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Abstract

As an active field of research and with the development of state-of-the-art algorithms to analyze

EEG datasets, the parametrization of Electroencephalography (EEG) analysis workflows has

become increasingly flexible and complex, with a great variety of methodological options and

tools to be selected at each step. This high analytical flexibility can be problematic as it can yield

to variability in research outcomes. Therefore, growing attention has been recently paid to

understand the potential impact of different methodological decisions on the reproducibility of

results.

In this paper, we aim to examine how sensitive the results of EEG analyses are to variations in

preprocessing with different software tools. We reanalyzed the shared EEG data (N=500) from
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(Williams et al. 2021) using three of the most commonly used EEG software tools: EEGLAB,

Brainstorm and FieldTrip. After reproducing the same original preprocessing workflow in each

software, the resulting evoked-related potentials (ERPs) were qualitatively and quantitatively

compared in order to examine the degree of consistency/discrepancy between softwares. Our

findings show a good degree of convergence in terms of the general profile of ERP waveforms,

peak latencies and effect size estimates related to specific signal features. However,

considerable variability was also observed in the magnitude of the absolute voltage observed

with each software package as reflected by the similarity values and observed statistical

differences at particular channels and time instants. In conclusion, we believe that this study

provides valuable clues to better understand the impact of the software tool on the analysis of

EEG results.
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1.Introduction

Electroencephalography (EEG) is a well-established technique for measuring the electrical

fluctuations generated by the brain at high temporal resolution. Due to its non-invasiveness, low

cost and ease-of-use EEG has been gaining increasing interest in uncovering the functional

brain activity underlying various brain conditions including disorders, emotions, information

processing and resting state (Lopes da Silva 2013).

Typically, the EEG electrodes capture a mixture of neural activity and non-neural-related

artifacts which can be physiological (e.g. eye movements or muscle contractions) or external to
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the human body (e.g. power line or interference with other electrical devices) (Urigüen and

Garcia-Zapirain 2015). Thus, to study the EEG signal, it is of great importance to first carefully

reduce the influence of contaminating artifacts while preserving the neural activity. This is the

aim of the preprocessing stage which is carried out so as to derive clean EEG signals suitable

for further statistical analysis. Preprocessing typically includes multiple steps, such as line noise

removal, re-referencing, artifact rejection, filtering, epoch selection, bad channels detection and

interpolation. Although there is a general agreement in the scientific community on the main

steps that should be considered in the preprocessing pipeline, each step can be approached

through many algorithmic strategies with different sets of assumptions, and parameter choices

(Šoškić et al. 2022; Boudewyn et al. 2018; Croft et al. 2005; Šoškić et al. 2021). Thus, the

preprocessed signals are the result of multiple individual and user-dependent decisions, made

over a potentially long and ordered pipeline. More specifically, the chain of decisions is not only

limited to adjusting the features incorporated in each preprocessing step, but may even start

before the preprocessing is performed - i.e, when selecting the adequate software tool.

In this context, many efforts have focused on proposing guidelines for researchers to choose

between the existing cleaning methods depending on the application and user’s requirements.

Among these efforts, (Islam, Rastegarnia, and Yang 2016; Ranjan, Chandra Sahana, and

Kumar Bhandari 2021) present extensive reviews of the existing state-of-the-art artifact cleaning

methods by showing the pros, cons and suitability in particular applications.

Recently, growing attention has been paid to evaluate the variability and comparability of results

obtained with different preprocessing methods and parameter choices (Barban et al. 2021;

Robbins et al. 2020; Clayson et al. 2021). The main objective of these studies was to test how

much the variability in cleaning methods can impact the conclusions of a study. For instance,

the effect of three artifact removal algorithms (ICA-LARA, ICA-MARA and Artifact Subspace
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reconstruction (ASR)) on EEG characteristics and event-related measures was analyzed and

compared across 17 EEG studies (Robbins et al. 2020). Results highlight the existence of

significant differences between results particularly after eye blinks artifacts have been removed.

Others were interested in testing the ability of different blind source separation methods to

remove synthetic/modeled noise sources corrupting real EEG signals (Barban et al. 2021). The

main results show that there is no method that can be considered as an all-purpose algorithm,

and the choice of the adopted method should be driven by the specific needs of users (such as

the computational capacities, or the temporal constraints). Trying to optimize the preprocessing

pipeline for the event-related potentials (ERPs), (Clayson et al. 2021; Šoškić et al. 2022)

examined the impact of many possible methodological choices on the data quality and the

experimental effects through data multiverse analysis. Both studies highlighted the substantial

impact of several parameters such as the filter cut-off, artifact detection method, baseline

adjustment, reference, scoring electrodes and others on the study outcomes.

While the above studies provide important insights on the effect of either the preprocessing

stages, the preprocessing algorithms or the parameter choices, the preprocessing of the signals

were carried out using a single software tool. Yet, there are many tools available to study the

EEG signal including: EEGLAB (Delorme and Makeig 2004), Brainstorm (Tadel et al. 2011),

MNE (Gramfort et al. 2014), FieldTrip (Oostenveld et al. 2011) and Automagic (Pedroni,

Bahreini, and Langer 2019). Each toolbox has its own way to organize and format the data, to

implement functions and to define their arguments, parameters, optimal and default values.

