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Abstract 
Eukaryotic genes are regulated by multiple alternative promoters with distinct expression patterns. In 

cancer, alternative promoters are pervasively utilized, but our understanding of the mechanism of 

activation and how their regulatory architecture differs from reference promoters remains elusive. We 
analyzed 100 CAGE-seq libraries from HCC patients and annotated 4083 alternative promoters in 2926 

multi-promoter genes that are known genes involved in hepatocarcinogenesis. Many alternative 

promoters are undetected in the normal liver. We find that multi-promoter genes are enriched among 

genes downregulated in the tumor, highlighting alternative promoters’ impact in global transcription 

changes in cancer. Alternative promoters are depleted for CpG islands, have narrow nucleosome 

depleted regions, and are enriched for sharp promoters as well as tissue-specific transcription factors. 

Alternative promoters have high DNA methylation levels around transcription start sites. Tumor cells 

globally lose DNA methylation, but there exists a hierarchical retention of intragenic DNA methylation, 
which is dictated by the genomic CG content. As such, intragenic CG-poor regions lose methylation, 

while CG-rich regions retain it, a phenomenon caused by differential binding of H3K36me3, DNMT3B, 

TET1 and SETD2. Thus, the selective loss of DNA methylation in CG-poor regions opens the chromatin 

and makes these regions accessible for transcription. Upon transcription factors availability, alternative 

transcription can pervasively occur in cancer. These results provide a framework for understanding the 

importance of alternative promoters in controlling the tumor transcriptomes, highlighting their 

architecture and role in regulatory mechanism(s). 
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Introduction 
Hepatocellular carcinoma (HCC) accounts for about 90% of primary liver cancers and is the fourth most 

common cause of cancer-related death1. Genome-wide profiling of HCC patients has helped to build a 

molecular map of mutations, dysregulated genes, and DNA methylomes2-5. Additional efforts to map 
histone modifications6, chromatin accessibility7, transposon activation8 and RNA m6A methylation9 are 

ongoing and important to understand mechanisms of gene regulation in cancer. Promoters are 

gateways to start transcription and regulate gene expression in a temporal and spatial manner. Yet, 

there has been little effort to understand promoter regulation in cancer. In this context, how the 

regulatory architecture of promoter usage impacts gene regulation in HCC is unclear. 

 

Transcription is facilitated by a reference promoter, which is the region proximal to the transcription start 

site (TSS), integrating cis-regulatory elements to ensure precise gene regulation10. Cap Analysis of 
Gene Expression sequencing (CAGE-seq) determines the 5’-ends of TSSs at single nucleotide 

resolution11,12 and quantifies gene expression similar to RNA-seq13. CAGE-seq also detects differently 

regulated transcription initiation events within the same core promoter14,15, and thus, it can accurately 

detect alternative promoters. In addition to reference promoters, many genes utilize alternative 

promoters for specific processes such as cell fate transitions in yeast16 and mammalian cells17, in 

vertebrate embryogenesis12,18, and are believed to have important roles in cancers19. Widespread 

activation of alternative promoters is known in different contexts; however, it is unclear whether their 

(epi-)genetic states are different compared to the reference promoter, and if they are under a different 
regulatory architecture. Alternative promoters have dynamic intragenic DNA methylation across human 

tissues20 and loss of DNA methyltransferase 3B (DNMT3B) in mouse embryonic stem (ES) cells has 

been shown to result in spurious initiation of alternative promoters21. Therefore, precise regulation of 

alternative promoters is important to ensure correct gene expression.  

 

Alternative promoters are pervasively activated in cancer19. Our understanding of the mechanism(s) of 

activation and their impact on gene expression is unknown. We analyzed 100 CAGE-seq libraries from 
HCC patients and comprehensively annotated 4083 alternative promoters, representing 2926 multi-

promoter (MP) genes, supported by histone modifications, ATAC-seq, RNA Pol2 Chip and DNA 

methylation across the patient cohort and HepG2 cells. Transcription of alternative promoters is 

dominant outside CpG islands, enriched for genes important in HCC, and their activation frequently 

results in downregulation of the reference promoter. We showed that CG-poor regions preferentially 

loose DNA methylation in tumors, followed by chromatin opening and Pol2 binding, resulting in 

alternative transcription from CG-poor regions. Collectively, our study elucidates the mechanism of 

activation and preferential underlying DNA sequence for alternative promoter activation in cancer.  
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Results 
Pervasive transcription of alternative promoters in HCC 
To determine the extent of alternative promoter usage in HCC, we analyzed CAGE-seq data from 50 

tumors and their matched tumor-adjacent tissues8 (Supplementary Table 1). We identified the 5’-end 
of CAGE transcription start sites (CTSSs) and quantified expression levels in tags per million (TPM). 

Proximal CTSSs within 20 nucleotides on the same strand were clustered to define transcript clusters 

(TCs) (Fig.1A and Supplementary Fig. 1A-B). We retained TCs expressed above 1 TPM in at least 15 

samples and a minimum 3 TPM in at least one sample, which resulted in 42804 high-confidence 

consensus TCs expressed across the cohort (Fig. 1A and Supplementary Table 2). A majority of TCs 

(90%) were supported by FANTOM5 CAGE peaks17 and/or open chromatin regions from ENCODE22 

and TCGA7 (Fig. 1B). Based on GENCODE transcript models, we identified promoters for 15419 

expressed genes and alternative TSSs for 3052 annotated alternative transcripts. A significant fraction 
(10492; 24.5%) of CAGE TCs were in intragenic regions (Fig. 1C), indicating these are putative 

alternative promoters. We filtered intragenic CAGE TCs that represent drosha processing of pre-

miRNAs23, snoRNAs 5’-ends capping17, exons post-transcriptional processing11,12, enhancer RNAs24 

and promoters lacking a transcription initiator15 (Fig. 1C). For the remaining TCs, we clustered all within 

300 bases, resulting in 1031 novel alternative TSSs (Supplementary Table 3). A majority of these novel 

TSSs were supported by RNA-seq and expressed sequence tag transcripts (Fig. 1D). In total, we 

identified 4083 alternative TSSs in HCC (represented by 3052 annotated TSSs and 1031 novel TSSs) 

(Fig. 1C).  
 

