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Abstract 

Many transcription factors (TFs) translocate to the nucleus with varied dynamic patterns in 

response to different inputs. A notable example of such behavior is RelA, a subunit of NF-κB, 

which translocates to the nucleus with either pulsed or sustained dynamics, depending on the 

stimulus. Our understanding of how these dynamics are interpreted by downstream genes has 

remained incomplete, partly because ubiquitously used environmental inputs activate other 

transcriptional regulators in addition to RelA. Here, we use an optogenetic tool, CLASP 

(controllable light-activated shuttling and plasma membrane sequestration), to control RelA 

spatiotemporal dynamics in mouse fibroblasts and quantify their effect on downstream genes 

using RNA-seq. Using RelA-CLASP, we show for the first time that nuclear translocation of 

RelA, without post-translational modifications or activation of other transcriptional regulators, is 

sufficient to activate downstream genes. Furthermore, we find that TNFα, a common 

endogenous input, regulates many genes independently of RelA, and that this gene regulation 

is different from that induced by RelA-CLASP. Genes responsive to RelA-CLASP show a wide 

range of dynamics in response to a constant RelA input. We use a simple promoter model to 

recapitulate these diverse dynamic responses, as well as data collected in response to a pulsed 

RelA-CLASP input, and extract features of many RelA-responsive promoters. We also pinpoint 

many genes for which more complex models, involving feedback or multi-step promoters, may 

be needed to explain their response to constant and pulsed TF inputs. This study introduces a 

new robust tool for studying mammalian transcriptional regulation and demonstrates the power 

of optogenetic tools in dissecting the quantitative features of important cellular pathways.  

Introduction 

Transcription factors (TFs) are critical intracellular messengers that transmit to the genome 

information about the internal and external conditions of the cell. Many studies in the last 

decades have delineated how changes in nuclear TF concentration and post-translational 

modifications modulate the effect of TFs on their cognate genes (1–4). Increasing evidence 

shows that many TFs, such as NFAT and RelA, can additionally regulate their spatiotemporal 

dynamics in response to environmental inputs, and hence might encode information in these 

dynamics (5, 6). 

 

Previous studies have used a variety of environmental and optogenetic inputs to regulate 

temporal dynamics of transcriptional regulators (7–15). A subset of these studies has also 

measured the effects of these dynamics on downstream gene expression, using techniques 

such as RNA-seq and reporter genes. For example, a study used gamma irradiation to induce 

pulses of p53, and then measured expression changes across the genome over a period of 12 

hours using RNA-seq. By combining these data with ChIP-seq data, the authors showed that 

using a single dynamic input, p53 can activate downstream genes with different temporal 

patterns due to differences in TF-promoter binding kinetics (10). Another study regulated NFAT 

dynamics through optogenetic control of calcium concentration. With this method, it was found 
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that a synthetic reporter did not differentiate between NFAT nuclear translocation dynamics, but 

instead activated in proportion to the integral of the NFAT nuclear localization (7). Finally, a 

recent study used microfluidics to precisely control the concentration of Tumor Necrosis Factor-

ɑ (TNFɑ) delivered to cells, which then regulated the amplitude of NF-κB pulses of nuclear 

localization. As a result, the authors demonstrated that downstream genes had differential 

responses to pulsed inputs of different amplitudes (8).  

 

A commonality across these studies is that they all modulate TF dynamics by controlling 

upstream regulators of the TF. As a consequence, such manipulations are pleiotropic, affecting 

many other downstream effectors in addition to the TF of interest. This can confound 

conclusions about the precise relationship between the dynamics of the TF and its target genes. 

As an example, a recent study quantified the effects of lipopolysaccharide (LPS) and TNFɑ 

using an Ifnar- and Nfkbia-knockout cell line. With these genetic modifications, these two inputs 

generated similar NF-κB translocation dynamics, thereby allowing authors to model stimulus-

specific effects. Despite the similar NF-κB dynamics, hundreds of genes were differentially 

regulated by these stimuli, highlighting the complex interactions between different pathways in 

response to environmental inputs (16).  

 

To dissect this complexity and elucidate the precise, quantitative effects of TF spatiotemporal 

dynamics on downstream gene expression in mammalian cells, we modify the yeast CLASP 

system for use across multiple cultured cell lines (17). With mammalian CLASP, we 

demonstrate optogenetic control of nuclear translocation for several TFs, including NFAT1 and 

RelA. We focus on RelA-CLASP and modulate its dynamics by inducing cells with pulsed and 

constant light inputs, thereby mimicking the effects of TNF and LPS, respectively. We monitor 

the effects of these TF spatiotemporal dynamics by measuring expression of downstream genes 

using RNA-seq. We observe that RelA-CLASP can activate downstream genes through its 

translocation alone, and that these genes have varied expression dynamics in response to a 

constant light input. We analyze these data using a simple model of promoter activation and 

gene expression. The dynamics of many genes could be captured with this model, which we 

use to extract quantitative relationships between model parameters. Additionally, this model can 

be used to predict the response of many genes to a pulsed light input, which we then 

experimentally validate with additional RNA-seq data. While many genes conform to this model, 

others show more intricate behaviors that highlight the complexity of signal processing that 

occurs downstream of RelA. Overall, our study introduces a highly effective optogenetic system 

in mammalian cells, and uses it to elucidate the RelA regulon and dissect promoter decoding of 

RelA translocation dynamics. These results add a deeper mechanistic understanding of the role 

of differing RelA translocation dynamics in response to environmental inputs. 
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Results 

Designing Mammalian CLASP as a modular optogenetic tool 

We have previously built, optimized, and demonstrated the utility of CLASP, a blue-light-

responsive optogenetic tool, for regulating nuclear translocation of various transcription factors 

in yeast (17). Briefly, CLASP consists of two LOV2 domains. One LOV2 domain is tagged to the 

plasma membrane (pm-LOVTRAP), which sequesters a protein cargo tagged to the second 

LOV2 domain (Zdk1-cargo-yeLANS) in the dark (18, 19). Blue light stimulation activates CLASP 

by releasing the Zdk1-cargo-yeLANS from sequestration by pm-LOVTRAP at the plasma 

membrane and also by opening the yeLANS to reveal the nuclear localization sequence (NLS). 

The activation of both LOV2 domains leads to nuclear translocation of Zdk1-cargo-yeLANS. To 

extend these results to mammalian cells, we first engineered a CLASP DNA construct that 

would express readily across multiple cell lines, and would work across cell lines. To improve 

plasma membrane targeting for the LOVTRAP in mammalian cells, we swapped the Hs_RGS2 

plasma membrane sequence used in yeast for a targeting sequence derived from Lyn kinase 

(20, 21). We next proceeded to optimize the method of delivery of CLASP DNA constructs. We 

created a three-plasmid system to deliver CLASP to mammalian cells: a plasmid expressing a 

fluorescent nuclear marker, a plasmid expressing the fluorescently-tagged pm-LOVTRAP 

system, and a plasmid expressing the fluorescently-tagged Zdk1-cargo-yeLANS protein (Figure 

S1A). These plasmids are delivered through lentiviral integration and can be transduced 

simultaneously or in series, depending on the goal of the user. 

