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Abstract 

Natural scenes statistics have been studied extensively using collections of natural images and sound 
recordings. These studies have yielded important insights about how the brain might exploit regularities and 
redundancies in visual and auditory stimuli. In contrast, natural scenes for somatosensation have remained 
largely unexplored. Here we use three-dimensional scans of natural and human-made objects to quantify natural 
scene statistics at the scale of the human fingertip. Using measurements of distance, slope, and curvature from 
the object surfaces, we show that the first order statistics follow similar trends as have been observed for images 
of natural and human-made environments. In addition, independent component analysis of curvature 
measurements reveals Gabor-like basis vectors similar to those found in natural images. A simple neural model 
using these filters showed responses that accurately capture the statistics of responses in primate primary 
somatosensory cortex. 
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1. Introduction 
 
An animal’s only access to the environment is through the signals provided by the activation of its sensors as 
they interact with the external world. These sensory signals typically represent compressed and nonlinear 
transformations of physical quantities in the environment. Nonetheless, nervous systems can efficiently and 
reliably infer relevant information about the original environmental variables from the sensory input signals they 
evoke. It has been hypothesized that these successful inferences are achieved by exploiting regularities and 
redundancies present both in the environment and in the resulting sensory input signals [1, 2].  
 
Over the last five decades, a large body of research on the statistics of visual and auditory natural scenes has 
generated strong evidence in support of this hypothesis [3-21]. Statistical models that predict the coding schemes 
and representations characteristic of cortical neurons (basis functions, basis vectors, receptive fields) have 
received considerable attention, and different algorithms to fit the models to sensory data have been proposed 
[4, 5, 14, 22-27]. The underlying assumption of these models is that sensory systems process incoming 
information by simultaneously activating a small subset of neurons while the majority remain silent. Some 
modeling approaches directly impose this constraint by maximizing the sparseness of the optimized 
representations (sparse coding) [22], while others indirectly achieve similar results by maximizing the 
independence of the predicted basis functions (independent component analysis) [4, 28]. 
 
The data used to train these models typically originate from a collection of natural scenes in the form of visual 
images or sound recordings; these represent the ensemble of inputs that the sensory system may encounter. 
For images, a large number of small regions within these images is then used to mimic receptor-like sampling of 
the scene. The basis functions that emerge from the fitted model thus represent the features of the sensory 
signal encoded by individual cortical neurons; these have been found to be very similar to cortical receptive fields 
recorded experimentally [4, 22, 28]. The features thus selected can give insight into the neural tuning that gives 
rise to an efficient code. In vision, these features resemble edge detectors and Gabor filters [22, 26, 28]. 
 
In contrast to vision and audition, the natural scene statistics of somatosensation have remained largely 
unexplored [19-21, 29]. Tactile sensors are unique in that the signals they acquire result from direct physical 
contact with the environment: it is impossible to “feel” an object without touching it. The interactive nature of 
touch makes tactile environmental statistics extremely challenging to quantify, as evidenced by the small number 
of studies that have attempted to measure these parameters in vivo [21] or in silico [19, 20, 30]. To date, 
psychophysical, neurophysiological, and self-report experiments have primarily focused on the physical and 
qualitative dimensions of tactile perception in the environment (e.g., roughness, smoothness, compliance, 
curvature, etc.) [31-38]. Despite substantial groundwork from these studies, the environmental statistics of 
somatosensation are still poorly documented [29].  
 
The present study aims to shed light on the environmental statistics of the natural tactile scene by quantifying 
geometrical properties of the natural environment in three-dimensional (3D) space. We focus specifically on 
three different Cartesian-based metrics: local distance, slope, and curvature. We begin by quantifying the 
statistics of each of these metrics at the level of individual objects as well as the entire population of objects, and 
then use independent component analysis (ICA) in two different ways. First, ICA is used to find the leading 
statistically independent dimensions in local distance measurements, revealing that 95% of the variance in local 
distance data is predominantly accounted for by curvature. Second, ICA is used to estimate the filter 
characteristics of somatosensory cortical neurons. This analysis shows that the ICA basis vectors estimated 
from curvature patches have Gabor-like filter properties and are consistent with orientation sensitivity found in 
neurons in areas 1 and 3b of primary somatosensory cortex (S1).  
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2. Results 
We collected 3D representations of 96 natural objects such as rocks, leaves, bark, fruits, vegetables, etc., as 
well as 41 human-made objects including scissors, knifes, purses, mugs, etc. (Fig. 1ab). To quantify the local 
shape of these data, we randomly sampled 100-150 circular surface patches with a radius of 6 mm, similar to 
the size of a human fingertip [39] (Fig. 1c, left). This procedure resulted in a total of 12,309 and 5,788 patches 
for natural and human-made objects, respectively. For each surface patch we computed maps of distance, slope, 
and curvature; details for calculating these metrics are found in Methods. Briefly, the distance of the surface 
points was computed with respect to a reference plane (Fig. 1c, middle), yielding a circular distance map 𝑷𝑷(𝐷𝐷) 
with a total of 448 points for each patch. From 𝑷𝑷(𝐷𝐷) we computed a 421-dimensional slope map 𝑷𝑷(𝑆𝑆) using first-
order forward difference, and a 384-dimensional curvature map 𝑷𝑷(𝐶𝐶) using second-order central difference. 
Examples of 𝑷𝑷(𝐷𝐷), 𝑷𝑷(𝑆𝑆), 𝑷𝑷(𝐶𝐶) for an example patch are shown on the right in Fig. 1c.  
 