Based on the number of promoters, we classified 15419 liver expressed genes into either single-

promoter (SP) (12493;80.3%) or multi-promoter (MP) (2926;19.7%) genes (Fig. 1E, Supplementary 

Table 3 and Supplementary Table 4). Promoters with the highest mean expression level across the 

cohort were assigned as the reference (major) promoter, whereas the others were assigned as 

alternative (minor) promoters (Fig. 1E, see methods). Most novel alternative TSSs occurred in genes 

without active alternative promoters (Fig. 1F), while others occurred in existing MP genes, resulting in 
some genes with multiple alternative promoters (Supplementary Fig. 1C). Overall, 65% of alternative 

promoters are located downstream of the reference promoter (Fig. 1G) and 35% are upstream, which 

highlights that purely assigning the most upstream TSS as the reference promoter not always is optimal. 

Alternative promoters utilized the same N terminus in 986 genes and different N terminus of the proteins 

in 1819 genes (Supplementary Table 3), as exemplified for CDKN2A (Supplementary Table 3) and 

ERBB2 (Supplementary Fig. 1E). MP genes were associated with diverse functions enriched in 

metabolic processes, signalling pathways, apoptosis, regulation of cell migration and programmed cell 

death (Fig. S1F and Supplementary Table 5), which is in contrast with SP genes that are over-
represented by housekeeping functions (translation, DNA repair, gene expression, mRNA splicing). 

Notably, hepatocytic markers25, HCC signature genes26 and cancer-associated gene families 

(oncogenes, transcription factors and protein kinases) from GSEA27 were over-represented in MP 

genes (Fig. 1G). Next, we reanalyzed TCGA HCC clinical data and observed a significant association 

(p=3.2E-78; Fisher’s exact test) of survival-gene expression among MP genes compared to SP genes 
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(Fig. 1H and Supplementary Table 3). Compared to reference promoters, the expression of alternative 

promoters was superior in predicting overall survival of HCC patients (Fig. 1J). This includes both genes 

known/unknown to HCC, and genes not previously described to rely on promoter switching, such as 

SULF2 (Supplementary Fig. 1G). Alternative promoters with survival-association had shorter overall 
survival time (Supplementary Fig. 1H). Moreover, MP genes were enriched for sorafenib resistance 

marker-genes28 (Supplementary Fig. 1I). Collectively, these data support that alternative promoters and 

their usage are important in the HCC pathogenesis and for patient’s outcome. 

 
Figure 1. Annotation of alternative promoters in hepatocellular carcinoma (HCC) patients. (A) A 
schematic workflow to describe the mapping of CAGE-seq reads to define consensus transcript clusters 
(TCs) across the cohort. (B) Barplot shows overlap of HCC TCs with the annotated FANTOM5 CAGE 
peaks and open chromatin peaks from ENCODE and TCGA. (C) A schematic workflow to annotate 
intragenic CAGE TCs as high-confidence alternative promoters. The workflow includes multiple filtering 
steps to exclude TCs that lack promoter features. (D) Distance between 5’ ends of novel TSSs and 5’ 
ends of RNA-seq and EST transcripts. (E) Classification of expressed genes into single promoter (SP) 
and multi-promoter (MP) genes based on the number of promoters. The promoter with highest 
expression level (represented by arrow height) is assigned as the reference promoter. (F) Venn diagram 
shows the intersection of novel alternative promoters with known MP genes. (G) Enrichment of 
signature genes in MP genes compared to SP genes. (H) Distribution of survival associated genes with 
SP and MP genes. The MP genes were significantly associated (P= 1.06E-247; Fisher’s exact test) 
with survival outcome. (I) The scatter plot shows the p-value of the survival association for reference 
and alternative promoters. 
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Impact of alternative promoters on gene expression 
We sought to understand how alternative promoters control gene expression. We first determined the 

fraction of HCC reference and alternative promoters that are expressed across 8 independent normal 
livers8,17. Whereas, some HCC alternative promoters were undetectable in the normal liver, they are 

already expressed in the matched tumor-adjacent liver (cirrhotic liver parenchyma) (Fig. 2A, 

Supplementary Fig. 2A and Supplementary Table 4). At the expression threshold of minimum 3 TPM in 

at least 1 normal liver sample approximately 50% of the alternative promoters were unexpressed in the 

normal liver compared to 15% of reference promoters (Fig. 2B). We lowered the expression threshold 

and observed a higher fraction of alternative promoters were undetected in the normal livers. MP genes 

with alternative promoters expressed in normal livers were enriched for metabolic-related pathways, 

reflecting a tissue-intrinsic biology. On the contrary, tumor-specific alternative promoter genes were 
enriched in oncogenic pathways such as, WNT/beta-catenin signalling, E2F and Myc targets (Fig. 2C 

and Supplementary Table 6).  

 

We computed the extent of reference and alternative promoters expressed across the patient cohort 

and showed that the reference promoters (irrespective of SP or MP genes) were constitutively 

expressed across the cohort, while alternative promoters were either constitutively expressed or 

expressed in a subset of patients (Fig. 2D). Notably, alternative promoters unexpressed in normal livers 

generally were expressed in a subset of HCCs (Supplementary Fig. 2B). Although expression levels of 
alternative promoters on average were lower (Fig. 2E) at the population level some alternative 

promoters were higher than its reference promoters at the individual patient level (Fig. S2A).  In tumor-

adjacent tissues, we identified 1489 (36.4%) alternative promoters with higher expression than the 

reference promoters in minimum one patient which further increased to 1716 (42%) alternative 

promoters when analyzing tumors alone (Supplementary Fig. 2C). In fact, the variance in the expression 

levels were highest for alternative promoters across the cohort (Supplementary Fig. 2D).  

 
In total, we identified 3200 promoters and 2400 genes differentially expressed29 between tumor and 

tumor-adjacent tissues (Fig. 2F-G and Supplementary Table 7). Almost all (99%) of the differentially 

expressed genes were detected at the promoter level (Supplementary Fig. 2E). We compared the 

expression fold-change of reference and alternative promoters among MP genes and observed a 

general trend of downregulation of reference promoters and upregulation of alternative promoters (Fig. 

2H). In total, we identified 155 promoter pairs as significantly different (log2 fold-change of 0.5) with 

expression in opposite direction, among which 115 (74%) of the promoter pairs the reference promoters 

were downregulated and alternative promoters were upregulated (Fig. 2H).  It has been shown that 
alternative upstream promoters30 or downstream intragenic promoters31 attenuate host gene 

expression, thus we asked whether genes downregulated in HCC are enriched among MP genes. 