Another important difference between tools resides in the availability of the desired

preprocessing steps as well as the parameters that can be accessed for each step.

Here we investigate how sensitive the results of EEG analyses are to variations in software

packages when using the same dataset and aligned preprocessing methods. To this aim, we
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reanalyzed data (N=500) from a recent study by Williams and colleagues (Williams et al. 2021)

and reproduced the study using three software packages to quantify the observed differences in

the final results. Our objective was first to reproduce the main figures of (Williams et al. 2021) by

replicating the original preprocessing pipeline used within each software tool. We compare three

of the most commonly used MATLAB toolboxes: Brainstorm, EEGLAB and FieldTrip in order to

achieve two main objectives: 1) Study whether the main findings of the original paper

– including ERP curve as well as effect size estimates related to selected ERP features – could

be reproduced within each software packages. 2) Quantify variations observed across software

packages.
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Figure 1. Overview of the study. (a) We used shared EEG data from (Williams et al. 2021) with 500 participants
performing a simple gambling task of six blocks composed of 20 trials. (b) This dataset was then preprocessed using
the different software tools: Reference (using the code published with the original paper), EEGLAB, Brainstorm and
FieldTrip. The preprocessing steps to be performed in each tool included: reduction to 32 electrodes, re-referencing,
automatic detection of bad electrodes, band-pass filtering, interpolation of bad channels, segmentation into
time-locked epochs and removal of artifactual trials. (c) The preprocessed signals derived from the four
preprocessing codes were used to reproduce the reference statistics and hypotheses. A quantitative comparison
between the resulting signals was also conducted in terms of signal features. Image credits: EEG cap CC-BY
Wikimedia Commons by CIV The Noun Project.

2.Materials and methods

2.1. Material

2.1.1. Dataset

We used the dataset previously analyzed in (Williams et al. 2021), and publicly available at

www.osf.io/65x4v/. In brief, this dataset comprises data from 500 undergraduate healthy

students (341 female, mean age=21.71 years old, 440 right handed) recruited by the University

of Victorial. These participants were selected amongst a total of 637 subjects as they had

provided signals with a high data quality. The study was approved by the University of Victoria's

Human Research Ethics Board and all participants provided written informed consent before

any data acquisition.

We chose to reproduce this study by Williams and colleagues for two main reasons. First the

availability of the raw data and of the preprocessing and analysis scripts made it possible for us

to recompute the original results to serve as a reference for our subsequent analyses Second,

the large number of participants (N=500) made this study less sensitive to a lack of

reproducibility that would be due to small sample size (Ioannidis 2005; Button et al. 2013).
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2.1.2. Experimental protocol

Participants completed a simple gambling task following a two-armed bandit task. This task was

chosen by Williams and colleagues in (Williams et al. 2021), as it is the most commonly used

paradigm to evoke the reward positivity ERP which was the subject of investigation of the

reference paper (Proudfit 2015). The pipeline of our study is summarized in Figure 1.

The acquisition session consisted of six blocks of 20 trials (see Fig. 1.a). Each trial was initiated

by a black fixation cross displayed for 500 ms, followed by a 500 ms display of two colored

squares. Then, the fixation cross turned gray to prompt the participant to select one of the two

colored squares (left or right) within a 2,000 ms time limit. After that, a black fixation cross was

presented for 300 to 500 ms, and a simple feedback (“WIN” for gain, “LOSE” for loss) was

shown for 1,000 ms. The final objective of this task for the participant was to win as often as

possible. This was possible for the participant by determining (while computing the task) which

square would bring the most successful rate (60% for one square vs. 10% for the other one).

The same pair of colors was used for all the trials of the same block, and the squares locations

were randomized for each trial.

2.1.3. Data collection

EEG data were acquired from either 64 or 32 electrode (Ag/AgCl) EEG systems (ActiCAP, Brain

Products, GmbH, Munich, Germany) using Brain Vision Recorder. Data were originally sampled

at 500 Hz and low-pass filtered below 245 Hz. During the recording, all electrodes impedance

were kept under 20 kΩ on average.
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2.2. Methods

2.2.1. Original preprocessing pipeline

The preprocessing pipeline adapted by the reference paper was performed in MATLAB using

scripts available at www.osf.io/65x4v/ (the main file is named

‘RewardProcessing_Preprocessing.m’) , where some functions have EEGLAB dependencies.

The pipeline consisted of multiple steps (Figure 1.B) as follows:

1. Reduce the number of electrodes to 32 electrodes (for all data that were collected with

a 64 electrode EEG system).