 
 
Fig. 1. The 3D datasets include a total of 96 natural objects and 41 human-made objects, cleaned and processed 
following procedures described in Methods. (a) Examples of 3D scanned natural objects, and a histogram of the 
number of objects in each of 15 categories. (b) Examples of 3D scanned human-made objects. (c) To sample 
the 3D data, approximately 100-150 circular surface patches were randomly selected from each object (left). For 
each surface patch, the distance of the surface points was measured with respect to a reference plane (middle). 
From these measurements, a circular distance map 𝑷𝑷(𝐷𝐷) of 448 points was created (right). Using forward and 
central differencing, a 421-dimensional slope map and a 384-dimensional curvature map, 𝑷𝑷(𝑆𝑆) and 𝑷𝑷(𝐶𝐶), were 
computed for each patch (see Methods). 
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2.1. First-order statistics of natural and human-made objects 
We examined the first-order statistics of natural and human-made objects in terms of the local metrics: distance, 
slope, and curvature (𝐷𝐷, 𝑆𝑆, and 𝐶𝐶). Fig. 2a compares the probability distributions of these metrics for two natural 
objects (bark, leaf) and two human-made objects (mug, purse). The distributions were computed from all patches 
for each object. As expected, human-made objects tend to have larger flat and low-curvature regions (e.g., the 
body of the mug); the probability distributions for all three metrics are correspondingly skewed towards zero. At 
the same time, small distinct regions of human-made objects exhibit higher curvature values (e.g., rim and handle 
of the mug) that affect the shape of the corresponding distributions. The effect of the rim and handle of the mug 
is particularly obvious in the distribution of 𝐶𝐶, in which additional modes appear at large positive and negative 
values. In contrast, the distributions for natural objects are clearly unimodal with a smooth decay towards the 
tails, indicating that the measured local metrics are more continuous across the surface than for human-made 
objects.  
 

 
 
Fig. 2. Probability distributions of the three metrics 𝐷𝐷, 𝑆𝑆, and 𝐶𝐶 for both natural and human-made objects. (a) 
Four example objects (two illustrated, not to scale) and their corresponding distributions of 𝐷𝐷 (left), 𝑆𝑆 (middle), 
and 𝐶𝐶 (right). Distributions were computed from the ensemble of patches with 𝑅𝑅 = 6 mm associated with each 
object. Note that the vertical axis is logarithmic. (b) Average probability distribution of 𝐷𝐷 (left), 𝑆𝑆 (middle), and 𝐶𝐶 
(right) across all sampled patches with 𝑅𝑅 = 6 mm for natural (turquoise) and human-made (magenta) objects. 
The black dashed lines show a zero-mean Gaussian distribution of the same variance for comparison. Only the 
positive half of the Gaussian is used for distance 𝐷𝐷. (c) Distributions of kurtosis (left) and entropy (right, measured 
in bits) for the distribution for each object class and each metric.  
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To generalize this analysis, we computed the average probability distributions across all 𝑷𝑷(∙) for each metric 
(Fig. 2b). Both natural and human-made objects result in super-Gaussian distributions, i.e., they have higher 
peaks at zero and heavier tails than a Gaussian distribution with the same mean and variance. Although the 
average distributions for human-made objects smooth over irregularities present in the distributions for individual 
human-made objects, the average distributions for human-made objects remain heavily skewed towards zero 
and are significantly different from the distributions for natural objects distance 𝐷𝐷 (Kolmogorov-Smirnov test: D 
= 0.303, p < 0.001), slope 𝑆𝑆 (Kolmogorov-Smirnov test: D = 0.100, p < 0.001), and curvature 𝐶𝐶 (Kolmogorov-
Smirnov test: D = 0.149, p < 0.001).  
 