Among the differentially expressed promoters, MP genes were mostly downregulated, while SP genes 

were mostly upregulated (Fig. 2I), which held true across different functional classification of genes 

except for KEGG signaling pathways (Supplementary Fig. 2F). Indeed, upstream promoters are known 
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to interfere with downstream reference promoters30 and downstream intragenic promoters attenuate 

host gene expression31. Consistent with this observation, we showed that the reference promoters were 

downregulated when alternative promoters are located upstream (Fig. 2J). Downregulation of reference 

promoters was more evident when a gene has more than one alternative promoter (Fig. 2K), which may 
interfere with the elongating polymerase leading to transcript downregulation. Collectively, this 

highlights that alternative promoters are pervasively transcribed in tumors affecting many key cancer-

related pathways and often leading to downregulation of reference promoters.  

 
 
Figure 2. The impact of alternative promoters in gene expression regulation. (A) A UCSC browser 
screenshot of the CTNNBL1 gene with CAGE tags across the normal liver, tumor-adjacent tissues, and 
HCCs. The alternative promoter is zoomed in to show the CTSS usage. (B) Barplot shows the 
percentage of HCC promoters that are transcribed across 8 independent normal livers at different 
threshold of CAGE TCs. HCC Promoters undetected at low levels show tumor-specific activation of 
alternative promoters. Expressed genes are classified into single promoter (SP) and multi-promoter 
(MP) genes, where MP genes are further classified into reference and alternative promoters. (C) 
Enriched cancer hallmark terms associated with alternative promoters expressed/unexpressed in 
normal livers. (D) Distribution of reference and alternative promoters expressed across the HCC cohort. 
The x-axis indicates the percentage, at which a promoter is expressed across the HCC cohort. (E) The 
average expression level of reference and alternative promoters of multi-promoter genes and single 
promoter genes. (F-G) Volcano plots show differentially expressed promoters (F) and genes (G) 
between tumors and tumor-adjacent tissues. The cut-off p-value of 0.05 was FDR-corrected. (H) 
Expression fold change for reference and alternative promoter pairs. (I) Barplot shows the fraction of 
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differentially expressed promoters (from panel F) that are classified as either upregulated or 
downregulated in tumors compared to tumor-adjacent tissues. (J-K) The cumulative plots show the 
distribution of fold change of reference promoters compared to the number of alternative promoters (F) 
or based on the position (upstream/downstream) of the alternative promoter relative to the reference 
promoter.   
 
Alternative promoters have distinct underlying DNA sequence and promoter architecture 
Two thirds of human genes have CpG islands (CGIs) within their promoters32 as depicted for examples 

GNAS (Fig. 3A), ERBB2 (Fig. 3B) and COMT (Supplementary Fig. 3A). In addition, there are thousands 

of intragenic CGIs (not associated with known promoters) that act as alternative promoters during 

development33, prompting us to ask whether intragenic CGIs function as alternative promoter in HCC. 

Overall, 80% of reference promoters overlap with CGIs, whereas this is 45% (1899 out of 4083) for 

alternative promoters (Fig. 3C), reflecting the depletion of CG dinucleotides in alternative promoters 

(Supplementary Fig. 3B). Furthermore, in a significant fraction (981 out of 1899) the CGIs were shared 
between the alternative and reference promoters (Fig. 3A and Fig. 3C). The shared CGIs are the 

longest, while those exclusive to alternative promoters have the shortest length (Supplementary Fig. 

3C). Also, compared to known alternative promoters, CGIs were further depleted among novel 

alternative promoters (Fig. 3D), reflecting a preferential activation of novel promoters from CG-poor 

regions.  

 

We hypothesized that to adapt to the evolving cancer transcriptome, alternative promoters might prefer 
a distinct regulation than the reference promoter, which might be mediated via promoter architecture, 

chromatin accessibility, transcription factor-association and RNA Pol2 dynamics. Reference promoters 

have significantly broader promoter width (broad promoters) (Fig. 3E-F), while alternative promoters 

are narrow and associated with sharp promoters (Fig. 3F). Sharp promoters have one dominant 

transcription initiation site, while broad promoters have multiple initiation sites with a transcript cluster 

(Supplementary Fig. 3D-E). Sequence alignment around TSSs revealed an initiator motif across all 

promoters, while the TATA box was positionally constrained upstream of sharp promoters (Fig. 3G), as 

previously observed11,12. We analyzed chromatin accessibility of HCC promoters across TCGA ATAC-
seq peaks7 and expectedly showed the highest overlap with HCC (Fig. 3H). Majority of reference and 

alternative CGI promoters were uniformly accessible across cancers while chromatin accessibility of 

nonCGI promoters varied across tumor types (Fig. 3H). Thus, CG-rich reference promoters have 

ubiquitous expression while CG-poor alternative promoters have tissue-specific expression. ENCODE 

transcription factor ChIP-seq peaks were significantly higher among reference promoters 

(Supplementary Fig. 3F). De novo analysis of transcription factors revealed that reference and 

alternative nonCGI promoters were enriched for liver-specific transcription factors (Supplementary 
Table 8) such as hepatocyte nuclear factor 1A (HNF1A) and HNF4B (Fig. 3I), which is consistent with 

previously observed tissue-specific transcription factor enrichment among nonCGI promoters34. 

Notably, the transcription factor NFATC2 was enriched only on nonCGI alternative promoters. Recently, 

hepatic NFAT signaling was reported to regulate inflammatory cytokine expression in cholestasis35. 

Lastly, RNA polymerase II (Pol2) was enriched at similar levels in both SP and MP genes, but both 

initiation (Pol2-Ser5) and elongation (Pol2-Ser2) by Pol2 were higher among MP genes (Fig. 2J). These 
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data were validated by GRO-seq (Supplementary Fig. 3G). Thus, alternative promoters have distinct 

regulatory architecture characterized by low CG content, sharp promoter shape and enriched for tissue-

specific transcription factors. 