2. Detect artifactual channels Practically, the detection of artifactual channels can be

approached in different ways. Among these strategies, Williams and colleagues used the

trial rejection rate. The data first were re-referenced to an average mastoid reference

(using TP9 and TP10 electrodes) and band pass-filtered between 0.1 to 30 Hz

(Butterworth, order 4). A notch filter at 60 Hz was also applied. Afterwards, authors have

corrected eye blinks after manually identifying the corresponding independent

components (ICs) reflective of blinks. Time-locked epochs around the feedback stimulus

onset (from -500 to 1500 ms) were then extracted, and baseline corrected using a −200

to 0 ms window. An artifactual trial (i.e epoch) was identified with 10 μV/ ms gradient and

100 μV maximum–minimum criteria. Ultimately, an electrode was considered noisy or

artifactual if it exceeded a trial rejection rate of 40%.

3. Re-reference data to an average mastoid reference (using TP9 and TP10 electrodes)

4. Apply a band pass-filter between 0.1 to 30 Hz (Butterworth, order 4) and a notch filter

at 60 Hz.

5. Interpolate the detected artifactual channels using the spherical spline method.
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6. Detect and remove the eye blinks artifacts using independent component analysis

(ICA) after manually selecting the blinks components via topographic maps and

component loadings.

7. Extract the time-locked events using a segment window of −500 to 1,300 ms relative

to the feedback stimulus.

8. Remove baseline values using a window of -200 to 0 ms.

9. Reject trials that exceed a gradient of 10 μV/ ms and a maximum-minimum voltage of

100 μV.

10. Compute the ERPs of ‘Win’ and ‘Loss’ conditions by averaging the corresponding

epochs and ERPs were trimmed to −200 to 1,000 ms. Authors were also interested in

analyzing the grand averaged ERP, denoted the reward positivity, obtained as the result

of subtraction between the gain condition and the loss condition.

In the original preprocessing pipeline proposed by the authors, a manual procedure – i.e., a

human-based and visually guided procedure – was used to detect the components

corresponding to the eye blinking noise. However, this step is not only time-consuming to be

carried out in each software tool for 500 subjects, but more importantly also introduces

inter-rater variability as it is open to the level of expertise and variability across different raters

performing the manual detection. In order to focus on inter-software variability only, this step

was removed from the preprocessing pipeline.

2.2.2. Comparison across toolboxes

We selected three of the most widely used toolboxes available to preprocess EEGs and

reproduced the reference preprocessing pipeline in each.
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All code to reproduce the preprocessing pipelines is available at:

https://github.com/Inria-Empenn/EEG_preprocessing (released on Zenodo, doi:

10.5281/zenodo.6918329) and more details are provided below on the algorithms and

parameters chosen in each software package.

2.2.2.1. EEGLAB

The EEGLAB preprocessing script was assembled and run for all the 500 subjects as follows:

1. Load the data using pop_loadbv.m

2. Reduce data into 32 channels using pop_select.m

3. Automatically detect the noisy channels: Given that the procedure proposed by the

reference paper was not available in EEGLAB, we relied on EEGLAB automatic

artifactual channel detection. In practice, EEGLAB incorporates a plugin named

‘clean_rawdata’ that detects flatline and noisy channels based on three criteria: i) the

channel has no signal variation for a duration of longer than a specific time window

length (default 5s), ii) the channel presents a correlation to its robust estimate (based on

other channels) lower than a given threshold (default 0.85), iii) the channel presents an

excessive line noise by exceeding a threshold value in standard deviations above the

channel population mean (default to 4 standard deviations).

4. Interpolate the detected noisy channels using the spherical spline method pop_interp.m

5. Re-reference the signals to the average mastoid electrodes using prop_reref.m.

6. Filter the signals between 0.1 and 30 Hz using pop_eegfiltnew.m. This function uses a

hamming window-based finite impulse response (FIR) filter.

7. Divide the signals into time-locked epochs using the function pop_epoch.m, and correct

to baseline using pop_rmbase.m function
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8. Reject the artifactual trials using the pop_eegthresh.m function for which the lower and

upper amplitude limits can be identified by the user. Here, we set the lower limit to -50μV

and the upper limit to 50μV, in a way to follow the same parameters of the trial rejection

procedure adopted in the reference paper.

9. Compute the conditional ERPs (for win and loss conditions) as well as the grand

averaged ERP

The analysis was conducted using EEGLAB v2021.1 (RRID: SCR_007292).

2.2.2.2. Brainstorm

The list of steps used to perform the preprocessing in Brainstorm are as follows:

1. Re-reference to the average mastoid (using TP9 and TP10) using Process_eegref

2. Detect the noisy channels using Process_detectbad. It is noteworthy to mention that

Brainstorm does not provide an automatic approach to detect the noisy channels.

Instead, this detection is typically done manually by visual inspection. To automate the

detection of flat channels, process_detectbad can detect the bad channels using a

peak-to-peak threshold criteria.

3. Interpolate the detected noisy channels using the spherical spline method with

Process_eeg_interpbad.

4. Apply the notch filter at 60 Hz using Process_notch.

5. Apply a band-pass filter between 0.1 and 30 Hz with a linear phase FIR filter using the

process Process_bandpass.