Differences between natural and human-made objects can also be quantified in terms of kurtosis: human-made 
objects result in significantly higher kurtosis values than natural objects (Fig 2c, left) in terms of 𝐷𝐷 (Mann-Whitney 
rank test: U = 1029, p < 0.001), 𝑆𝑆 (Mann-Whitney rank test: U = 892, p < 0.001), and 𝐶𝐶 (Mann-Whitney rank test: 
U = 984, p < 0.001). The average distributions of 𝐷𝐷, 𝑆𝑆, and 𝐶𝐶 have kurtosis values of 2.8, 6.1, and 17.9 for natural 
objects, and 4.4, 8.9, and 24.3 for human-made objects, respectively. Kurtosis is related to regularity 
(correlations) in the data and is inversely related to entropy, i.e., high kurtosis values correspond to low entropy, 
shown in the right panel of Fig. 2c. Entropy is significantly lower for human-made objects than for natural objects 
for all three metrics 𝐷𝐷 (Mann-Whitney rank test: U = 508, p < 0.001), 𝑆𝑆 (Mann-Whitney rank test:, U = 791: p < 
0.001), 𝐶𝐶 (Mann-Whitney rank test: U = 696, p < 0.001). From an information-theoretical perspective, this result 
suggests that fewer bits are necessary to encode information about human-made objects than for natural objects 
when the objects are characterized through the chosen metrics 𝐷𝐷, 𝑆𝑆, and 𝐶𝐶. In addition, the right plot in Fig. 2c 
also indicates that entropy decreases with the order of the derivative: 𝐷𝐷 results in higher entropy and 𝐶𝐶 in lower 
entropy across individual objects. This result implies that a metric such as 𝐶𝐶 may provide more regularities that 
could potentially be exploited by a sensory system to efficiently encode information about tactile images present 
in the world.  
 

2.2. ICA analysis for the various metrics  
The first-order statistics of three local metrics that characterize the shape of 𝑅𝑅 = 6mm surface patches: distance, 
slope, and curvature are highly regular and super-Gaussian, congruent with the statistics observed in natural 
images [40, 41]. However, it remains unclear which of these metrics may be the best candidate to provide 
information about the world to a tactile sensory system. To investigate this question, we used an unsupervised 
learning algorithm, Independent Component Analysis (ICA), to identify the fundamental features of natural data 
in terms of distance 𝐷𝐷, the least processed metric that characterizes local shape.  

As described in [42], ICA is a linear model that maps a data vector 𝒙𝒙 consisting of a set of features [𝑥𝑥1, … , 𝑥𝑥𝑛𝑛] to 
a set of components 𝒔𝒔 = [𝑠𝑠1, … , 𝑠𝑠𝑛𝑛] through a square mixing matrix 𝑨𝑨, such that the sensory signal 𝒙𝒙 can be 
linearly reconstructed from the components by 

𝒙𝒙 = 𝑨𝑨𝒔𝒔.   eq. (1) 

Both the mixing matrix 𝑨𝑨 and the components 𝒔𝒔 are unknown. The matrix 𝑨𝑨 is estimated from the statistics of the 
observed data vectors 𝒙𝒙 under the assumptions that 𝑨𝑨 is square, the components 𝒔𝒔 are statistically independent, 
and 𝒙𝒙 can be reconstructed linearly [43]. The independent components 𝒔𝒔 are then obtained by using the matrix 
𝑾𝑾, the inverse of 𝑨𝑨: 

𝒔𝒔 = 𝑾𝑾𝒙𝒙.  eq. (2) 