 
 
Figure 3. Promoter architecture, sequence composition and motifs of reference and alternative 
promoters. (A-B) A UCSC browser screenshot of GNAS (A) and ERBB2 (B) genes along with CpG 
islands (CGI), CAGE-seq and H3K4me3 tracks. The reference and alternative promoters of GNAS have 
a shared CGI. The reference and alternative promoters of ERBB2 have distinct nonoverlapping CGIs. 
(C) Barplot shows the fraction of expressed reference and alternative promoters that overlapped with 
CGIs. CGIs shared by reference and alternative promoters are highlighted in green. SP and MP denote 
single-promoter and multi-promoter genes, respectively. (D) Barplot shows the fraction of annotated 
and novel alternative promoters overlapping with CGIs. (E) Boxplot shows the distribution of promoter 
width. (F) Barplot shows alternative promoters have a higher proportion of sharp promoter shape 
relative to reference promoters. (G) Different sequence motifs around TSSs of sharp and broad 
promoters both for reference and alternative promoters. (H) Barplot shows the fraction of HCC 
promoters that overlapped with TCGA pan-cancer ATAC-seq peaks. Promoters were classified into two 
groups based on their overlap with CGIs. (I) Heatmap shows transcription factor motifs enriched across 
reference and alternative promoters as well as their overlap with CGIs. (J) The average coverage of 
RNA polymerase II (Pol2), Pol2-Ser5 (initiation of Pol2) and Pol2-Ser2 (elongation by Pol2) in HepG2 
cells across the gene body of SP and MP genes. 
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Alternative promoters have distinct histone modifications and nucleosome positioning  
Having established that most alternative promoters are CG-poor, we sought to understand whether this 

intrinsic sequence feature alters its chromatin architecture with respect to promoter and intragenic CGIs. 

We aligned H3K4me1, H3K4me3, H3K27ac and H3K27me3 modifications along reference and 
alternative promoters and observed different patterns of H3K4me1 and H3K4me3 on HCC patients6 

(Fig. 4A) and HepG2 cells (Fig. 4B). The CGI promoters have divergent H3K4me3 marks around the 

nucleosome-depleted region (NDR) at TSSs and flanked by divergent H3K4me1. NonCGI promoters 

have low levels of H3K4me3 asymmetrically deposited downstream of TSSs, while H3K4me1 marks 

were non-divergent and enriched at TSSs. This revealed that as the width of H3K4me3 peaks in CG-

poor promoters become narrow, the distance between divergent H3K4me1 peaks become shorter and 

appear continuous. Further, this was strengthened from the CGI viewpoint, as H3K4me3 marks were 

enriched throughout CGIs and abruptly drop at the end of the CGI (Fig. 4C). In contrast, H3K4me1 
peaks were depleted at the CGI body and enriched at their boundaries36-38. This pattern is also 

conserved in enhancers overlapping CGIs (Supplementary Fig. 4A), but different in nonCGI enhancers 

(Supplementary Fig. 4B). This reinforces that the positional enrichment of H3K4me1 and H3K4me3 is 

linked to CG-dinucleotides and depletion of H3K4me3 on enhancers is due to majority of enhancers 

being CG-poor. On the other hand, intragenic CGIs lacked H3K4me3 and H3K27ac modifications (Fig. 

4C), thus explaining the absence of transcription. Notably, divergent H3K27ac peaks were enriched on 

both CG-rich and CG-poor promoters, while they lacked H3K27me3 as expected in active genes (Fig. 

4A-B). Further, CGI promoters were enriched for H2A.Z, have a well-defined NDR, and phased +1 
downstream the nucleosome, whereas nonCGI promotes have undefined NDR (Fig. 4D). In case of 

alternative CGI promoters, the gene body histone (H3K79me2, H3K36me3 and H4K20me1) marks 

presented NDR, while histones were continuous in nonCGI alternative promoters (Supplementary Fig. 

4C). As genomic CG dinucleotides influence H3K4me1, H3K4me3, H2A.Z and NDR around TSSs, and 

as alternative promoters are depleted for CG dinucleotides, their chromatin architecture becomes 

distinct to that of reference promoters. 
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Figure 4. The landscape of histone modifications around reference and alternative promoters. (A-B) 
Line plots show the average histone modification levels of four patients with HCC around reference and 
alternative promoters. Promoters are classified into three groups based on their overlap with CpG 
islands (CGIs). CGIs that overlap reference and alternative promoters are classified as shared CGI. 
Heatmaps show the level of histone modifications for each promoter across shared CGI, unique CGI 
and nonCGI groups. Representation of data in HepG2 (B). (C) A schematic representation of reference 
and alternative promoters overlapping CGIs along with an intragenic CGI in the gene body. Line plots 
on the bottom show average coverage of histone marks along promoter CGIs (left) and intragenic CGIs 
(right). (D) Line plots and heatmaps show MNase and H2A.Z levels across reference and alternative 
promoters on HepG2 cells.  
 
 
Dynamic DNA (de)methylation landscapes around alternative promoters 
We sought to understand whether DNA methylation facilitates transcription of alternative promoters in 

CpG-poor regions. The CG dinucleotides are methylated in CpG-poor regions, while CGIs remained 

unmethylated regardless of the transcriptional state in normal cells39 and aberrantly hypermethylated in 

cancer2,40. It is known that H2A.Z marks are mutually antagonistic with DNA methylation41. Therefore, 

as H2A.Z is enriched on CGI promoters (Fig. 4D), these are likewise expected to show a reduced 

methylation level. Accordingly, reference and alternative promoters overlapping CGIs have low 
methylation levels at TSSs compared to nonCGI promoters (Fig. 5A). This observation was validated 

using reduced representation bisulphite sequencing (RRBS) of HepG2 cells (Supplementary Fig. 5A). 

We next analyzed CG probes (+/- 500 bases around TSSs) and identified hundreds of differentially 

hypo/hypermethylated promoters (Fig. 5A-B), which significantly overlapped with differentially 

expressed promoters (Supplementary Fig. 5B). Compared to CGI promoters of expressed genes, 

aberrant CGI hypermethylation was prevalent among CGI promoters of unexpressed genes (Fig. 5B), 

suggesting a shift in regulation from H3K27me3 to DNA methylation-based repression42. Within CGIs, 

genomic regions with higher CG density gained methylation, while CGs in non-CGI promoters (in 
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regions with low CG density) lost methylation (Supplementary Fig. 5C). This demonstrates that DNA 

methylation levels are influenced by the underlying genomic CG dinucleotides at the promoter level. 