 

A critical benefit of the multi-plasmid system is that it allowed us to create a method that was 

more amenable to rapid screening of different cargo constructs across multiple cell lines. We 

created "chassis" cell lines (which we also refer to as pm-LOVTRAP cell lines) in HEK293T, 

3T3, and MCF10A cells by transducing only the nuclear marker and pm-LOVTRAP plasmids; 

these could be used to screen any Zdk1-cargo-yeLANS construct of interest (Figure S1B). 

These chassis cell lines can be used with transient transfection to test whether a given cargo 

can be effectively sequestered and translocated by CLASP. With this three-plasmid system, a 

variety of cargos, including p53 and NFAT1 could be translocated to and from the nucleus in 

various cell lines with CLASP (Figures S1C-D). These experiments demonstrated that CLASP 

can be successfully transduced in every cell line that we have tried, and used to regulate 

nuclear translocation for a variety of transcription factor cargos. In summary, we have 

engineered CLASP to be a robust, modular tool for controlling nuclear translocation of a variety 

of protein cargos across mammalian cell lines. 
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Quantification of RelA-CLASP response to light reveals reversible and dose-responsive 

dynamics 

Given the modular nature of CLASP, we were particularly interested in testing its ability to 

control RelA (also known as p65), which is a transcriptional activator and subunit of the NF-κB 

complex. No previous reports have documented direct optogenetic control of RelA, despite its 

importance to cellular physiology. RelA regulates many cellular pathways, such as survival and 

inflammation, and is canonically studied for its response to immune system stimuli. In wildtype 

cells, the IκB proteins sequester RelA in the cytoplasm in the absence of stimulus. When cells 

are subjected to an environmental stimulus such as TNFɑ, IκB kinase (IKK) phosphorylates the 

IκB proteins, which leads to their degradation and the release of RelA (Figure 1A, top panel) (6). 

Critically, RelA is known to translocate to the nucleus with varied dynamics, undergoing 

repeated pulses or prolonged localization, depending on the stimulus (8, 16, 22). Optogenetic 

control of RelA translocation would therefore enable dissection of the effect of its nuclear 

translocation dynamics on downstream genes. 

 

To maximize the chance of successful control over RelA nuclear localization, we expressed the 

RelA-CLASP construct in a 3T3 cell line that contains knockout mutations for RelA and three 

regulators of RelA translocation, the Inhibitor of nuclear kappa light chain gene enhancer in B-

cells (IκB) proteins: IκBɑ, IκBβ, and IκBε (knockout cell line hereafter referred to as 3T3 Nfkbia-/- 

Nfkbib-/- Nfkbie-/- RelA-/-). This cell line, which we termed RelA-CLASP cells, was therefore an 

ideal chassis for testing the ability of CLASP to regulate nuclear translocation of RelA. We also 

added several mutations to the sequence of Mus musculus RelA which were predicted to 

inactivate the nuclear localization sequence, thereby improving optogenetic control of RelA 

translocation (23–25). 

 

Using this construct, we observed rapid blue light-mediated translocation of RelA from the 

plasma membrane to nucleus as measured by confocal microscopy; within 5 minutes of 

stimulation with blue light, nuclear translocation of RelA was evident (Figure 1B). Quantification 

of the response to blue light stimulation showed that nuclear translocation reached its maximum 

in less than 10 minutes and was reversible with nuclear exit occurring within 10-20 minutes after 

cessation of blue light (Figure 1C). Furthermore, consecutive pulses of blue light separated by 

20 minutes generated pulses of RelA-CLASP nuclear translocation with similar dynamics and 

amplitudes (Figure 1D).  

 

RelA-CLASP was also able to differentiate light inputs of different lengths and intensities. 

Varying blue light induction from 1-10 minutes, we found that the nuclear/cytoplasmic 

enrichment of RelA-CLASP increased with as little as 1 minute of blue light, reaching its 

maximum for a pulse duration of 8 minutes (Figures 1E, S2A). Nuclear/cytoplasmic enrichment 

of RelA-CLASP also increased approximately linearly as a function of blue light intensity 

(measured after 15 minutes of induction) (0-1.56 mW, induced with the Optoplate-96) (Figures 
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1F, S2B) (26, 27). Taken together, these data show that RelA-CLASP can quickly (≤ 8 minutes) 

and reversibly translocate to the nucleus, and that the magnitude of translocation can be tuned 

with light intensity.  

RelA-CLASP is insensitive to environmental inputs 

RelA is endogenously regulated by a plethora of environmental inputs, including TNFɑ, 

Interleukin-1β (Il-1β), and LPS. Each of these inputs is recognized by a different cellular 

receptor: TNFɑ is recognized by the Tumor Necrosis Factor Receptor (TNFR), IL-1β activates 

the Interleukin-1 Receptor (Il1R), while LPS binds the Toll Like Receptor 4 (TLR4) (28) (Figure 

2A, top panel). TNFɑ and Il-1β are cytokines produced during an immune response, and LPS is 

an endotoxin present on gram-negative bacteria that can induce an immune response. Since all 

three inputs converge on RelA, we wanted to determine whether these inputs retain their ability 

to activate RelA translocation and could therefore overpower RelA-CLASP sequestration.  

First, we sought to confirm prior reports documenting that wild type Mus musculus RelA 

translocates into the nucleus in response to its endogenous inputs in NIH3T3 cells. To do so, 

we built control cell lines (RelA-mScarlet cells) that heterologously expressed TagBFP as a 

nuclear marker and a wildtype Mus musculus RelA fused to mScarlet. These modifications were 

made in an otherwise wildtype NIH3T3 cell line that had intact endogenous control over nuclear 

translocation of RelA.  

 

Prior work has shown that TNFɑ binding of the TNFR leads to activation of IKK, as well as other 

kinases like c-Jun N-terminal Kinase (JNK) (28, 29). Given the intact IKK-IκB pathway in RelA-

mScarlet cells, RelA rapidly translocated to the nucleus upon stimulation with TNFɑ in this cell 

line (Figure 2B, green trace, top panel). This stimulation was specific to TNFɑ; addition of PBS + 

.1% BSA vehicle to RelA-mScarlet cells yielded no such response (Figure 2B, black trace, top 

panel). Previous studies have shown that TNFɑ induction leads to a coordinated first wave of 

translocation into the nucleus, followed by additional damped pulses (8, 30–32). Individual cell 

traces showed a similar finding, with some cells undergoing a short, single pulse within the first 

hour after induction, while other cells displayed two or more pulses of RelA translocation after 

induction (Figure 2B, inset, top panel). By contrast, in RelA-CLASP cells, nuclear/cytoplasmic 

enrichment in response to TNFɑ was minimal, and similar to that seen with vehicle induction 

(Figure 2B, green and black traces, bottom panel). Individual cell traces confirm that within the 

population, RelA-CLASP nuclear translocation was not induced by 1 ng/mL TNFɑ (Figure 2B, 

inset, bottom panel). 