The columns in 𝑨𝑨 are called basis vectors; each basis vector is associated with one of the components in 𝒔𝒔. The 
rows in 𝑾𝑾 play the roles of filters that act on the data vector 𝒙𝒙 to obtain the corresponding component [28]. The 
matrix 𝑾𝑾 contains the coefficients or weights for each of the features in 𝒙𝒙 to recover each independent 
component in 𝒔𝒔. The set of weights associated with a particular component 𝑠𝑠𝑖𝑖, which correspond to the i-th row 
of 𝑾𝑾, can thus be interpreted as the receptive field for that component [28]. In contrast, the column basis vectors 
in 𝑨𝑨 represent fundamental features that can be linearly combined to compose the observed signal 𝒙𝒙. The 
amplitude of each such feature is determined by the coefficients of the corresponding component of 𝒔𝒔; these 
components are typically sparsely distributed [28]. There are many different ways to implement ICA; we used 
one of the most popular and computationally efficient algorithms, FastICA, proposed by Hyvarinen and Oja [43]. 
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Fig. 3. Basis vectors estimated by ICA for surface patches characterized by distance 𝐷𝐷 to the reference plane. 
(a) Example surface patches (𝑅𝑅 = 6mm) randomly sampled from natural 3D data that show spatial maps of the 
distance 𝐷𝐷. Grey scale is normalized to maximum distance within each patch. (b) The leading 100 basis vectors 
(columns of the mixing matrix 𝑨𝑨) as estimated by ICA from the distance 𝐷𝐷 data. The mean was subtracted from 
each basis vector, and the norm of each basis vector was scaled to 1. The basis vectors are sorted by their 
contribution to reconstruction accuracy as shown in (c). (c) Cumulative reconstruction accuracy of the sorted 
basis vectors. (d) The basis vectors are classified as 1st, 2nd, or 3rd order by convolving each with a simple image: 
a white circle on black background (left). Representative examples selected from the first 113 basis vectors are 
shown in the three boxes. Left box: basis vectors with 1st-order derivative characteristics in detecting the change 
in distance 𝐷𝐷 (slope). Middle box: basis vectors with 2nd-order derivative characteristics in detecting the rate of 
change in distance 𝐷𝐷 (curvature). Right box: basis vectors with 3rd-order derivative characteristics (change in 
curvature). (e) Cumulative count of basis vectors for each category shown in (d). (f) Reconstruction error of the 
basis vectors for each category identified in (d). The basis vectors in each category are sorted by their 
contribution to the reconstruction error. 
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In our scenario, 𝒙𝒙 represents a 448-dimensional vector of distances from a map 𝑷𝑷(𝐷𝐷) sampled from a natural 
object. Examples of 𝑷𝑷(𝐷𝐷) used for fitting the ICA model are shown in Fig. 3a.The FastICA algorithm does not 
sort the estimated basis vectors (columns of 𝑨𝑨), so we used a sorting algorithm proposed by Cheung and Xu 
[44] to order the basis vectors according to their contribution to reconstruction accuracy. The first 100 of the 
sorted basis vectors are shown in Fig. 3b. The cumulative reconstruction accuracy as sorted basis vectors are 
added is shown in Fig. 3c; this plot indicates that the leading 113 basis vectors suffice to achieve a reconstruction 
accuracy of 0.95. Based on this result, we determined the filtering properties of the leading 113 basis vectors by 
convolving each of them with a test image (Fig. 3d, left inset). The convolution output allowed for a categorization 
of the basis vectors into 1st, 2nd, and 3rd-order derivative filters. Examples of each category with the corresponding 
convolved images are shown in Fig. 3d. Note that 1st-order filters, associated with slope, are notably scarce, 
rising slowly in number as basis vectors are added. Within the first 113 basis vectors, only four 1st-order filters 
were present (Fig. 3e). In contrast, 2nd-order filters, associated with curvature, were the most common.  

To further assess the relevance of the different types of basis vectors, each category was separately tested for 
reconstruction accuracy. The 2nd-order category resulted in significantly smaller reconstruction error than either 
the 1st-order (Mann-Whitney rank test: U = 18042, p < 0.001) or 3rd-order categories (Mann-Whitney rank test: U 
= 1507754, p < 0.001). Unsurprisingly, reconstruction accuracy for the 1st-order category was by far the lowest 
of the three (Median = 0.003) 

Within the first 113 leading basis vectors, the 1st-order category includes a total of 4 basis vectors, the 2nd-order 
category includes 62, and the 3rd-order category includes 47 basis vectors. Given that reconstruction accuracy 
typically correlates with the number of basis vectors, one possibility is that the differences in reconstruction error 
between categories may just be an artifact of the different number of basis vectors in each category. However, 
sorting the basis vectors in each category by their contribution to the reconstruction error, we find that there is 
an intrinsic difference in the amount of information carried by the basis vectors in each category. The results in 
Fig. 3f show that the reconstruction error drops the fastest with additional basis vectors for those in the 2nd-order 
category while the slowest for those in the 1st-order category. This result indicates that the 2nd-order basis vectors 
carry more information about the original patch than the 1st or 3rd order basis vectors. Thus, even though the 
number of basis vectors in each category does affect the reconstruction accuracy, the order of the basis vector 
plays a significant role in the observed reconstruction errors shown in Fig. 3f. 

 

2.3. Tactile coding model based on curvature information 
Sparse coding and ICA are powerful statistical models that seem to capture aspects of the coding strategies in 
visual as well as auditory cortices [4, 22, 28]. The sparse coding algorithm originally introduced by Olshausen 
and Field (1997) used data from natural images to estimate basis functions that had striking similarities to the 
receptive fields of simple cells in the primary visual cortex [45].  
 
Because the ICA results identified curvature as a good candidate to represent 3D shape information, we used a 
similar approach and applied the FastICA algorithm to the 384-dimensional curvature maps 𝑷𝑷(𝐶𝐶) of natural 
objects. Examples of 𝑷𝑷(𝐶𝐶) used to obtaining the ICs are shown in Fig. 4a. The leading 100 basis vectors for the 
curvature map, sorted again by the method proposed in [44], are shown in Fig. 4b. In contrast to the results for 
the distance-based analysis (Fig. 3b), the basis vectors for the curvature map show localized Gabor-like 
properties similar to those found for natural images [22, 28]. This result is consistent with experimental work that 
identified oriented Gabor filters as good predictors for the filter properties of S1 neurons [46, 47].  
 