 

 
Figure 5. CG dinucleotides influence DNA methylation landscapes differently at reference and 

alternative promoters. (A) Mean methylation levels (β values, top) across the TCGA-LIHC cohort around 

TSSs of multi-promoter (MP) reference and alternative promoters. Promoters were grouped based on 

their overlap with CpG islands (CGI). The scatter plot (bottom) shows differentially hypermethylated 
(brown) and hypomethylated (black) CG probes located 500 bases around TSSs. (B) Same as in A, 

but for unexpressed genes. (C-D) Mean methylation levels across TCGA tumors and tumor-adjacent 

tissues along gene bodies of SP and MP genes (C) and up/downregulated genes. (F) A UCSC browser 

screenshot showing promoter and intragenic CGIs as well as CAGE tags for the SKI gene. Zoomed 

view (top) show the average methylation level of promoter CGIs, intragenic CGIs, and their flanking 

regions. CGIs of varying lengths are scaled between start and end. Zoomed view (bottom) shows the 
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average demethylation (5hmC) levels. (E) Coverage of DNMT3B binding on promoter CGIs and 

intragenic CGIs across human ES cells. (F) Coverage of TET1 binding on promoter and intragenic CGIs 

across human ES cells. 

 
Gene bodies are known to have high levels of DNA methylation20,43. However, it is unclear in what way 

the intragenic CG density influences DNA methylation in tumors that preferentially facilitates 

transcription in low CG regions. Intragenic regions have high methylation levels across all promoters, 

but globally this was decreased in HCC compared to the tumor-adjacent tissues (Fig. 5C). Decreased 

intragenic methylation was more evident among downregulated promoters (Fig. 5D) and most notably 

among genes without intragenic CGIs (Supplementary Fig. 5D), suggesting that the local CG density 

influences intragenic (de)methylation in tumors. In fact, intragenic CGIs have high methylation, which 

is opposite to promoter CGIs in HCC patients (Fig. 5E) and in HepG2 cells (Supplementary Fig. 5E). 
Compared to CG-poor flanking regions, the methylation level of intragenic CGIs remained globally 

unchanged in HCC tumors (Fig. 5F), which is due to high levels of bound DNMT3B (Fig. 5F). Intragenic 

CGIs have low levels of DNA demethylase (5hmC  levels) activity (Fig. 5E) measured by TET-assisted 

reduced representation bisulphite sequencing (TAB-RRBS)6, which is consistent with low levels of 

TET1 binding (Fig. 5G). Thus, the lack of active demethylation on intragenic CGIs can explain its 

sustained high level of methylation to maintain the repressive state, resulting in lack of activation of 

alternative promoters from intragenic CGIs (Fig. 4D). In contrast, alternative promoters with CG-poor 

regions are sensitive to demethylation in tumors, which in turn may facilitate an open chromatin 
structure and transcription initiation. 

 
Dysregulation of SETD2, H3K36me3 and DNA methylation facilitates pervasive open chromatin 
and subsequent Pol2 binding 
The methyltransferase SETD2 deposits H3K36me344 after Pol2 passage45, which in turn recruits 

DNMT3B21 to maintain a repressive chromatin state46. Thus, we reasoned that dysregulation of SETD2 

may alter the repressive chromatin state and facilitates alternative transcription. Old yeast cells have 
decreased H3K36me3 levels and increased intragenic transcripts47, while DNA methylation decreases 

with age in humans48. HCC tumors showed reduced DNA methylation within gene bodies (Fig. 5C). 

H3K36me3-modified nucleosomes were enriched along gene bodies and globally reduced by SETD2 

knockdown (Fig. 6A). Within gene bodies, CG-rich regions have higher H3K36me3 marks also in 

SETD2 knockdown (Fig. 6B). In HepG2, we observed lower H3K36me3 marks compared to in normal 

hepatocytes (HepaRG) (Supplementary Fig. 6A, see methods). As H3K36me3 recruits DNMT3B21, the 

gene body coverage of H3K36me3 (Supplementary Fig. 6B) coincides with DNMT3B coverage (Fig. 

6C). Using CRISPR epitope tagging (through insertion) of DNMT3B49 revealed DNMT3B signals 
decreased along the gene body (Supplementary Fig. 5C) and showed a pattern of repressive epigenetic 

marks along the gene body.  
 

We reasoned that if SETD2 is deregulated in patients, this would lower H3K36me3 levels, which in turn 

would lower DNMT3B binding and thus, decrease in DNA methylation across gene bodies (Fig. 5D). 
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To support our hypothesis, we asked whether SETD2 mutations accelerated DNA demethylation in 

HCC patients. Compared to SETD2 wildtype tumors (n=352), SETD2 mutated tumors (n=16) were 

significantly hypomethylated (Fig. 6D and Supplementary Fig. 6D) which were enriched in gene bodies 

(Fig. 6E) compared to promoters. Notably, SETD2-mutants have a high level of intronic reads (Fig. 6F), 
providing evidence for transcribed reads from introns. Predominant hypomethylation observed across 

gene bodies in tumors was more prevalent in SETD2-mutants, as SETD2 mutations accelerate the 

epigenetic control, compromising the maintenance of DNA methylation, and result in pervasive 

activation of alternative promoters. Thus, the interplay of DNA methylation, chromatin accessibility and 

histone modification in cancer preferentially facilitates alternative transcription in CG-poor regions (Fig. 

6G). 
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Figure 6. Regulation of SETD2. (A-B) The average coverage of H3K36me3 along gene body and 
flanking regions of single promoter (SP) and multi-promoter (MP) genes in SETD2-wt and SETD2-kd in 
HepG2 cells. (C) The average coverage of H3K36me3 along intragenic CGIs and flanking regions in 
SETD2-wt (A) and SETD2-kd (B) in HepG2 cells. (D) Volcano plot shows hypermethylated and 
hypomethylated CG probes between SETD2-mutant and SETD2-wt tumors from TCGA-LIHC. (E) 
Boxplot shows average DNA methylation levels of CG probes around reference and alternative 
promoters and intragenic regions. (F) Volcano plot shows fold-change of intronic reads in SETD2-
mutant versus SETD2-wt. (G) Schematic diagram to show transcription of alternative promoters in HCC. 
The chromatin structure of intragenic CG-rich and CG-poor regions have different distribution of 5mC, 
5hmC, H3K36me3 and DNMT3B, leading to pervasive initiation of the alternative promoter from CG-
poor regions in HCCs. 
 