 

Il-1β activates the Il1R, which then signals through MyD88. This leads to activation of IKK, as 

well as other regulators like IL-1 receptor-associated kinase 1 (IRAK1) and JNK (28). 

Accordingly, RelA-mScarlet cells induced with 1 ng/mL of Il-1β responded with a coordinated 

translocation to the nucleus which resolved more rapidly than that induced by TNFɑ (Figure 2C, 

orange trace, top panel) (16, 22). Here again, there was minimal change in nuclear/cytoplasmic 
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enrichment for RelA-CLASP cells induced with 1 ng/mL Il-1β (Figure 2C, orange traces, bottom 

panel).  

 

LPS binds the TLR4, which activates the MyD88 pathway as well as interferon production (28, 

29). Unlike the response to TNFɑ and Il-1β, RelA translocation in RelA-mScarlet cells in 

response to LPS was delayed, but extended for nearly two hours (Figure 2D, pink trace, top 

panel). Individual cell traces demonstrated that this prolonged translocation is uniform across 

cells, a key difference between the response to LPS and TNFɑ (Figure 2D, inset, top panel). 

Here again, despite the coordinated and prolonged response seen in RelA-mScarlet cells, 

translocation of RelA-CLASP in response to LPS was not distinct from translocation of RelA-

CLASP after addition of vehicle (Figure 2D, bottom panel).  

 

These data therefore indicate that RelA-CLASP is robustly sequestered and not induced by 

environmental stimuli. We therefore sought to probe next whether the complement is true -- that 

RelA itself is not responsive to light. To do so, we subjected both RelA-CLASP cells and RelA-

mScarlet cells to a two-hour blue light input and measured nuclear localization (Figure 2E). 

When given a two-hour light input, RelA-CLASP maintained nuclear localization throughout the 

duration of the input, and then exited the nucleus shortly after the light input was turned off 

(Figure 2F, blue trace, bottom panel). Individual cell traces showed that within the population of 

RelA-CLASP cells, nuclear translocation and nuclear exit were synchronous across cells and 

also closely timed with the blue light input. For RelA-mScarlet cells, blue light did not lead to any 

appreciable nuclear translocation over the no light control (Figure 2F, blue and black traces, top 

panel). 

 

Together, these data indicate that wild type RelA responds to environmental inputs by 

translocating to the nucleus, and that translocation of RelA-CLASP is exclusively controlled by 

blue light. While nuclear translocation of RelA is known to be necessary for expression of target 

genes, it is not known whether RelA translocation alone is sufficient for gene activation. As 

such, RelA-CLASP provided us with a unique opportunity to tackle this important question.  

 

TNFɑ and RelA-CLASP control gene regulons that overlap, but also differ in important 

ways  

Many previous studies have used environmental inputs to regulate the nuclear translocation of 

RelA and quantify the effect of differential translocation dynamics on downstream genes (8, 9, 

13, 30). As discussed previously, these inputs can have pleiotropic effects, activating many 

other pathways and regulators in addition to modulating RelA translocation. To quantify these 

pleiotropic effects for one such input, we delivered 1 ng/mL TNFɑ to pm-LOVTRAP cells, which 

express a nuclear marker and pm-LOVTRAP but not RelA. We then measured gene expression 

using RNA-seq at 0 hr, 1 hr, and 2 hr of TNFɑ induction (Figure 3A, top panel). In agreement 

with the idea that environmental inputs such as TNFɑ can elicit many cellular programs, we 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.03.502739doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.03.502739
http://creativecommons.org/licenses/by-nc-nd/4.0/


found that the expression of 1209 genes was significantly changed (FDR p < .05 as compared 

to 0 hr) by 1 hr or 2 hr TNFɑ induction, even in cells that lack RelA (examples shown in Figure 

3B). Gene Ontology (GO) analysis of the 1209 genes modulated by TNFɑ indicated that 

pathways related to cell cycle, apoptosis, differentiation, and proliferation were significantly 

affected. However, terms related to NF-κB signaling, immunity, and inflammation were not 

significant in this analysis (Figure S3A).  

 

To obtain a global view of the ability of RelA nuclear translocation to induce gene expression, 

we next performed RNA-seq on RelA-CLASP cells induced with constant blue light at 1.38 mW 

(Figure 3A, bottom panel). We collected samples for sequencing at 0 hr, 1 hr, and 2 hr of blue 

light induction. As a control, we induced pm-LOVTRAP cells with the same light intensity and 

duration, and collected the same timepoints for sequencing. We sought to eliminate the effect of 

blue light by subtracting the log2 fold change in gene expression seen in pm-LOVTRAP from 

that seen in RelA-CLASP cells at each timepoint. We termed this metric log2FC RelA-CLASP 

induction (fold change is abbreviated as FC). As an additional control, we measured cell viability 

after exposure to 2 hours constant light at varied intensities. We found that pm-LOVTRAP and 

RelA-CLASP viability was not affected by the intensity of light used in our experiments (Figure 

S3C).  

 

Overall, 650 genes out of the 1209 genes responsive to TNFɑ induction in pm-LOVTRAP cells 

were also significantly changed by constant light induction in RelA-CLASP cells (FDR p < .05 as 

compared to no input for the same cell line). This indicates that while these genes can be 

targets of RelA, they are also responsive to other signaling pathways. In general, these genes 

showed a more prolonged gene expression change in response to constant blue light in RelA-

CLASP cells than in response to TNFɑ in pm-LOVTRAP cells. In fact, 585 out of these 650 

shared genes are significantly induced at the 1 hr, but not at the 2 hr TNFɑ timepoint in pm-

LOVTRAP cells. By contrast, only 124 of the 650 shared genes are not significantly induced at 

the 2 hr constant light timepoint in RelA-CLASP cells. Examples of these shared significantly 

regulated genes are plotted in Figure 3B. Genes such as Phlda1 and Atf3 reach similar maximal 

induction when induced by TNFɑ in the absence of RelA or constant RelA-CLASP input, but 

their induction proceeds with different dynamics. By contrast, others such as Cmtm6 and 

Rnaset2b are induced by constant RelA-CLASP input but repressed by TNFɑ in the absence of 

RelA.  

 

For the remaining 559 genes that are significantly changed by TNFɑ induction in pm-LOVTRAP 

cells but not by light in RelA-CLASP cells, GO analysis showed that they related to similar 

pathways as the entire set of genes significantly changed by TNFɑ induction (n=1209). 

Significant GO terms (p < .05) included response to tumor necrosis factor, ERK1 and ERK2 

cascade, and epithelial cell proliferation (Figure S3B). These data indicate that TNFɑ, in the 

absence of RelA, induces a regulon that does not completely overlap with genes known to be 

downstream of RelA. This illustrates the wide-ranging changes caused by TNFɑ induction and 
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points to the potential confounding effects of using environmental inputs to study the effect of 

nuclear translocation dynamics of a single transcriptional regulator. 