6. Segment data into time-locked epochs using Process_import_data_event.

7. Remove baseline values from -200 ms to 0 using Process_baseline.

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.03.502683doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.502683
http://creativecommons.org/licenses/by-nd/4.0/


8. Detect and reject the bad trials using a peak to peak of 100 microVolts using

Process_detectbad .

9. Compute the conditional ERPs using Process_average

The analysis was conducted using brainstorm version 20.09.28 (RRID: SCR_001761).

2.2.2.3. FieldTrip

FieldTrip toolbox is not a software with a user interface, but rather a collection of functions.

Thus, a Matlab script, in which a sequence of FieldTrip functions are called, is considered as an

analysis protocol in FieldTrip. Each of the functions of the toolbox takes as input the data that

was produced by the previous function. To allow a function to implement a specific algorithm,

particular parameters can be specified via a configuration structure cfg. Here, we used the

major functions ft_preprocessing, ft_artifact_clip, ft_channelrepair, ft_redefinetrial,

ft_rejectartifact and ft_timelockanalysis.

More precisely, the FieldTrip preprocessing script was assembled and run for all the 500

subjects as follows:

1. Data were first reduced to 32 channels, re-referenced to the average mastoid, filtered by

a butterwoth filter (order=4) using ft_preprocessing with cfg.channel, cfg.refchannel,

cfg.bpfreq, cfg.bpfilttype, cfg.bpfiltord being adequately defined.

2. Bad channels were detected as those showing signals being completely flat for a given

time window. Here, we set the length of the time window to 5s. The function used is

ft_artifact_clip where cfg.artfctdef.clip.timethreshold was defined.

3. The interpolation of the detected bad channels was done using ft_channelrepair, with

cfg.badchannel being identified.
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4. The segmentation into time-locked epochs to win and loss conditions was performed

using ft_redefinetrial where cfg.trialdef is configured.

5. A correction to baseline was performed using ft_preprocessing after defining

cfg.baselinewindow.

6. A trial is detected as bad using ft_artifact_threshold if it exceeds a min-max voltage of

100 microVolts following the same criteria of the reference paper, then rejected using

ft_rejectartifact.

7. The conditional ERPs were computed using ft_timelockanalysis.

The analysis was conducted using FieldTrip version 20191024 (RRID: SCR_004849).

2.2.3. Reproduction of the ERP analysis

In (Williams et al. 2021), the authors focused on analyzing the neural feedback processing

based on multiple measures of reward positivity. Many of these measures rely on the ERP,

which attempts to characterize the neural activity by examining the peaks and troughs of the

averaged signals time-locked to events of interest (Picton, Lins, and Scherg 1995). More

specifically, the authors have first computed the conditional ERPs for each condition (gain and

loss) within each participant. Difference ERPs were also extracted by subtracting the conditional

ERP related to the loss condition from that related to the gain condition. Then, four quantitative

ERP-based features were determined corresponding to FCz electrode,the most commonly used

electrode in the context of reward positivity (Sambrook and Goslin 2015): Peak time of the

reward positivity: computed for each participant by finding the peak amplitude of the difference

ERP waveform. Mean peak: Average of the voltages ±46 ms surrounding the peak location.

Maximum peak: Largest amplitude within the 200 to 400 ms time window. Base-to-peak:

Measure computed by subtracting the minimum voltage of the trough immediately prior to the

reward positivity from the maximum peak measure.
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The mean, maximum and base-to-peak metrics were computed for both the conditional and the

difference ERPs of each participant. In our study, we followed the same ERP exploration and

features extraction procedures after obtaining the preprocessed signals from the different

softwares.

2.3. Comparison methods
We applied three separate quantitative methods to measure the discrepancy between the

results obtained within each software. First, the statistical comparisons among metrics (mean,

maximum, base-to-peak and peak-time) obtained by the different software tools were performed

using Wilcoxon ranksum test. For each metric of interest, we compared the values obtained by

the reference, EEGLAB, BrainStorm and FieldTrip for all participants. These comparisons

provide a quantification of the level of (dis)agreement between each pair of software tools about

the ERP features of interest. The statistical significance level was set to p < 0.01 and Bonferroni

correction was used to address the multiple comparisons issue across the number of tests

performed (6 comparisons).

Second, we evaluated the variability of results by computing the similarity between the ERPs

obtained by the different software tools, when considering all the EEG channels. In fact, in their

paper, Williams and colleagues have only considered the FCz electrode as it was shown to be

the electrode that extracts the most relevant information related to their topic of interest (i.e the

reward positivity). Here, however, we are also interested in studying the effect of the software

tool on the preprocessed EEG signals of all the recording channels. Thus, for each participant,

we assessed the similarity between two softwares S1 and S2 using pearson’s correlation

measure as follows:

𝑆𝑖𝑚
𝑝
(𝑆1, 𝑆2) = 1

𝐶 ×
𝑐=1

𝐶

∑ ρ(𝐸𝑅𝑃
𝑝,𝑐
𝑆1 , 𝐸𝑅𝑃

𝑝,𝑐
𝑆2 )
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Where p is the considered participant, C is the number of channels. and denote𝐸𝑅𝑃
𝑝,𝑐
𝑆1 𝐸𝑅𝑃

𝑝,𝑐
𝑆2

the ERP signal obtained at channel c from the software S1 and the software S2, respectively.