Discussion 
We have comprehensively annotated 4083 (3052 annotated and 1031 novel) alternative promoters in 

HCC using high-resolution CAGE-seq, providing a framework for functional studies. These alternative 

promoters were supported by multiple lines of evidence from orthogonal sequencing assays across 

different HCC patient cohorts and in HepG2 cells. Currently, there is no consensus on which promoter 

is assigned as reference or alternative, though a highly expressed promoter is often annotated as the 

reference promoter16,19, which is what we used in our analysis. In addition, we ensured that the 

reference promoter was expressed in normal livers. Around 40% of alternative promoters were 
unexpressed in normal liver and hence will remain as alternative promoters. Thus, only a small fraction 

of alternative promoters that have comparable expression levels like the reference promoters can vary 

as either reference or alternative promoters across cohorts.  

 

We found that the CG dinucleotide density is the major distinguishing feature between reference (has 

a high CG density) and alternative (has a low CG density) promoters. Human promoters are mostly 

CG-rich32 and have distinct promoter architecture and regulation11 compared to tissue-specific CG-poor 

promoters17, which we validated pan-cancer. This highlighted the unexpected presence of two distinct 
regulatory promoter architectures within a gene, showing it is widespread in cancer. Most alternative 

promoters are CG-poor and detected in lower proportion across other tumor types, indicating they drive 

tissue-specific or cell type-specific transcription. Their tissue-specific expression was further supported 

by the enrichment of liver-specific transcription factors (for example HNF4A). While reference promoters 

are generally ubiquitous and represent the predominant degree of transcription, it is important to 

understand the cell type transcriptional contribution that drive tissue-specific alternative promoters. This 

requires implementation of single cell capturing the 5’ends50, while single cell methods currently in use 

are enriched towards genes at the 3’-ends and therefore, insensitive for promoter detection. Single cell 
capturing 5’-ends in mouse neurons50 have revealed many alternative promoters that were detected in 

bulk tissues, which suggest that most alternative promoters might be co-expressed in the same cell.  

 

The epigenetic (histone modifications and DNA methylation) landscapes of reference and alternative 

promoters are dramatically different, which is primarily due to their differences in CG dinucleotide 

frequency. The H3K4me3 marks are enriched on CGIs51, while we showed that intragenic CGIs lack 

H3K4me3 marks due to retention of high DNA methylation in the tumor. It is known that aged cells (and 
cancer cells) generally loose DNA methylation from gene bodies48. We described a hierarchy that 
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explained preferential loss or retention of intragenic DNA methylation dependent upon the flanking CG 

dinucleotide density where CG-rich regions retain high tumor DNA methylation. This preferential 

retention of intragenic DNA methylation is regulated by SETD2, H3K36me3 and DNMT3B as they 

preferentially bind to CG-rich regions. This leads intragenic CG-rich regions with more repressive 
chromatin marks and that would require higher levels of DNA demethylating enzyme to make their 

chromatin accessible. Instead, these intragenic CG-rich regions have low levels of TET1 binding and 

thus, have the reduced active demethylation. Thus, intragenic CGIs are less favorable to act as 

alternative promoters in cancer, though they can act as alternative promoter during embryonic 

development and cell differentiation33. In contrary, intragenic CG-poor regions have lower levels of 

repressive chromatin state and higher levels of TET1 binding, which collectively makes their DNA 

sensitive to active demethylation and accessible chromatin to experience pervasive Pol2 binding52 that 

upon availability of a tissue-specific transcription factor will efficiently initiate and elongate these Pol2. 
We propose that other tumors have similar mechanism in activating alternative promoters, while their 

preferred location will be dependent upon DNA demethylated sites that are enriched for tissue-specific 

transcription factors of the specific tumor tissue.  

 

The general view on why some genes have multiple promoters is that a cell needs more expression of 

specific genes and transcription from multiple promoters may add flexibility manifested through different 

molecular mechanisms in regulating gene expression53. This view is mostly based on our understanding 

of alternative promoters’ usage in normal cells. However, in cancer, alternative promoters are 
pervasively activated, raising an interesting question as to whether it is advantageous for tumor cells. 

We propose different scenarios where alternative promoters offer functional advantage needed for the 

tumor. Firstly, alternative promoters can downregulate reference promoters through transcriptional 

interference, which often coincide with important genes including hepatocyte markers (Supplementary 

Fig. 2F). Accelerated loss of expression levels of hepatocytes markers help hepatic cells to lose their 

cellular identify and gain new cellular identify as the malignant tumor. To develop the cellular identity, 

tumor cells need to utilize signaling pathways differently in a globally changed cancer background 
where the alternative promoters provide better adaptation for the cancer regulatory systems driven by 

a distinct promoter architecture. As such, alternative promoters detected only in tumors were enriched 

for genes in signaling pathways (Fig. 2C), which globally did not downregulate reference promoters 

(Fig. S2F). This suggests that signaling pathway genes co-opt both promoters, where tumor cells utilize 

signaling pathways differently via alternative promoter usage (for example in CDKN2A (Supplementary 

Fig. 1H) and ERBB2 (Supplementary Fig. 1I)). On the clinical perspective, MP genes are associated 

with shorter survival time and alternative promoters were better in predicting overall survival. This opens 

an avenue to elucidate improved diagnostic biomarkers for early onset of cancer as many alternative 
promoters are expressed in a tumor-specific manner. Moreover, signaling pathways genes are often 

potential targets in designing drug(s), hence we should focus on target tumor-specific alternative 

transcripts rather than the reference transcript. While our analyses suggest an important role of 

alternative promoters in liver cancer biology, their biological significance in the full spectrum of liver 

cancer remains unexplored. The selective use of alternative promoters often goes uncharacterized in 
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gene expression analyses in standard RNA-seq analyses. We strongly encourage scientists in the liver 

community to carefully inspect whether their genes of interest are under alternative promoter regulation 

and whether tumor phenotype of a gene is primarily driven by alternative promoter.  

 
Methods 
Mapping of HCC CAGE-seq reads to define CAGE transcription start sites (CTSSs) 
Raw CAGE-seq reads were downloaded from a previous study8. The CAGE-seq reads were mapped 

to the human genome (hg19) with bowtie254 by allowing up to two mismatches. On average, around 

80-90% of sequenced reads were mapped, resulting in an average of 15-16 million mapped reads 

(Supplementary Table 1). The 5’ end of mapped CAGE reads provide transcription start sites (TSSs) 

at single nucleotide resolution and is termed as CAGE transcription start sites (CTSSs). Low quality 

and multi mapping CTSSs with MAPQ score below 20 were filtered using SAMtools55. The CTSSs that 
overlapped with 421 blacklisted regions from ENCODE56 were excluded. The CAGE protocol often adds 

“G” at the 5’ end of capped TSS11, which generally remain unmapped and shift transcription start site 

by 1 nucleotide. We used SAMtools and detected mapped reads with unmapped “G” at the first base. 