 

RelA-CLASP induced with a constant light input activates known RelA-responsive 

genes 

To more specifically quantify the effects of RelA nuclear translocation dynamics on downstream 

genes, we analyzed the genome-wide effects of RelA-CLASP when induced with a two-hour 

constant light input as measured through RNA-seq. Differential gene expression analysis 

showed that 5034 genes were significantly regulated by RelA-CLASP in response to constant 

light (FDR p < .05 at 1 hr or 2 hr light input, when compared to 0 hr). Further examination of 

these genes showed that several were known to be targets of RelA (examples shown in Figure 

3C). These genes included Tlr2, a Toll-like receptor that senses Pathogen-associated molecular 

patterns (PAMPs) and is activated in an NF-κB-dependent manner (33). Nfkbiz produces IκBζ, 

another inhibitor of RelA nuclear translocation; activation of IκB proteins, including IκBζ, acts as 

a feedback loop on RelA translocation (34). Ccl2 is a chemokine induced in response to many 

inflammatory inputs, and Tnfrsf11b is a secreted protein that binds TNF-related apoptosis 

inducing ligand (TRAIL) and Receptor Activator of NF-κB Ligand (RANKL) (35, 36). The four 

genes regulated by RelA-CLASP translocation shown in Figure 3C had a log2FC RelA-CLASP 

induction varying from .5-2.5 over the course of 2 hours of constant light induction. Further, 

each of these genes displayed different dynamics of RNA expression despite the constant RelA-

CLASP input.  

 

Previous studies have shown that post-translational modifications of RelA, such as 

phosphorylation, are critical for downstream gene activation (37). Additionally, activation of RelA 

co-regulators, like JNK, CBP:p300, and IκBβ, in response to endogenous inputs has been 

shown to boost the ability of RelA to activate genes (24, 38, 39) . Given that blue-light-induced 

RelA-CLASP translocation was capable of inducing many genes, we wondered if other RelA co-

regulators were also induced by light.  We turned to Western blotting to investigate this 

question. First, we confirmed the absence of endogenous RelA expression (65 kDa) in both 

RelA-CLASP and pm-LOVTRAP cells by blotting for total RelA (Figures 3D [top], S4A [top left], 

S4B [left], adjusted p < .01). We also confirmed that Zdk1-RelA-mScarlet-yeLANS (115 kDa) is 

expressed only in the RelA-CLASP cell line (Figures S4A [top left], S4B [right], adjusted p < 

.05). Second, we blotted for phosphorylated RelA and its co-regulator JNK, which are induced 

by environmental stimuli commonly used to induce RelA translocation (8, 15, 16). We observed 

no increase in phosphorylation of RelA and JNK in RelA-CLASP or pm-LOVTRAP cells after 30 

min of blue light at 1.38 mW. As expected, 30 min of 1 ng/mL TNFɑ led to increased 

phosphorylation of RelA and JNK in RelA-CLASP, RelA-mScarlet, and wildtype NIH3T3 cells 

(Figures 3D [middle, bottom], S4A [bottom], S4C-D). Phosphorylated RelA and JNK were 

significantly lower in RelA-CLASP cells treated with blue light than those treated with TNFɑ 

(S4C-D, adjusted p < .001, adjusted p < .05, respectively). These data are the first 
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demonstration that RelA is capable of controlling gene expression alone, without activation of its 

regulators. Indeed, these data provide direct evidence that nuclear translocation of RelA alone, 

in the absence of RelA phosphorylation, can induce known downstream genes.  

Genes regulated by RelA-CLASP show diverse dynamical behaviors  

To further probe the quantitative dynamics of the genes responsive to RelA-CLASP under 

constant light stimulation (FDR p < .05, 5034 genes), we focused on those genes that had the 

top 15% of log2FC RelA-CLASP induction at either the 1 hr or 2 hr time points, thereby reducing 

the set of genes of interest to 896 genes. For comparison of the different dynamics of these 

genes without the confounding effect of their different induction amplitudes, we normalized the 

log2FC RelA-CLASP induction to its maximum for each gene. We then used longitudinal k-

means clustering to group them based on quantitative differences in induction dynamics (40). 

Six clusters of dynamic gene expression trajectories emerged (Figure 3E, S3C). Cluster A (291 

genes) reached peak induction at 1 hr of constant light, and maintained or slightly decreased 

induction at 2 hr of constant light. Cluster B (215 genes) increased in a graded fashion with 

each hour and peaked at 2 hr of constant light induction. Similar to cluster A, clusters C (201 

genes) and D (98 genes) peaked at 1h of constant light, yet these genes had decreased 

induction by at least 15% (and up to 100%) of their maximum by 2 hr of constant light. Cluster 

E, on the other hand, represented 61 genes that induced minimally at 1 hr of constant light, and 

reached their peak at 2 hr of constant light. Cluster F (30 genes), similarly to clusters C and D, 

peaked at 1 hr of constant light induction, after which its log2FC RelA-CLASP induction 

decreased strongly to below 0.  

 

These six clusters qualitatively represent four types of dynamic behaviors: early genes, 

proportional genes, late genes, and non-monotonic genes, a gene activation structure seen in 

previous studies (10, 41, 42). Early genes, like those in cluster A, are those that peak in log2FC 

RelA-CLASP induction at 1 hr of constant light and stay activated through 2h of constant light. 

Proportional genes, like those in cluster B, are those that increase proportionally in log2FC RelA-

CLASP induction at both 1 hr and 2 hr. Late genes are not induced or may even be repressed at 

1 hr of constant light induction, and are proceedingly induced at 2 hr of constant light induction; 

genes in cluster E fall into this category. Finally, non-monotonic genes are those that reach 

peak RelA-CLASP induction after 1 hr of constant light, and then decrease induction by 2 hr of 

constant light, which is seen in clusters C, D, and F. These data show a remarkable breadth of 

gene expression dynamics that can be induced by a constant two-hour input of RelA nuclear 

translocation. 

Genes that induce rapidly given a constant light input are predicted by a simple 

promoter model to generate varied responses to a pulsed light input 

To understand the quantitative parameters that determine gene expression dynamics in 

response to a constant two-hour RelA-CLASP input, we built a simple model of mRNA 

expression. In this model, a promoter that exists in the OFF state (poff) transitions to the ON 
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state (pon) with a rate that depends on RelA-CLASP nuclear concentration and the parameter 

kon. The promoter also transitions back to its OFF state with a constant off rate, koff. The state 

pon is a transcription competent state that leads to mRNA production with a rate of β1. 

Transcription also proceeds at a basal rate β0. Finally, the mRNA decays with first order kinetics 

at a rate ɣ1 (Figure 4A). This simple model has been used in multiple investigations and shown 

to be able to reproduce a subset of gene expression dynamics (16, 17). However, it is incapable 

of recapitulating others, such as genes that respond slowly to constant TF input (late genes, 

cluster E in Figure 3E), as well as genes that peak early and then decline afterwards (non-

monotonic genes, Clusters C, D, F in Figure 3E) because no such structural element (e.g. 

feedback loop) is present in the model. However, this simple model is sufficient to explain the 

dynamics of early (cluster A) and proportional (cluster B) genes, and therefore provides an 

opportunity to explore their quantitative parameters.  

