepared by CF and imaged at ~ 5 nm isotropic resolution.  The video shows ground 1083 

truth annotations for mitochondria (cyan), ER (red) and Golgi apparatus (green). The annotations 1084 

were generated for all mitochondria and Golgi apparatus within the FIB-SEM volume, and all ER 1085 

within the highlighted 8 µm x 3 µm x 3 µm block (orange box). 1086 

 1087 

Video 2. Predictions of mitochondria  1088 

Passing through the FIB-SEM volume with contrast was equalized using CLAHE.  Image is from 1089 

naïve Cell 1 HEK293A (not used for training).  The video shows predictions by the mitochondria 1090 

model trained with ground truth annotations for mitochondria from Cell 2 HEK293A.  Both cells 1091 

were prepared by CF and imaged at ~ 5 nm isotropic resolution. The model identified all 1092 

mitochondria; comparison of the ground truth annotations and predictions shows correct voxel 1093 

assignments (true positives, yellow), missing assignments (false negatives, cyan), incorrect 1094 

assignments (false positives, magenta). The small fraction of false positive assignments predicted 1095 

by the model are associated with unidentified tubular and spherical structures of small size.  1096 

 1097 

Video 3. Prediction of mitotic ER 1098 

Passing through the FIB-SEM volume with contrast equalized. Image is from naïve prometaphase 1099 

Cell 8 SUM 159 imaged at ~ 10 nm isotropic resolution.  The video shows ER predictions (yellow) 1100 

generated with ground truth annotations from interphase Cell 1 HEK293A and Cell 2 HEK293A 1101 

imaged at ~ 5 nm isotropic resolution.  All cells were prepared by CF. Visual inspection confirmed 1102 

that the model correctly predicted all the ER, including the fenestrations characteristic of the 1103 
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mitotic ER sheets; fenestrations were not included in the ground truths used for training, as they 1104 

are mostly absent in the ER of interphase cells (Chou et al., 2021). 1105 

  1106 

Video 4. Prediction of mitochondria, ER, Golgi apparatus, nuclear pores, and clathrin 1107 

coated pits and vesicles  1108 

Passing through the raw FIB-SEM volume from naïve Cell 15 SVG-A prepared by HPFS and 1109 

imaged at ~ 5 nm isotropic resolution.  The video shows predictions as surface renderings for 1110 

mitochondria (cyan), ER (yellow), Golgi apparatus (magenta) in a block of 3 µm x 3 µm x 3 µm 1111 

(block size: 664 x 586 x 572 voxels). A small number of false positive pixels generated by the 1112 

Golgi model and located within a 323 x 271 x 230 voxel block were removed using VAST.  One 1113 

identified Golgi apparatus is highlighted (light pink) . Predictions for all nuclear pores (yellow) and 1114 

clathrin coated pits and vesicles within the imaged volume are also shown. Visual inspection 1115 

confirmed that the models trained with ground truth annotations from Cell 19 HeLa and Cell 20 1116 

HeLa prepared by HPFS and imaged at ~ 5 nm isotropic resolution correctly predicted all the 1117 

subcellular structures.  1118 
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