We then corrected such CTSSs by shifting the TSS position by 1 nucleotide as defined before12. 

 

Transcript clusters (TCs) and generating consensus TCs across cohort 
To define transcript clusters (TCs) for each patient, we clustered CTSSs in same strand that overlapped 

within 20 nucleotides12. The CTSSs with the highest expression level within TC was defined as the 
dominant CTSS. All CTSSs within the TC were added that defined the expression level of TC. We then 

computed the interquartile width of the TCs by trimming the edges of the TCS in the range of 0.1 to 0.9 

percentile of the TC. To define the consensus TCs across the cohort, we clustered TCs from all patients 

and computed their expression levels. To ensure that consensus TCs have robust expression levels, 

we retained TCs only of their expression was higher than 1TPM in at least 15 samples (15% of cohort) 

and had a minimum of 3 TPM at least in 1 sample. 

    
Assignment of reference and alternative promoters among annotated transcripts 
A gene with a single promoter was classified as a single promoter gene and its promoter is assigned 

the reference (alias as primary, major, main) promoter. Genes with two or more promoters were 

classified as multi-promoter genes. The promoter with highest mean expression level at the population 

level that is also expressed in normal liver tissue was assigned as reference promoter. The remaining 

promoters of that gene was assigned as an alternative (alias minor) promoters of that gene. The terms 

reference TSS and alternative TSS have been used ambiguously. 
 
Annotation of novel alternative promoters 
To annotate novel alternative promoters, we implemented a pipeline (Fig. 1C) that systematically 

filtered intragenic TCs that are unlikely to represent true promoters. We filtered CAGE TCs overlapping 

small RNAs, drosha processing site of pre-miRNAs23 and 5’ ends capping of snoRNAs17. Thousands 

of intragenic CAGE TCs are detected within exons which represent post-transcriptional processing and 
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characterized by GG-initiation11,12. We filtered intragenic CAGE TCs with GG-initiation and those 

overlapping with coding exons. We filtered intragenic CAGE TCs that overlapped with annotated 

enhancers24,57. We also annotated novel enhancers from CAGE-seq by computing directionality score 

for each TCs as described previously24. Briefly, directionality score (DS) for intragenic TCs were 
calculated by measuring expression level of TCs in forward and reverse strand, where DS=(Forward-

Reverse)/ (Forward+Reverse). CAGE TCs with directionality score between 0.5 and -0.5 were classified 

as enhancer RNAs. On the remaining TCs, we only retained those that have YR-initiation or YC-

initiation initiation motif15. The remaining 1077 TCs represent high-confidence true promoter tags that 

act as alternative TSSs to annotated genes. We clustered proximal TCs with 300 bases thus resulting 

in 1031 novel alternative TSSs. To provide evidence of RNA transcripts for these 1031 alternative TSSs, 

we analyzed transcript models from RNA-seq and expressed sequence tags from UCSC database58. 

 

Mapping and visualization of histone ChIP-seq of HCC patients and HepG2 cells 
We downloaded the raw sequence reads of H3K4me1, H3K4me3, H3K27ac and H3K27me3 ChIP-seq 

data for four HCC patients6. We downloaded raw sequence reads of H3K36me3 marks on SETD2 wild 
type and SETD2 knockdown conditions on HepG2 cells59. The raw sequence reads were mapped using 
bowtie254 and excluded multi mapping reads. We used deepTools60 to generate coverage tracks which 
are normalized as RPKM.   
 
Analysis of DNA methylation of HCC patients and HepG2 cells 
The Illumina 450K DNA methylation data from TCGA HCC cohort was downloaded from UCSC Xena 
hub61. The methylation levels were computed as beta value in the range of 0-1. The reduced 
representation bisulphite sequencing (RRBS) of HepG2 cells were downloaded from ENCODE. The 
TET-assisted reduced representation bisulphite sequencing (TAB-RRBS) of HCC patients were 
downloaded as beta value6. For each CG probes, we computed the average methylation beta value 
across the cohort, separately for tumor and tumor-adjacent tissues. To identify differentially methylated 
CG probes around promoter regions, we performed t test on individual methylation levels between 
tumor and tumor adjacent tissues. The p-value were adjusted for multiple correction and p-value less 
than 0.05 was defined as significantly methylated CD probe. For visualization of average methylation 
levels around TSSs and CGIs, the mean beta value was converted into bigwig tracks and plotted 
average beta value using deepTools60. 
 
Enrichment of transcription factor and de-novo motif analysis 
We downloaded transcription factors (TFs) ChIP-seq peaks for HepG2 from ENCODE62. To calculate 
the density of TFs, we intersected TFs peaks with promoter regions by using bedtools63. Different TFs 
overlapping promoters were summed to determine the total number of TFs per promoter.  

To identify overrepresented transcription factors, we performed motif analyses using HOMER64. 
We used 500 bases around transcription start sites as the search region to detect motifs. The 

background regions were controlled for nucleotide composition and selected by default by HOMER. We 
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first identified motifs using the following parameter “findMotifsGenome.pl -chopify -len 8,10,12 -S 25 -
size -500,500”. To compare these identified motifs with known motifs, we reran prediction using the 
following command “findMotifsGenome.pl -chopify -len 8,10,12 -S 25 -mcheck -mknown -size -
500,500”.  For visualization of motifs, we computed the matrix of p-value across promoter types and 
plotted them as heatmaps.   

 
Signature genes from the literatures 
Curated signature genes for hepatocytes25, Hoshida signature genes26, sorafenib resistance signature28 
and GSEA cancer hallmark genes27 were downloaded from literatures. We interested these gene 
signatures with annotated single-promoter (SP) and multi-promoter (MP) genes. We computed Fisher’s 
exact test to determine the statistical significance of overlap between signatures genes with single and 
multi-promoter genes.     