Even more importantly, the same analysis applied to data for human-made objects (Fig. 4c) does not generate 
basis vectors with localized, Gabor-like patterns (Fig. 4d). Instead, basis vectors estimated from human-made 
objects have very regular characteristics, extending across the entirety of the patches and are even sometimes 
curved. Notably, these basis vectors seem to mimic the geometrical properties of the original curvature patches 
sampled from human-made objects (see Fig. 4c and 4d). Thus, although the first-order statistics of natural and 
human-made objects are similar (Fig. 2), these objects clearly differ in their second-order statistics. 
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Fig. 4. Basis vectors estimated by ICA for surface patches characterized by curvature 𝐶𝐶. (a) Example surface 
patches (𝑅𝑅 = 6 mm) randomly sampled from natural 3D data that show spatial maps of the curvature 𝐶𝐶. Grey 
scale is normalized to the maximum absolute value of the curvature within each patch. (b) The leading 100 basis 
vectors (columns of mixing matrix 𝑨𝑨) as estimated by ICA from the curvature 𝐶𝐶 of natural 3D data shown in (a). 
The mean of each basis vector was subtracted and the norm of the basis vectors was scaled to 1. (c) Same as 
(a) but for human-made 3D data. (d) Subset of 64 basis vectors (columns of mixing matrix 𝑨𝑨) as estimated by 
ICA from curvature 𝐶𝐶 of human-made 3D data shown in (c). The mean of each basis vector was subtracted and 
the norm of the basis vectors was scaled to 1. 

 
2.4. Filter properties of S1 model neurons 
To test whether the curvature-based basis vectors identified above might be associated with filter properties of 
S1 neurons, we used the neural model of Bensmaia et al. [46] to investigate the orientation selectivity of the 
corresponding ICA filters (rows of unmixing matrix 𝑾𝑾). The proposed neural model [46] is described by the 
equation:  
 

𝑅𝑅(𝒙𝒙) =  �𝛼𝛼 �𝒇𝒇𝝓𝝓 ∗ 𝒙𝒙� + 𝛽𝛽�  eq. (3) 
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where 𝒙𝒙 is the stimulus, 𝑅𝑅(𝒙𝒙) is the neural response, 𝒇𝒇𝝓𝝓 is a filter characterized by a set of parameters 𝝓𝝓, and 𝛼𝛼 
and 𝛽𝛽 are scalar coefficients. The * operator symbolizes convolution; the parameters 𝝓𝝓, 𝛼𝛼, and 𝛽𝛽 are fit to model 
the response of each neuron. Bensmaia et al. [46] showed that Gabor filters for 𝒇𝒇𝝓𝝓 accounted for 57% to 68% of 
the variance in individual neural responses.  

 
Fig. 5. Orientation selectivity of model neurons based on ICA filters. (a) Curvature maps of the bar stimuli 
used to test artificial neurons based on ICA filters for the curvature analysis of natural objects. The orientation 
varies between 0 (top left) and 168.75 degrees (bottom right) in steps of 11.25 degrees. (b) Responses of three 
example artificial neurons with the highest orientation selectivity as a function of bar orientation in degrees. Inset: 
Example neurons in area 1 and 3b of S1 from experiments conducted by Bensmaia et al. [46]. (c) Cumulative 
distributions of neural responses across all 384 artificial neurons, each based on one of the ICA filters. Left: 
Cumulative fraction of artificial neurons as a function of their preferred orientation (solid black). Experimental 
results from area 1 and area 3b in S1 by Bensmaia et al. are shown in purple for bars indented into the fingertip 
(solid lines) and bars scanned over the fingertip (dashed lines). The 45-degree line representing a uniform 
distribution is shown in solid grey. Right: Same as left but cumulative fraction as a function of orientation 
selectivity. 

 

To test our estimated filters, we generated model neurons by replacing 𝒇𝒇𝝓𝝓 with each of the rows of 𝑾𝑾 as 
estimated by ICA, and set 𝛼𝛼 = 1 and 𝛽𝛽 = 0. This procedure resulted in a population of 384 artificial neurons, 
each one based on one of the estimated ICA filters corresponding to the basis vectors for the curvature analysis 
of natural objects (the leading 100 of these filters are shown in Fig. 4b). To characterize the response of these 
artificial neurons we generated a set of bar stimuli with 16 different orientations between 0 and 180 degrees, 
similar to those used in the experiments of Bensmaia et al. (Fig. 5a). These stimuli, represented in terms of 
curvature, were used as input to the artificial neurons. For each artificial neuron, we measured the preferred 
direction, defined as the orientation resulting in maximum neural response, and the orientation selectivity, defined 
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as the ratio of the neuron’s response in the preferred direction to its response in all other directions (see 
Methods).  