In addition, we were interested in precisely describing the ERP differences between softwares in

terms of temporal and spatial characteristics. This was done by assessing the statistical

difference between ERP distributions at each millisecond and each channel using wilcoxon

ranksum test, which yields a 2D map of p-values between each two softwares. To account for

the multiple comparisons problem, all p-values were corrected across all timepoints and

software studied using Bonferroni resulting in a thresholding p-value of 2. 7 × 10−7.

2.4. Code availability

Codes supporting the results of this study are available at

https://github.com/Inria-Empenn/EEG_preprocessing (released on Zenodo, doi:

10.5281/zenodo.6918329). All the preprocessing codes were written in Matlab (Matlab 2018).

The visualizations of ERP waveforms (Figure 2) and the quantitative features (Figure 3) were

done in R (R Core Team 2020). Seaborn (Waskom 2021) was used to illustrate the comparisons

between the software distribution of the quantitative measures (Figure 4), and the similarity

matrix between softwares (Figure 5). Other visualizations and statistical assessments were

conducted using Matlab.
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3. Results

3.1. Reproduction of the main findings

In Figure 2, we illustrate the ERP waveforms at electrode FCz reflecting the reward positivity,

obtained when running the preprocessing code of the reference paper, EEGLAB, BrainStorm

and Fieldtrip. The grand averaged ERPs shown in Figure 2 are obtained after averaging all the

clean epochs (kept after the artifactual trials removal step) of all subjects. For EEGLAB, the

results illustrated in Figure 2 correspond to those obtained using the clean_rawdata function.

Another automatic way incorporated in EEGLAB is the PREP pipeline (Bigdely-Shamlo et al.

2015) that uses four metrics to identify bad channels: extreme amplitudes (deviation criterion),

lack of correlation with any other channel (correlation criterion), lack of predictability by other

channels (predictability criterion), and unusual high frequency noise (noisiness criterion). The

preprocessing results using the PREP pipeline can be found in the supplementary materials

(see FIgure S1).

We observed a good degree of consistency between the ERP results published in the original

paper and those reproduced using the script provided but excluding the ICA step (see Methods

“Original preprocessing pipeline” for more details). The peak amplitudes of the conditional ERPs

observed at 400 ms latency were slightly higher to those revealed when eye blinks were

removed using ICA. Quantitatively, the same conclusions regarding the effect size related to the

maximum and base to peak measures of the difference ERP, and the mean measure of the

conditional ERPs were derived.

Changes in the amplitude of the two peaks were noticed for the conditional ERP generated by

EEGLAB, Brainstorm and Fieldtrip, when compared to the reference results. A remarkable
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variability in the number of remained trials/subjects obtained after the preprocessing was

observed between the software tools: the number of subjects with clean data was N=498 for

the reference preprocessing, N=300 for EEGLAB, N=213 for Brainstorm code, and N=397 for

FieldTrip code. This change in the number of participants is clearly reflected in the width of the

confidence intervals (CI) which was larger for EEGLAB, BrainStorm and FieldTrip compared to

the reference. Despite those differences, there was a good level of concordance between the

conditional ERPs obtained in terms of the two peaks latencies seen respectively at 250 ms and

400 ms for all the software tools. In addition, the same waveform profile showing positive and

negative deflections at specific times was visualized. One can also notice that, for all software

tools, the gain waveform is above or at the same level as the loss waveform between 0 ms and

450 ms whereas the gain ERP passes under the loss ERP for the remaining time.

According to the grand averaged difference, the reward positivity peaked at a latency of 310 ms

for the different softwares. While the peak voltage is approximately conserved for Brainstorm

and FieldTrip, it is decreased after EEGLAB preprocessing (reaching 3 microvolts compared to

5 microVolts for the reference peak voltage).

Looking at the quantitative measures, results show good consistency between the reference

and the software tools (Figure 3, table 1, table 2). More specifically, a large effect size (d>0.8) is

obtained when looking at the maximum and base to peak measures of the difference ERP

obtained by all the software tools (table 1, last column). For the mean peak metric, results of all

software except EEGLAB present a medium effect size (d>0.5). Moreover, the conditional gain

ERP elicited a mean peak measure with a large effect size (d>0.8) for all the software tools.

However, the effect size of the mean peak related to the conditional loss ERP was only

considered large for the reference and the FieldTrip results (d>0.8), but not for EEGLAB and

Brainstorm (d<0.8). Overall the absolute voltage observed for the gain and loss ERPs
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separately were consistently smaller for all studied software packages compared to the

reference paper.
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Figure 2. ERP waveforms at electrode FCz illustrating the reward positivity after preprocessing by: the reference

code, EEGLAB, Brainstorm and FieldTrip. (a) grand averaged conditional waveforms (ERP averaged across all

subjects) with 95% confidence intervals, (b) grand averaged difference waveform with 95% confidence intervals.