 

To do so, we simulated the model for 16,000 parameter sets varying kon, koff, and ɣ1. β0 and β1 

were fixed across all parameter sets. We simulated mRNA time trajectories in response to a 

two-hour constant TF input for each combination of parameters. To allow comparison with the 

experimental data, we normalized these trajectories to the maximum simulated mRNA value, 

scored at either 1 hr or 2 hr after induction.  

 

First, we filtered the simulated trajectories to only keep those that were within the data bounds 

seen in cluster A in the RNA-seq data (Figure 4C, F). Parameters were also filtered to remove 

those which led to lower log2FC RelA-CLASP induction than that seen in cluster A; these 

parameters were primarily those with low kon and high koff. Examination of the parameter sets 

that could reproduce the early gene response showed that these parameters varied widely, but 

had a tradeoff between kon and ɣ1 at the lower bound. That is, a lower kon necessitated a higher 

ɣ1, and vice-versa (Figure S5A-C). ɣ1 is inversely proportional to basal mRNA expression. 

Accordingly, a higher ɣ1 leads to lower basal mRNA expression and faster dynamics, allowing 

parameter sets with any value of kon to increase their log2FC RelA-CLASP induction at a speed 

commensurate with the data once the light turned on. On the other hand, parameters with a 

lower ɣ1 required higher kon, which increases the rate of mRNA expression in response to RelA 

input (Figure S5D). 

 

Different combinations of model parameters (kon, koff, ɣ1) were responsible for these similar 

responses to a constant two-hour RelA-CLASP input. This behavior could be the result of 

parameter degeneracy, or it could also reflect genuine differences in the characteristics of the 

promoters. We hypothesized that we could demonstrate whether different parameters underlie 

the same response to prolonged RelA-CLASP translocation by subjecting these cells to a more 

dynamic light input. If the genes exhibit a homogenous response to the dynamic input, then it is 

likely that parameter degeneracy exists in the model. However, if the input yields different gene 

expression responses that relate to subsets of parameter combinations, then it is possible that 
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these promoters possess different parameters that can only be revealed with more dynamic 

inputs. 

 

We first used the computational model to test this hypothesis, simulating the response to a 

pulsed RelA-CLASP input for the same parameter sets previously identified as yielding an early 

gene response to a constant input. This input delivered light for a cumulative 2 hours, but with 

two hour-long pulses separated by one hour of no light (Figure 4B). Despite the uniform 

response to constant light inputs, the simulated responses to this pulsed input exhibited a 

variety of behaviors. In order to segment these dynamic responses, each simulated gene 

expression trajectory was normalized to its maximum value for the pulsed input to remove the 

effect of magnitude and then clustered using k-means longitudinal clustering (40). We identified 

three clusters as the most parsimonious division. To facilitate comparison with the plots showing 

response to constant light input, we normalized the simulated gene expression to the maximum 

simulated expression in response to a constant input (Figure 4D, S5E). The first cluster (purple) 

corresponded to parameter sets with a response that reached near-maximal induction at the 

first timepoint after light induction, that is, after one hour of TF input and a one hour OFF period 

(represented in Figure 4D as ‘1 hour cumulative light induction time’). These parameter sets are 

capable of inducing slightly more mRNA in response to a pulsed TF input than a constant input 

(Figure 4A). The second cluster (orange) contained parameter sets that responded 

commensurately to the pulsed TF input in log space, with expression increasing at each 

timepoint. Finally, the third cluster (green) consisted of parameter sets that had low gene 

expression at the first timepoint after light induction and reached maximal expression at the end 

of the experiment. 

 

Examination of the parameter values that generated these different classes of dynamic 

trajectories in response to a pulsed input showed a clear pattern: the clusters were most 

differentiated by the relationship between koff and ɣ1. The orange and green clusters (Figure 4D) 

were characterized by simultaneously higher koff and ɣ1 values relative to all parameter sets that 

recapitulated the early gene response to a constant input (Figures 4E, S5F-G). On the other 

hand, the purple cluster (Figure 4D) contained parameter sets with low koff and ɣ1, high koff and 

low ɣ1, or low koff and high ɣ1. Indeed, for both the orange and purple clusters, there was a 

tradeoff between ɣ1 and koff, where higher koff required lower ɣ1 and vice-versa (Figure 4E). 

However, the purple cluster required either lower values of koff or ɣ1 than those within the orange 

cluster, and could have parameter sets with simultaneously low koff and ɣ1.  

 

The importance of the relationship of koff and ɣ1 can be explained through examination of the 

model. It was previously shown that the rate at which mRNA expression increases in response 

to a TF input is dependent on kon, koff, and ɣ1; therefore all three parameters affect mRNA 

expression while the light is ON (17). However, for the pulsed input, after the light turns OFF 

and RelA-CLASP exits the nucleus (within 15 minutes of the end of the light input), mRNA 

expression is largely determined only by koff and ɣ1.  
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For the green cluster, high koff and ɣ1 allowed log2FC RelA-CLASP induction to reach steady-

state value during the first hour of the experiment, when the light is ON. During the OFF period, 

though, these parameters also yielded fast mRNA degradation and rapid promoter shutoff 

(Figure S5H). As a result, the log2FC RelA-CLASP induction measured at the first timepoint 

after light induction was low (Figure 4D). Still, due to the faster kinetics of the green cluster, 

log2FC RelA-CLASP induction reached its maximum value again at the end of the experiment.  

 

By contrast, the purple cluster contained parameter sets with low koff and ɣ1, high koff and low ɣ1, 

or low koff and high ɣ1. This caused, on average, a slightly slower rate of increase for log2FC 

RelA-CLASP induction during the first hour, when the light is ON. However, these parameters 

also had a slower rate of shutoff during the time that the light was OFF. For those parameters 

with low koff, the promoter continued to produce mRNA even in the absence of TF input. For 

those with low ɣ1, there was slow degradation of the mRNA. Both of these scenarios lead to 

sustained mRNA expression during the light OFF period, and high log2FC RelA-CLASP 

induction at the final timepoint (Figures 4D, S5H). Due to the mRNA accumulated before the 

second pulse, the purple cluster is able to generate slightly higher mRNA expression in 

response to a pulsed input at the final timepoint than a constant two-hour input.  

 

Finally, the orange cluster showed an intermediate phenotype where, on average, log2FC RelA-

CLASP induction increased more slowly than the green cluster, but more quickly than the purple 

cluster while the light was ON. However, the increased values of koff and ɣ1 relative to the purple 

cluster also led to faster mRNA decay and promoter shutoff during the light OFF period (Figure 

S5H). This increased mRNA decay and promoter shutoff led to a moderate value of log2FC 

RelA-CLASP induction at the first timepoint after light induction, and maximal or near-maximal 

log2FC RelA-CLASP induction at the final timepoint.  