Fig. 5b shows three artificial neurons that are strongly orientation selective (95th percentile); they have preferred 
directions at approximately 65, 90, and 145 degrees. Examples of cortical neurons in area 1 and 3b from 
Bensmaia et al. [46] are shown in the inset for comparison. The cumulative fraction of the preferred orientation 
across all artificial neurons is shown in the left panel of Fig. 5c (black). The experimental results by Bensmaia et 
al. [46] are shown in purple, with solid lines indicating neural responses elicited by bars indented into the fingertip 
and dashed lines indicating neural responses activated by bars scanned across the fingertip. The selectivity of 
the artificial neurons closely approximates the experimental data in Bensmaia et al. [46]. In the right panel of Fig. 
5c, we compare the cumulative fraction of orientation selectivity of the artificial neurons (black) with that of the 
recorded S1 neurons (purple, same as in left panel). Although the model neurons have not been fit to any neural 
data and result only from the statistical analysis of curvatures in natural objects, the cumulative fraction of 
orientation selectivity shows trends similar to those of neurons recorded in areas 1 and 3b in S1 [46].   

 
3. Discussion 
The statistical properties of visual scenes have been extensively studied, including studies of the global statistics 
of images in terms of luminance [6, 40, 48], contrast [6, 40, 49], and color [50, 51], as well as contours [52, 53], 
occlusion [52, 54-56], and eye movement [52]. However, all these studies primarily focus on the statistics of two-
dimensional (2D) images, as proxies for 2D representations of the retinal image. Only a few attempts have been 
made to capture and describe the statistics of the 3D visual world [41].  
 
For somatosensation, it is crucial to consider the 3D geometry of the environment with which the sensors interact. 
The work presented here has taken the first steps to quantify the statistics of 3D natural and human-made tactile 
scenes at the scale of human touch. The first-order statistics of local shape measurements (distance, slope, 
curvature) follow trends similar to those previously quantified for both camera and range images. Previous work 
showed that both these types of images exhibit different first-order statistics for natural (vegetation) and human-
made (urban) scenes, mainly showing higher kurtosis for human-made scenes [55]. Other work showed that 
spatial low-frequency components are much more prominent in human-made scenes than in natural scenes [57]. 
We observed similar trends in our data. 
 
The ICA analysis of higher order statistics reveals that basis vectors with second-order filter characteristics 
contribute significantly to accurate reconstruction of the data. These results suggest that curvature is an 
important metric to represent the 3D shape of objects at the spatial scale of a fingertip. Previous experimental 
work supports this hypothesis. Experiments in monkeys have shown that the spike rate of cutaneous 
mechanoreceptors in the finger pad respond to the amount of curvature and its rate of change, both for slowly 
adapting and rapidly adapting afferent fibers [33, 36, 38]. In addition, areas in human somatosensory cortex have 
been found to be active during a shape discrimination task that specifically tested for surface curvature [58]. A 
study in macaque inferior temporal cortex found neurons that are tuned to the amount of curvature and to 
curvature direction [59]. Correlations between curvature direction and neural activity were also found in a study 
that examined shape coding in visual V4 and somatosensory cortices, suggesting that these areas use similar 
mechanisms to encode shape [60].  
 
The ICA of natural curvature data revealed basis vectors with Gabor-like characteristics similar to those found 
for natural images [45]. Further analysis with a simple model based on artificially generated neurons that use the 
IC filters showed neural responses that accurately capture the statistics of S1 neural responses in primates [46]. 
These results suggest that efficient coding algorithms such as ICA may yield insights about the filter properties 
of cortical neurons that go beyond those identified by receptive field measurements [46].  
 
Although the present analysis tactile scenes has focused on the scale relevant to human touch, the methods 
used are not restricted to that scale or to a specific strategy for sampling the environment. Our approach can be 
extended to patches of different sizes explored with different degrees of spatial resolution. As such, the data 
presented in this study is best considered as a small subset of the data that an organism might acquire over a 
lifetime or even over generations. Another important extension to the framework developed here is to incorporate 
the temporal component that is crucial to tactile systems. Movement allows animals to gather information over 
time, as tactile sensors are moved over a surface. Here we have limited our analysis to a static component that 
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describes the aggregated tactile information obtained over such a sweep by concentrating on the intrinsic 
properties of object patches.  
 
This work examined the statistics of three metrics: distance, slope, and curvature, as intrinsic properties of 
external objects; patches were randomly sampled from each objects’ surface. However, animals and humans 
sample the world with a goal in mind (such as identifying an object) and combine past and current sensory 
information both to predict future sensory input as well as increase search efficiency. Therefore, we expect that 
subjects would sample a set of patches that differs from the randomly sampled ones used here. This hypothesis 
could be tested by asking human subjects to identify objects based only on tactile input in a situation where the 
object is behind a screen and thus visually inaccessible. To approximate the conditions of the work presented 
here, the subject would be allowed to use only one finger to touch the surface of the objects. An efficient 
exploration could be enforced by limiting the time available for object identification. The objects would be the 
same ones used in the presented study; here we have characterized the statistics P(W) of these objects as 
representative of the world W. In the experiment with human subjects, the places on the object’s surface explored 
by the subject as they try to identify the object would be tracked. This data would allow for a characterization of 
the statistics of the world when sampled by volitional exploration E. This P(W|E) could then be compared to the 
P(W) analyzed here. 
 