These subfigures are reproduced from Figure 3 illustrated in (Williams et al. 2021).

Table 1. Mean, maximum and base to peak and the effect size of the reward positivity (the difference ERP) for the

reference paper as well as the three studied software packages EEGLAB BrainStorm and FieldTrip. The reported

mean, standard deviation and cohen’s d values were computed across subjects. This table is reproduced from Table

1 reported in (Williams et al. 2021).
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Table 2. Effect size of the gain and loss conditional ERP, using the meak peak measure, for all software. The reported

mean, standard deviation and cohen’s d values were computed across subjects. This table is reproduced from Table

2 reported in (Williams et al. 2021).
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Figure 3. The metrics distribution across all participants for the different preprocessing softwares. (a) The features

calculated on the difference ERP, (b) conditional amplitudes for the mean peak measure, and (c) peak latency of the

reward positivity (difference ERP). Each black dot represents a participant's data and the middle black lines represent

the mean across participants. These subfigures are a reproduction of Figure 3 illustrated in (Williams et al. 2021).

3.2. Comparison across software

A significant statistical difference was observed between the reference and all the software

toolboxes in terms of the mean peak amplitude of the gain ERP (Figure 4). Significant statistical

differences between the mean peak voltages of the loss and the difference ERP of the reference

and those of EEGLAB and Brainstorm softwares were also observed. FieldTrip shows

statistically different maximum peak of the difference ERP when compared to the reference.

Regarding the base-to-peak and the peak latency measures, no statistical differences were

found between softwares.
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Figure 4. The violin plots showing the software distribution across subjects of the quantitative measures. A line

between two violins denotes a statistical difference between their corresponding values.

Figure 5 illustrates the similarity matrix between the conditional ERPs generated by the different

softwares when taking into account all the EEG channels. For each participant, the similarity

between the preprocessed ERPs obtained from two different softwares was calculated using

pearson’s correlation averaged across all channels (see materials and methods). Between the
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three Matlab toolboxes, FieldTrip reached the highest similarity for both conditions (0.47±0.24

for the gain condition; 0.43±0.25 for the loss condition), followed by Brainstorm (0.4 ±0.25 for

the gain condition and 0.4 ±0.24 for the loss condition) then EEGLAB (0.33 ±0.22 for the gain

condition and 0.29 ±0.21 for the loss condition). The highest similarity is observed between

Brainstorm and FieldTrip (0.54 ±0.25 for the gain condition, and 0.55 ±0.24 for the loss

condition).

Figure 5. The similarity matrix between the conditional ERPs obtained by the different softwares. The upper triangular
part of the matrix corresponds to the gain condition while the lower part corresponds to the loss condition.

In addition, we investigated where and when the ERPs were statistically different by plotting the

thresholded statistical map (time x channels). To do this, we quantified the statistical difference

between the subjects' distribution of ERPs obtained from two softwares, at each millisecond and

each channel using the Wilcoxon test (see materials and methods). In line with the previous

findings, Figure 6 highlights that EEGLAB shows the highest statistical differences compared to

the reference results. One can also remark that EEGLAB statistical differences are distributed
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along the time axis starting from 100 ms to 1000 ms after the stimulus. The major statistical

differences between FieldTrip and the reference results are revealed between 300 ms and 700

ms, at all the EEG channels adequately. While both the gain and loss conditions show important

differences for all three software packages compared to the reference paper, there is only

limited areas of significant differences in the reward positivity (i.e. ERP difference between gain

and loss conditions).

Figure 6. The statistical maps showing the differences between the results of each software tool and the reference at
each millisecond and channel.
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4. Discussion

A large range of techniques and tools are now available to process a single EEG dataset. This

high analytical flexibility, reflected by the large number of choices made during the data

preprocessing and analysis workflow, can be problematic as it can yield variability in research

outcomes. Therefore, it is important to particularly understand the impact of the preprocessing

methods, software package, software version and even the operating system on the

reproducibility of the final research outcome of a study.

Here, we were interested in exploring the impact of the preprocessing software on the ERP

derived from EEG data of 500 participants performing a simple gambling task as originally

published by (Williams et al. 2021). The degree of agreement across software packages was

good in terms of peak latencies and the general profile of ERP waveforms. In addition, the

majority of the tested softwares obtained similar effect size estimates related to specific ERP

features. However, remaining variability was also observed between software packages. This

variability was reflected by the number of clean trials kept to compute the grand averaged