 

We vetted the predictions generated through simulation of a pulsed TF input with an RNA-seq 

experiment using a pulsed light input (Figure 4B). For these data, we calculated log2FC RelA-

CLASP induction for the genes identified in cluster A (Figure 4F) that were significantly induced 

(FDR p < .05) by pulsed light inputs and normalized each gene to its maximum log2FC RelA-

CLASP induction in response to constant light. We then clustered the gene expression 

dynamics for the pulsed light input. Doing so identified 7 clusters, three of which closely 

resembled those predicted by the simple model (16.8% of genes in clusters A, Figure 4G). This 

strongly implied that these genes could be well-modeled by the most parsimonious simple 

promoter representation. However, there were still 4 clusters of genes that were not predicted 

by the simple model. The first two clusters of genes both peaked early in response to pulsed 

inputs, and then decreased induction during the second hour of light input (fourth, fifth graphs, 

Figure 4G; 4.1% of early genes). This decrease in induction in response to TF input cannot be 

predicted by the simple model. The third cluster consists of genes with a maximal induction that 

is much higher for pulsed light inputs than for constant light inputs, which can also not be 
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predicted by any parameter set tested with the simple model (sixth graph, Figure 4G; 35.7% of 

early genes). The final cluster, which was not plotted, consists of genes not significantly induced 

(FDR p > .05) by pulsed light inputs (43.3% of early genes). This lack of induction in response to 

pulsed inputs additionally cannot be predicted by this model.  

 

Genes that induce gradually given a constant light input are predicted by a simple 

promoter model to yield varied responses to a pulsed light input 

As discussed previously, the simple model can also be used to recapitulate the proportional 

response to constant TF inputs in log space. 16,000 parameter sets varying kon, koff, and ɣ1 were 

generated as described before, and then used to simulate mRNA dynamics in response to a 

constant RelA-CLASP input (Figure 5A). Each of these simulations was normalized to the 

maximum mRNA value simulated, and then all parameter sets were filtered for those that 

generated gene expression dynamics within the bounds of the proportional genes (cluster B, 

Figure 3E) identified by the RNA-seq data (Figure 5B). Overall, these parameter sets had lower 

ɣ1 and lower kon values than the full set of parameters tested (Figure S6A-C). Lower kon values 

caused mRNA expression to rise more slowly (17). Furthermore, lower ɣ1 meant that mRNA 

decay occurs slowly, allowing the mRNA to accumulate over the length of the constant TF input 

(Figure S6D).  

 

Next, we used these parameter sets to simulate the model response to a pulsed RelA-CLASP 

input that delivered a cumulative 2 hours of light, but in one hour pulses separated by an hour of 

light OFF (Figure 5A). We again clustered the simulated responses after normalizing each 

trajectory to its maximum value in response to the pulsed TF input. To facilitate comparison 

across plots, we plotted both clusters with simulated log2FC RelA-CLASP induction normalized 

to its maximum value for the same parameter set when simulated with a constant two-hour 

input. Clustering identified two qualitatively different responses to a pulsed RelA-CLASP input 

(Figure 5C, S6E). The green cluster showed a steeper rise in log2FC RelA-CLASP induction at 

the first timepoint after light induction (given one hour ON and one hour OFF) than the pink 

cluster. These two behaviors also differed in their associated koff values (Figure 5D, S6F). In 

particular, parameter sets in the pink cluster had higher koff values relative to all parameter sets 

that generated a proportional increase in log2FC RelA-CLASP induction .  

 

Many of the parameter sets in the pink cluster also had a slightly higher kon (Figures 5D, S6F-

G). As a result of the increased kon, these genes increased mRNA expression more quickly 

during light ON; however, the increased koff led to rapid shutoff of the promoter during light OFF. 

For all promoters that  generated a proportional response to constant TF inputs in log space, ɣ1 

is necessarily low. Therefore, while log2FC RelA-CLASP induction slightly decreased during 

light OFF, it did not completely decay. During the second RelA-CLASP pulse, this cluster 

reached its maximal log2FC RelA-CLASP induction (Figure S6H).  
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On the other hand, the parameter sets in the green cluster had lower koff values (Figure 5D, 

Figure S6F-G). Lower koff combined with the same low ɣ1 constraint resulted in mRNA levels 

that kept slightly increasing during the light OFF period. This resulted in a slightly higher log2FC 

RelA-CLASP induction at the first timepoint after light induction (Figure S6H). 

 

Here again, we compared the predictions from these simulations with the RNA-seq data for 

pulsed inputs, by clustering the response to pulsed light inputs for the genes assigned to cluster 

B (Figure 5E). This resulted in 6 clusters, two of which qualitatively recapitulated responses 

predicted by the simple model (Figure 5F; 19.1% of proportional genes). The third cluster of 

gene trajectories displayed a strong induction at the first timepoint after light induction followed 

by decreased induction at the final timepoint (7.9% of proportional genes). The fourth cluster 

consisted of two genes that had a delayed response to pulsed light inputs. The fifth cluster 

displayed genes that activated much more strongly in response to pulsed light inputs than 

constant light inputs (14.9% of proportional genes). Lastly, many genes from cluster B (57.2% of 

proportional genes) were in fact not significantly (FDR p < .05) regulated by pulsed light inputs. 

These behaviors cannot be recapitulated by the model, indicating that for these genes, likely 

more sophisticated regulation is at play. Nonetheless, given that RelA canonically regulates 

genes in conjunction with other transcriptional regulators, and activates several feedback loops, 

we find it remarkable that a meaningful subset of its downstream genes can be modeled as 

simple promoters. 

 

Discussion 

In this study, we extended our previous efforts to build a modular and reversible optogenetic tool 

to an additional model system, mammalian cells, and then used this tool to generate a novel 

transcriptomic dataset that measures the effect of RelA nuclear translocation on downstream 

genes. Importantly, we were able to provide the first direct demonstration that RelA 

translocation, without phosphorylation or activation of co-regulators, is able to induce 

downstream gene activation. Using a computational model of gene expression, we were able to 

further probe this dataset to categorize genes whose promoters might activate linearly in 

response to RelA nuclear concentration. We also identified promoters that cannot be modeled 

linearly, which suggests more complex features such as multistep activation or feedback.  

 

To dissect the intricate solo gene regulon of RelA-CLASP, we asked whether the simple gene 

expression model could constrain parameter relationships of promoters that are explained by 

this model. For early genes, those that reach near-maximal log2FC RelA-CLASP induction 

within one hour of constant light, we found that the constant input could only mildly constrain the 

relationship between kon and ɣ1. Notably, this two-hour continuous pulse of RelA was picked to 

mimic nuclear translocation in response to LPS. By contrast, a pulsed RelA input with two one 

hour pulses separated by one hour of light OFF was highly informative – it delineated three 

classes of promoters, differentiated by their koff and ɣ1. This computational experiment was 
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further corroborated with RNA-seq data that displayed the 3 quantitatively different classes of 

promoters, in addition to other classes. 