 
4. Methods 
 
4.1. Data acquisition 
We used a EinScan Pro 2X scanner to capture 3D point cloud representations of the surface of both natural 
objects and human-made objects. The scanner was mounted on a Shining 3D desktop tripod while the objects 
were placed on the Shining 3D turntable. The EXScan Pro software was used to capture the scans in “Fixed 
Scan” mode as “Non-Texture Scans” (without color information). For each scan, the turntable performed 30-50 
steps for one rotation and one rotation per scan. Typically, each object was scanned in 2-3 different orientations 
and the scans were then combined into a single point cloud. One of the objects was very small in size and was 
therefore scanned using “Handheld Rapid Scan” mode with highest resolution. 
 
4.2. Data cleaning 
Each point cloud was imported to Geomagic Design X software for cleaning and meshing. First, the standard 
meshing algorithm of Geomagic Design X (Mesh Buildup Wizard™) was used to triangulate the point cloud. 
Outlier data (non-manifold triangles, small clusters, and isolated triangles) were removed manually or using the 
Healing Wizard software. Holes in the scan were filled using the Fill Holes tool. For larger holes or for holes at 
the boundary, the Add Bridge tool was used to segment the holes to ensure better reconstruction with the 
subsequent use of the Fill Holes tool. After all holes were filled and unusable parts of the mesh had been 
removed, the scan was remeshed targeting an average edge length of 0.1mm. After remeshing, the mesh was 
enhanced (smoothed and sharpened) with medium settings and optimized to improve curvature flow at medium 
settings with a maximum of 10 iterations. Finally, the centroid of the mesh was redefined to be the origin and 
exported in Binary STL format, which stores each triangle as a collection of three edge points and the 
corresponding face normal. The resulting dataset consisted of 137 scans, of which 96 represented natural 
scenes and 41 represented human made objects (SI Dataset). 
 
4.3. Sampling and computation of shape metrics 
The method used to compute the distance (𝐷𝐷), slope (𝑆𝑆), and curvature (𝐶𝐶) metrics is illustrated in Fig. 6. First, 
we randomly sampled 100-150 circular surface patches of radius 𝑅𝑅 from each object (Fig. 6a). The point cloud 
for each sampled surfaced patch was analyzed using Principal Component Analysis (PCA). The plane spanned 
by the two leading PCs was found, and the points in the surface cloud were projected onto this reference plane 
(Fig. 6b). The location of the projected points within the plane was digitized to a 24x24 grid (Fig. 6c). The position 
of the grid cell in the 𝑖𝑖th row and 𝑗𝑗th column is denoted as 𝑝𝑝𝑖𝑖,𝑗𝑗; the width of the grid cells is 𝛿𝛿 =  𝑅𝑅 12⁄ .  
 
The plane was then translated in the direction of its outward normal vector, away from the surface of the object 
just until all surface sampled points were below it. For each point (𝑖𝑖, 𝑗𝑗) on the surface cloud, the distance 𝐷𝐷𝑖𝑖,𝑗𝑗 to 
the reference plane was computed as the orthogonal distance from that point to its projection (Fig. 6d). The 
distances 𝐷𝐷 were then interpolated over the entire grid, smoothed, and cropped to a circular patch of radius 𝑅𝑅 to 
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obtain a map 𝑷𝑷(𝐷𝐷) over 448 grid points. Patches that filled less than 75% of the circular area before interpolation 
were rejected.  
 
The metrics 𝑆𝑆 and 𝐶𝐶 were computed from the interpolated and smoothed square grid before cropping it to a 
circular patch. The slope 𝑆𝑆 was calculated as the forward difference in 𝐷𝐷 between neighboring points in the grid 
(Eq. 1), resulting in a circular map of 421 slope values 𝑷𝑷(𝑆𝑆). Similarly, 𝐶𝐶 was calculated as the second-order 
central difference in 𝐷𝐷 (Eq. 2), resulting in a circular map of 384 curvature values 𝑷𝑷(𝐶𝐶). The resulting maps for 
one example patch are shown in Fig. 6e.  
 
Since the square grid size is fixed at 24x24 before cropping it to a circular patch, the spatial resolution of the 
resulting circular maps is determined by the patch radius 𝑅𝑅. Each circular patch can be viewed as a sensory 
surface with a fixed number of receptors represented by the grid. A larger 𝑅𝑅 leads to a grid that covers a larger 
area sampled at a lower spatial resolution. Based on the average contact area of a finger pad (~120 mm2 at 1N 
normal load [39]), we chose 𝑅𝑅 to be 6 mm (corresponding to 113 mm2 of circular contact area) for the results 
presented here. The choice of a grid size of 24x24 is based on the average edge length of the 3D meshes of the 
data (~0.1 mm) rather than on biologically plausible receptor density. With an 𝑅𝑅 of 6 mm, the datasets for natural 
and human-made objects consisted of a total of 12,309 and 5,788 patches, respectively. 
 