ERPs, the peak voltages, the width of the confidence interval, and the statistical differences at

particular channels and time instants (due to differences in absolute voltage values). Among the

tested softwares used to reproduce the same preprocessing pipeline published by (Williams et

al. 2021), EEGLAB seems to generate results with the lowest similarity when compared to the

original ones while Brainstorm generates results with the highest similarity. However, it is

noteworthy to pinpoint that the objective of the current study is not to favor any software tool

over another or to recommend the ‘best’ preprocessing tool, but rather, to illuminate and

quantify differences that can be generated by different softwares on the same database. The

variations observed can be related to several factors that are implicated in the preprocessing

steps applied in each software. Results are discussed hereafter.
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4.1. Influencing factors

In this study, our objective was to re-analyze the same data originally published and

preprocessed in (Williams et al. 2021) using EEGLAB, Brainstorm and FieldTrip following the

same original preprocessing workflow. Our intent was to fully automate all the preprocessing

operations avoiding any manual intervention as much as practicable. Computationally, the

workflow in each software was designed as a sequence of steps that are combined so that the

intermediate outputs from one step directly feed as inputs into the next step. Notably, while all

the tested software toolboxes were purportedly replicating the same preprocessing steps, it was

often impossible to exactly adapt the same methods and choice parameters used in the

reference paper due to software implementation and configuration choices..

For instance, the band-pass filter cannot be configured in EEGLAB and Brainstorm to have the

same type (Butterworth) and order used in the original paper. In addition, the gradient criteria

adapted by the original study to detect the bad epochs is not supported by any of the tested

software. More crucially, the method performed to detect the bad channels contributed to the

major disparities seen across packages in terms of the number of trials and subjects used for

ERP computation. This is because the bad channels interpolated by the original pipeline were

identified in a way to have a low trial rejection rate (see materials and methods section for more

details). To do so, data were segmented into trials twice wherein the first pass was employed to

identify the noisy channels, and the second pass was to process data for analysis. This

particular process has not only identified very specific channels to be interpolated, but also it

leads to a high number of ‘good’ trials that will be used ultimately to reconstruct the ERPs. In

EEGLAB, Brainstorm and FieldTrip, the automatic detection of bad channels was carried out

using their designed functions based on different criteria. This can explain the considerable
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difference between softwares in the number of trials and subjects remaining after the data

preprocessing.

To better investigate whether the results discrepancies are mainly dependent on the number of

subjects showing clean data, we compared the results of ERPs computed using data

corresponding to the common subjects remaining after the preprocessing across the reference,

EEGLAB, Brainstorm and FieldTrip (see Figure S2 in supplementary materials). Still, results

show variability in the ERP waveforms and related characteristics, which means that other

influencing factors are contributing to the observed variability. We also tried to regulate the

parameters selected in the bad trial identification step to increase the number of clean trials kept

by each software. Thus, instead of the 100 microVolts min-max criterion, we tested the

variability of results between softwares when using 200 microVolts min-max criterion (see Figure

S3, Table S1, Table S3 in supplementary materials). Compared to the results obtained using the

100 microVolts min-max criterion, higher similarities were markedly obtained for all the

softwares. Related to all the ERP features (mean, max, base-to-peak and peak latency), the

three softwares succeeded to validate the effect size estimates obtained by the reference

results. The number of subjects showing clean data was 426 after running EEGLAB code, 316

after Brainstorm code, and 497 after FieldTrip code. Remarkably, EEGLAB still showed more

statistical differences with the reference results, compared to Brainstorm and Fieldtrip. In

contrast, Brainstorm results revealed the highest similarity to the reference results even when

only 316 subjects were kept. This highlights the need for a multi-stage assessment of software

differences, to examine which steps made the major difference in study outcomes, and which

steps were of less concern.
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4.2. Reproducibility in the neuroimaging field

The question of reproducibility and replicability is considerably gaining attention in the scientific

community (Nosek et al. 2022; Fidler and Wilcox 2018; Munafò et al. 2020). In the neuroimaging

field, a recent study addressed the issue of analytical flexibility in fMRI research and its effects

on the associated conclusions (Botvinik-Nezer et al. 2020). Using the same data, variability in

results was reported in testing nine hypotheses across seventy independent teams. Inspired by

this study, two recent initiatives have been made to test the effect of diversity of analysis

pipelines and teams on EEG results. The ‘EEGManyPipelines’ (Algermissen, Yang, and Busch

2021) project and EEGManyLabs (Pavlov et al. 2021) were recently launched to involve many

independent teams in analyzing the same data and testing a set of predefined hypotheses.

Multiple EEG studies have also demonstrated that a study outcomes are contingent on

subjective decisions and factors selected in the EEG analysis, such as the EEG electrode

density (Song et al. 2015; Sohrabpour et al. 2015; Lantz et al. 2003; Allouch et al. 2022), the

preprocessing methods and parameters (Šoškić et al. 2022; Barban et al. 2021; Robbins et al.

2020; Clayson et al. 2021), the number of trials (Boudewyn et al. 2018) and the specific

parameters related to the EEG connectivity analysis (Allouch et al. 2022; Hassan et al. 2014).