 

For genes that proportionally increased their log2FC RelA-CLASP induction in response to 

constant light, the parameters were better constrained – they cannot have a large kon or ɣ1. 

Furthermore, the gene expression response of these promoters for the pulsed input was more 

similar to the response following the continuous input, though with additional subtleties. This 

behavior was also similar to a subset of the early genes (cluster A) when subjected to the same 

pulsed input (compare for example pink in Figure 5C and orange in Figure 4D). Interestingly, 

this same behavior is generated by different underlying parameters. Therefore, using only the 

pulsed input to constrain the parameters of these quantitatively different promoters would have 

failed. These observations highlight the complex experimental design needed to unravel 

quantitative parameters. As a case in point, many of the genes that are responsive to RelA 

cannot be explained by a simple model and may require additional dynamic inputs to constrain 

their parameters. We hope this will be the subject of many future studies that move the field into 

quantitative and predictive understanding of promoter decoding of RelA translocation dynamics.  

 

These investigations will require precise tools such as CLASP, rather than environmental inputs. 

Indeed, while the RelA-CLASP gene regulon overlaps with the TNFɑ-induced regulon, the two 

are not identical. For example, RNA-seq data in Figure 3 collected following TNFɑ induction in a 

RelA and IκB knockout cell line unambiguously show that TNFɑ regulates many genes  

independent of RelA. These data demonstrate the difficulty in using environmental inputs alone 

to study the downstream effects of TF dynamics. Future studies measuring the epistatic 

relationships between RelA and various environmental inputs, as well as the relationship with 

other transcription factors, would expand our understanding of RelA transcriptional activation.  

  

The latter considerations are a clear limitation of this study. Combinatorial control of gene 

expression is widespread, if not ubiquitous, in mammalian cells. In future studies, CLASP could 

be composed with environmental inputs to precisely regulate RelA translocation during stimulus, 

thereby allowing other pathways to be activated at the same time. This would be possible 

because of the robust sequestration of pm-LOVTRAP and the knockout of IκB proteins, as seen 

in Figure 2. A recent study used chemical inputs and optogenetic control of Erk to discern the 

effect of Erk translocation on cell proliferation; future studies focusing on RelA could also 

elucidate the effects of dynamics in a similar fashion (12). Additionally, other studies have 

compared dynamics across stimuli to understand what features of a dynamic RelA input help 

the cell to differentiate between inputs (43, 44). RelA-CLASP could be used to further 

substantiate the computational analyses that were used to draw conclusions on how genes use 

parameters such as amplitude, pulse width, and frequency to differentiate inputs. Importantly, 

these relationships should also be delineated across additional cell lines, since cell identity can 

affect gene response (13).  
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This study is limited by the use of bulk RNA-seq data, which might obscure the individuality of 

response in single cells. This individuality could expand our quantitative understanding of 

promoter decoding of RelA transcription dynamics. Future experiments using RelA-CLASP 

could use single cell RNA-seq (scRNA-seq), single molecule RNA FISH (smFISH), or MS2 

systems to further probe heterogeneity in response to the same dynamic TF input. Notably, 

several recent studies have used environmental inputs to modulate localization of transcriptional 

regulators like RelA and Erk, and then measured the heterogeneous response of single cells 

with these methods (9, 32, 45, 46). These studies observed that TF translocation dynamics, as 

well as downstream gene expression dynamics, are heterogeneous amongst single cells in 

response to environmental inputs. Tracing the roots of this heterogeneity, and ascribing it to the 

TF signal itself or signal processing at the level of the genes may be facilitated by a uniform 

dynamic TF input generated by optogenetic control.  

Materials and Methods 

Experimental details 

Mammalian cell culture 

HEK293T and LX293T cells were cultured in 1 g/L glucose DMEM (Life Technologies 

11885076), 1% Antibiotic-Antimycotic (Thermo 15240062), and 10% Fetal Bovine Serum. 

NIH3T3 and 3T3 Nfkbia-/- Nfkbib-/- Nfkbie-/- RelA-/- cells were maintained in 1 g/L glucose DMEM 

(Life Technologies 11885076), 1% Antibiotic-Antimycotic (Thermo 15240062), and 10% heat-

inactivated Bovine Calf Serum (UCSF Cell Culture Facility, HyClone, lot number AZM197696). 

Heat inactivation was accomplished by heating serum at 56°C for 30 minutes. After heating, 

serum was cooled to room temperature before media production. MCF10A cells were cultured 

in DMEM/F12 (Thermo 21331020), 5% Horse Serum (UCSF Cell Culture Facility), 0.1 mg/mL 

EGF, 4 mg/mL Insulin (Gibco 12585014), 1 mg/mL Hydrocortisone, .1 mg/mL Cholera toxin 

(Sigma C8052), and 1% Antibiotic-Antimycotic (Thermo 15240062). All cells were cultured at 

37° C and 5% CO2. NIH3T3 and 3T3 Nfkbia-/- Nfkbib-/- Nfkbie-/- RelA-/- cells were passaged every 

three days; HEK293T, LX293T, and MCF10A cells were passaged every other day.  

Plasmid and cell line construction 

Hierarchical golden gate assembly was used to assemble all plasmids (21, 47). BsaI and BsmBI 

sites were removed from parts to enable further assembly. Parts were generated through PCR 

or ordered as gBlocks from IDT. Plasmids were grown and prepared from DH5ɑ, XL1 Blue, 

Mach1, or Stbl3 competent cells (Macrolab, Berkeley, CA). For lentiviral transduction, plasmids 

were first transfected into LX293T cells at 80% confluency using Lipofectamine 2000 (Thermo 

11668019), the plasmid of interest, and two plasmids encoding second generation lentiviral 

envelope and packaging vectors (MDG.2 and CMV). Transfection reagent and media were 

removed from LX293T cells approximately 16 hours later and transfected cells were re-fed with 

1 g/L glucose DMEM (Life Technologies 11885076), 1% Antibiotic-Antimycotic (Thermo 
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15240062), and 10% Fetal Bovine Serum. 24 hours later, the media was removed from 

transfected LX293T cells and filtered through a .45 micron filter to remove cell debris. For 3T3 

Nfkbia-/- Nfkbib-/- Nfkbie-/- RelA-/- cells, polybrene was added to the filtered viral supernatant to 

achieve a final concentration of 4 µg/mL after adding to cells. Viral supernatant was then added 

to cells for transduction slowly on top of media. After addition of viral supernatant, cells were 

spun at 800xg for 45 minutes to increase transduction efficiency. After 16-24 hours of incubation 

with viral supernatant, cells were re-fed with fresh media. After transduction, cells were sorted to 

select the population of interest.  

Cell selection via sorting 

To prepare for sorting, cells were lifted using trypsin and resuspended in the corresponding 

media to quench trypsin activity. Afterwards, cells were spun down at 400xg for 5 minutes to 

form a pellet and placed on ice. This pellet was then resuspended in PBS for sorting. Sorting 

was performed on a BD FACSAria II. BFP was assessed using the BV405 channel (405 nm 

excitation, 450/50 nm filter), mScarlet was measured using the mCherry channel (561 nm 

excitation, 610/20 nm filter), and IRFP was assessed using the APC-Cy7 channel (633 nm 

excitation, 780/60 nm filter). Cells were sorted into fresh media and re-plated after sorting. 