 
 
Fig. 6. Processing of 3D data. (a) Approximately 100-150 circular surface patches of radius 𝑅𝑅 were randomly 
sampled from each object scan. (b) For each surface patch, the average plane of the point cloud (orange) was 
found by using Principal Component Analysis (PCA). (c) The points in the cloud were then projected onto the 
plane, and their location within the plane digitized to a 24x24 grid. The position of the grid cell in the 𝑗𝑗th row and 
𝑖𝑖th column was indicated as 𝑝𝑝𝑖𝑖,𝑗𝑗. The cells are of linear size 𝛿𝛿 =  𝑅𝑅 12⁄ . (d) For each cell (𝑖𝑖, 𝑗𝑗) the distance 𝐷𝐷𝑖𝑖.𝑗𝑗 to 
the reference plane describes the local shape of the patch. (e) The distances 𝐷𝐷 were interpolated to the entire 
grid, smoothed, and cropped to a circular patch. The metrics slope 𝑆𝑆 and curvature 𝐶𝐶 were computed from the 
interpolated and smoothed grid before cropping it to a circular patch. 
 
 
Because the slope of a surface depends on the direction along which it is taken, its value for a given grid cell 
was computed by averaging the slope in the x direction (𝑆𝑆𝑖𝑖,𝑗𝑗𝑥𝑥 ) and the slope in the y direction (𝑆𝑆𝑖𝑖,𝑗𝑗

𝑦𝑦 ). The equations 
for 𝑆𝑆𝑖𝑖,𝑗𝑗𝑥𝑥  and 𝑆𝑆𝑖𝑖,𝑗𝑗

𝑦𝑦  are: 
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𝑆𝑆𝑖𝑖,𝑗𝑗𝑥𝑥 = 𝐷𝐷𝑖𝑖+𝛿𝛿,𝑗𝑗−𝐷𝐷𝑖𝑖,𝑗𝑗

𝛿𝛿
    

𝑆𝑆𝑖𝑖,𝑗𝑗
𝑦𝑦 = 𝐷𝐷𝑖𝑖,𝑗𝑗+𝛿𝛿−𝐷𝐷𝑖𝑖,𝑗𝑗

𝛿𝛿
    (Eq. 1) 

 
The curvature of a surface is also direction dependent, and was again computed as the average of the curvature 
in the x direction (𝐶𝐶𝑖𝑖,𝑗𝑗𝑥𝑥 ) and the curvature in the y direction (𝐶𝐶𝑖𝑖,𝑗𝑗

𝑦𝑦 ). The equations for 𝐶𝐶𝑖𝑖,𝑗𝑗𝑥𝑥  and 𝐶𝐶𝑖𝑖,𝑗𝑗
𝑦𝑦  are: 

 
 

 𝐶𝐶𝑖𝑖,𝑗𝑗𝑥𝑥 = 𝐷𝐷𝑖𝑖+𝛿𝛿,𝑗𝑗−2𝐷𝐷𝑖𝑖,𝑗𝑗+𝐷𝐷𝑖𝑖−𝛿𝛿,𝑗𝑗

𝛿𝛿2
    

  𝐶𝐶𝑖𝑖,𝑗𝑗
𝑦𝑦 = 𝐷𝐷𝑖𝑖,𝑗𝑗+𝛿𝛿−2𝐷𝐷𝑖𝑖,𝑗𝑗+𝐷𝐷𝑖𝑖,𝑗𝑗−𝛿𝛿

𝛿𝛿2
   (Eq. 2) 

 
 
 
 
4.4. Neural model 
The orientation selectivity 𝑜𝑜𝑠𝑠 is computed as: 
 

𝑜𝑜𝑠𝑠 = �[∑ 𝑅𝑅(𝜃𝜃𝑖𝑖) sin(2𝜃𝜃𝑖𝑖)𝑖𝑖 ]2+[∑ 𝑅𝑅(𝜃𝜃𝑖𝑖) cos(2𝜃𝜃𝑖𝑖)𝑖𝑖 ]2

∑ 𝑅𝑅(𝜃𝜃𝑖𝑖)𝑖𝑖
  (Eq. 3) 

 
where 𝑅𝑅(𝜃𝜃𝑖𝑖) represents the response of the artificial neuron to a bar stimulus with orientation 𝜃𝜃𝑖𝑖. Stimulus 
orientation ranged from 0 to 180 degrees in intervals of 11.25 degrees, for 𝑖𝑖 = {1, 2, . . .16}. The orientation 
selectivity of a neuron ranges from 0 to 1, where 0 indicates a uniform response to all orientations and 1 indicates 
that the neuron responds only to a single stimulus orientation. For more details about this measure of orientation 
selectivity see [46]. 
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