The variability in the software used in EEG analysis was tackled in a recent review that

addresses the question of reproducibility and consistency of ERP studies, mainly focusing on

the N400 component (Šoškić et al. 2021). In a sample of 132 ERP papers, (Šoškić et al. 2021)

reveals that the number of softwares used to perform the EEG analysis stages (from the

presentation of stimulus to the statistical assessment) ranged from 8 to 17 options, and that

such methodological decision can induce substantial variability in the reported results, ultimately

hindering research replicability. Using fMRI, many studies have quantified the impacts of the

analysis software (Bowring, Maumet, and Nichols 2019; Li et al. 2021), the software version

(Gronenschild et al. 2012) and the operating system (Glatard et al. 2015; Gronenschild et al.
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2012) on results conducted on a single dataset. In the current study, we focused on examining

whether it is possible to reproduce the same ERP results after preprocessing data with different

software tools. To the best of our knowledge, the effect of the preprocessing software on the

same EEG dataset has never been studied before. This current study has not only provided a

validation of EEGLAB, Brainstorm and FieldTrip but also it contributed to better understand the

possible discrepancies in results generated by different EEG studies.

4.3. Methodological considerations

In this work, we attempted to reproduceة using different softwaresة the same preprocessing

pipeline initially proposed by (Williams et al. 2021). This was carefully done by conserving, as

much as possible, the same steps along with their related parameters (cut-off filters, baseline

duration, reference electrodes..etc) and order. Nevertheless, the derived signals and results

might be also sensitive to other factors that were not investigated in this study. For instance, the

parameters used to detect the artifactual channels were set to the default or to the most

commonly used values as recommended by each toolbox (such as the window length in which

signals are completely flat, the correlation with neighbors threshold and other criteria). An

interesting future prospect would be testing the consistency of results when varying these

factors.

To validate the hypotheses supported by the reference paper exploring the same dataset, we

compared the results generated by each software to those originally published by (Williams et

al. 2021). The cross-software discrepancies were also quantified. Another issue that may be of

great interest to be investigated is to evaluate the feasibility of each preprocessing tool in

generating reliable signals with good data quality. This could be done by comparing results to

ground-truth data generated ideally by a computational model of electrophysiological signals
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such as neural-mass models (Bensaid et al. 2019) or multivariate autoregressive models

(Anzolin et al. 2019; Haufe and Ewald 2016)

In order to conduct the comparative analysis between the results generated by the different

softwares, we used several quantification metrics to measure the consistency/discrepancy of

ERP waveforms and their related characteristics. We mainly relied on ERP as the main

objective of this work was to reproduce and validate the results published by (Williams et al.

2021) studying the reward positivity. However, it is commonly known that ERP strategy is based

on across-trial averaging which increases the signal-to-noise ratio, and blinds a considerable

part of the elicited brain activity. Thus, we are aware that the consistency of results may greatly

differ if the analysis was performed on the continuous preprocessed EEG instead of ERPs

computed after averaging a large number of epochs. In addition, considering smaller sample

sizes could also lead to higher levels of cross-software variability as previous literature has

outlined how variability induced by different pipelines decreases with higher signal-to-noise ratio

(e.g. see (Li et al. 2021) for an example with resting rate fMRI of various acquisition durations)

.

Among the available preprocessing tools used in EEG studies, we selected three of the most

commonly used softwares. In each software, we tried to follow, as much as possible, the same

preprocessing workflow of (Williams et al. 2021) using the provided software functions. This led

us to exclude other interesting packages that conduct a fully automatic preprocessing such as

automagic (Pedroni, Bahreini, and Langer 2019), the Harvard Automated Preprocessing

Pipeline for EEG (HAPPE) (Gabard-Durnam et al. 2018) and the Batch Electroencephalography

Automated Processing Platform (BEAPP) (Levin et al. 2018) toolboxes. In other words, our

inability to control or modify the inclusion and the order of the various preprocessing steps

impedes these toolboxes to respect the same preprocessing pipeline we were trying to

reproduce. Besides Matlab, it would be interesting to investigate and systematically quantify the
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differences of results generated by the MNE-python package (Gramfort et al. 2013) . In addition,

it is unclear how findings reported in this paper would generalize to other datasets or

experimental paradigms. Therefore, it would be interesting to evaluate the fluctuations of

results on other datasets and tasks covering further preprocessing pipelines and steps.

5. Conclusions

This study sheds light on how the software tool used to preprocess EEG signals impacts the

analysis results and conclusions. EEGLAB, Brainstorm and FieldTrip were used to reproduce

the same preprocessing pipeline of a published EEG study performed on 500 participants.

While the three softwares succeeded to infer the same conclusion of the original publication

regarding the effect size estimates related to the ERP features derived, we observed significant

differences in terms of the observed absolute voltage between EEGLAB, Brainstorm and

Fieldtrip results, as well as between each of the softwares and the original results. To better

understand the variability induced by the software tool, further comparative studies should be

conducted to examine the effects on the continuous EEG signals instead of ERP signals. In

addition, more in-depth analysis is recommended in order to identify the critical steps and

factors that lead the most to the variability observed.
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