 
Patients’ survival analysis 
To compute the overall survival of patients associated with expression level for each transcript, we 
downloaded TCGA LIHC clinical data2,65 and transcript expression levels from UCSC Xena hub61. Each 
transcript was sorted based on their expression levels and classified into high-expression and low-
expression groups. We associated the expression levels of these transcripts from two (high-expression 
and low-expression) groups with survival status of patients and performed Kaplan-Meier analyses. For 
multi-promoter genes, we performed Kaplan-Meier analysis on reference transcript and on alternative 
transcript.  
 
Differential expression at promoter and gene level 
Differentially expressed genes and promoters were identified using DE-seq229. The significance cut-off 

was defined at adjusted p-value of 0.05 and fold-change of 2. For gene level analysis, we summed the 
expression levels of reference and alternatives promoter for each multi-promoter genes. 

 

Analysis of N-terminus of protein and UniProt domains 
To compare whether alternative promoter altered the N-terminus of protein, we analyzed only those 

alternative transcripts that have assigned UniProt protein domains, and hence excluded noncoding 

transcripts and novel alternative promoters. We compared the N-terminus of the reference and 

alternative promoters, and if they had different start codon, they were assigned as different N-terminus 
protein.   

 

Data availability 
All sequencing data analyzed in this study are publicly available from previous studies. The results are 

in part supported by data generated by the TCGA Research Network: https://www.cancer.gov/tcga, 

FANTOM5, ENCODE and NIH Roadmap Epigenome. Data accession codes are provided. All 

processed data are provided as supplementary table and UCSC data tracks.   
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Supplementary Figure 1. Annotation of alternative promoters in patients with hepatocellular carcinoma (HCC). (A) A schematic 
workflow that describes the clustering of proximal CAGE transcription start sites (CTSSs) into transcript clusters (TCs). The height 
of CTSSs determines the frequency of mapped reads and is used to quantify the expression of CTSS in tags per million (TPM). 
The expression of TCs is determined by the sum of all overlapping CTSSs. The interquartile widths of TCs are determined by 0.1 
to 0.9 fraction of expression levels. (B) Barplots showing the number of alternative promoters for each multi-promoter genes. (C) 
Barplot showing the distance between reference and alternative promoters. (D-E) A UCSC browser screenshot of CDKN2A (D) 
and ERBB2 (E) genes along with tracks of uniprot domains and CAGE-seq. Uniprot domains show alternative promoters miss a 
segment of protein domains. (F) Enriched gene ontology terms associated with single-promoter and multi-promoter genes. (G) 
Individual examples of Kaplan-Meier survival analysis for expression of reference and alternative promoters. (H) Classification of 
survival-associated genes based on time to death (long/short survival time) for reference and alternative promoters. Alternative 
promoters are significantly (P= 2.8E-08; Fisher’s exact test) associated with short survival. (I) Overlap of sorafenib resistance 
marker-genes with single and multi-promoter genes revealed an enrichment (P= 4.3E-05; Fisher’s exact test) of marker-genes 
among multi-promoter genes. 
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Supplementary Figure 3. Sequence and motif enrichment of reference and alternative promoters. (A) A 
UCSC browser screenshot of COMT gene along with tracks of CpG islands (CGI), CAGE-seq and 
H3K4me3. (B) Scatter plot showing the observed/expected (O/E) ratio of CG dinucleotides around refer-
ence and alternative promoters. (C) A distribution of CGI lengths at overlapping promoters. CGIs shared by 
reference and alternative promoters were significantly longer. (D-E) A UCSC browser shot of CTNNB1 and 
EPHX2 genes along with tracks of CAGE tags, transcript clusters and CGI. The zoomed view shows the 
width of transcript clusters and sequences around dominant transcription start site (TSS). The CTTNB1 
gene has sharp promoter with only one dominant TSS and TATA box motif in upstream region. The EPHX2 
gene has broad promoter with multiple TSSs and lack TATA box motif in upstream region. (F) Frequency of 
ENCODE transcription factors peaks on reference and alternative promoters of single promoter (SP) and 
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for genes in forward and reverse strand.
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Supplementary Figure 4. Histone modifications around CGI enhancers, nonCGI enhancers along with reference and 
alternative promoters. (A) Average coverage and positional enrichment of four histone modifications (H3K4me1, 
H3K4me3, H3K27ac, H3K27me3) on HepG2 enhancers overlapping CGIs. Left panel shows histone coverage along 
the start and end of CGIs overlapping enhancers. Right panel shows histone coverage along the start and end of 
enhancers within CGIs. (B) Average coverage and positional enrichment of four histone modifications (H3K4me1, 
H3K4me3, H3K27ac, H3K27me3) along nonCGI enhancers. (C) Average coverage of histones (H4K20me1, 
H3K26me3 and H3K79me2) along reference and alternative promoters. 
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Supplementary Figure 5. The DNA methylation landscape around reference and alternative promoters. (A) Line plots 
show the methylation level (β values) obtained from reduced representation bisulfite sequencing (RRBS) on HepG2 cells 
across reference and alternative promoters, which are grouped based on their overlap with CpG islands (CGIs). (B) Over-
lap of differentially expressed reference and alternative promoters with differentially methylated (DM) CG probes in a 500 
base pair window around TSSs. (C) DNA methylation profiles across TCGA-LIHC among unexpressed genes classified 
into two groups based on their overlap with CGIs. Barplots (top) show the frequency of CG dinucleotides in a 100-nucleo-
tide window for each CG probe in promoter regions of unexpressed genes. CG probes are ordered based on increasing 
number of CG dinucleotides in 100 nucleotide windows and divided into three quartiles (q1, q2, q3). The scatter plots 
(bottom) show differentially hypermethylated (brown) and hypomethylated (black) CG probes in 500 bases around TSSs. 
(D) Mean methylation level of promoter and intragenic CGIs across HepG2 cells. (E) Mean methylation level along 
promoter CGIs and intragenic GIs on HepG2 cells.
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Supplementary Figure 6. Genomic coverage of H3K36me3, DNMT3B and RNA Pol2 across the gene body. (A) The 
average coverage of H3K36me3 along the gene body and flanking regions in HepG2 cells and HepaRG cells (normal 
hepatocytes). (B) The average coverage of DNMT3B across the gene body in human embryonic stem cells (hESC). 
(C) The average coverage of DNMT3B across the gene body in CRISPR epitope tagging (through insertion) of 
DNMT3B in HepG2 cells. (D) The density plot shows the distribution of mean methylation levels (β values) of HCC 
patients (n=352) with SETD2 mutations and HCC patients (n=16) with wildtype SETD2.  
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