 

Modified RelA 

Residues Lys301, Arg302, Lys303, Leu438, Leu441, and Phe443 in M. musculus RelA were mutated to 

alanines, and His440 was mutated to a glutamine. 

RelA-CLASP cell line generation 

RelA-CLASP was generated through lentiviral transduction of the bulk-sorted pm-LOVTRAP 

chassis cell line (background 3T3 Nfkbia-/- Nfkbib-/- Nfkbie-/- RelA-/-) with the Zdk1-RelA-

mScarlet-yeLANS construct (chassis cells were sorted for iRFP expression (pm-LOVTRAP) and 

nuclear marker expression (BFP)). After transduction, this cell line was further selected to 

generate a clonal cell line which is referred to as RelA-CLASP in this study. Single cells 

expressing BFP, low IRFP, and low RFP were sorted into a 96 well plate and then clonally 

expanded. After expansion, clonal cell lines were assessed for continued expression of 

fluorophores and responsiveness of CLASP construct. A single clonal cell line, termed RelA-

CLASP F8 lo, was selected for use in this study.  

Microscopy 

For microscopy, a 96-well glass-bottom plate (Thermo Fisher 164588) or a 24-well microscopy 

plate (Ibidi 82406) was incubated with 0.1 mg/mL Poly-D-Lysine (Gibco A3890401) at room 

temperature for 1 hour, after which the plate was washed three times with sterile water and left 

to dry for 2 hours. After drying, cells were seeded at 8000 cells/well (96 well plate) or 35000 

cells/well (24 well plate) in media without phenol red (Thermo Fisher 11054020) with glutamine 

supplemented (Life Technologies 35050-061). 48 hours later, cells were imaged. Microscopy for 

all figures (except for Figures 1B and S2D-E) was performed on an inverted Nikon Ti 
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microscope equipped with a CSU-22 spinning disk confocal, EMCCD camera, and custom 4-

line solid state laser launch. Imaging took place inside a cage incubator which maintained 

temperature, CO2, and humidity throughout the experiment. Images were taken using a 

40x/0.95 objective, and cells were illuminated with 405, 561, and 640 nm lasers. For any images 

where cells are induced with light on this microscope, cells were covered with a BreatheEasy 

seal and a custom-printed Optoplate holder was mounted on top of the cells. The Optoplate was 

then placed on top of the holder to induce the cells. For timecourse microscopy, images were 

acquired every 3 minutes. For Figures 1B and S2D-E, microscopy was performed on an 

inverted Nikon Ti microscope with an Andor iXon Ultra DU888 1k x 1k EMCCD and Andor 4-line 

laser launch. An Oko stage was used to maintain temperature and atmosphere control. For 

these panels, cells were induced using 488 nm light produced by imaging GFP. 

Drug induction 

IL-1β (Peprotech, 211-11B) was diluted to a stock concentration of 100 ng/mL in sterile water 

with .1% Bovine Serum Albumin (BSA). LPS (Sigma, L2880) was diluted to 10 µg/mL in 

phosphate-buffered saline (PBS). TNFɑ (R&D Systems, 410-MT) was diluted to a 100 ng/mL 

stock solution in PBS with 0.1% BSA. All stocks were at 100X concentration. Prior to induction, 

stocks were diluted to 2X or 3X in media and then added to cells to a final 1X concentration 

(TNFɑ, IL-1β: 1 ng/mL, LPS: 100 ng/mL). 

Light induction using Optoplate-96 

Optoplate-96 was programmed using the OptoConfig-96 program (48). Cells were induced with 

up to 12 minutes of constant light input, followed by a pulsed light input of 2 seconds ON/2 

seconds OFF to reduce blue light toxicity. 

RNA-seq 

Cells were seeded with 40,000 cells/well in 24 well plates (Ibidi 82406) 2 days prior to 

experiment, so that they would be 80% confluent when induced. Five replicate wells were 

seeded for each input and cell line. Immediately prior to experiment, cells were induced with 

vehicle (PBS + 0.1% BSA) or TNFɑ diluted in media to a 2X concentration. For induction, 0.5 

mL of media was removed from the well and .5 ml of induction media was added. After 

induction, a BreatheEasy seal (Sigma Z380059) was placed on cell plate. For cells induced with 

TNFɑ for 1 hr, cells were placed into experiment incubator for 2 hours, removed, induced, and 

then removed 1 hour later for harvesting. For cells induced with TNFɑ for 2 hr, cells were placed 

in experiment incubator 1 hr before induction. For cells induced with light, cells were induced 

with vehicle media and placed into incubator with Optoplate-96 directly on top of BreatheEasy 

seal for 3 hours. All cells were harvested immediately after induction, and RNA was isolated 

from cell pellets using the Lexogen SPLIT RNA extraction kit. After extraction, RNA quality was 

assessed using the Agilent Pico RNA kit, and quantified using a Nanodrop. Following extraction, 

RNA samples were diluted using concentrations estimated by Nanodrop. Libraries were 

prepared using the Lexogen Quantseq 3' RNA-seq Library Prep Kit on 250 ng RNA from each 
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sample. Library quality was assessed using the Agilent High Sensitivity DNA Kit, and quantity 

was measured using the Qubit dsDNA HS Assay Kit. Libraries were diluted to equimolar 

concentrations and pooled. Pools were subject to single-end sequencing on the Illumina HiSeq 

400.  

Western blot 

For Western Blotting analysis of protein levels, cells were seeded as described for RNA-seq. 

Immediately prior to experiment, cells were induced with vehicle (PBS + 0.1% BSA) or TNFɑ 

diluted in media to a 3X concentration as described for RNA-seq. Cells induced with vehicle 

were then given no light input or 1.38 mW blue light for 30 minutes. Cells induced with TNFɑ 

were induced with a final concentration of 1 ng/mL TNFɑ for 30 minutes. For whole cell lysis, 

media was removed, the cells washed once with cold PBS, and then lysed in 1x Laemmli buffer 

containing β-mercaptoethanol. The lysate was boiled at 95°C for 5 min. Proteins were 

separated by SDS–PAGE (Criterion TGX 4– 15%, Bio-Rad) and transferred to PVDF 

membranes using wet transfer. Blocking of membranes was carried out in 5% bovine serum 

albumin for 1 hr at room temperature, before incubation with primary antibodies diluted in 5% 

bovine serum albumin at 4°C for 16 h. Membranes were incubated with appropriate HRP-

conjugated secondary antibodies (Cell Signaling Technologies, CST) for 1 hr at room 

temperature and developed using SuperSignal West Pico PLUS and SuperSignal West Femto 

substrates (ThermoFisher Scientific). The following primary antibodies were used: p65 (CST 

8242), p(Ser536)-p65 (CST 3033), p(Thr183/Tyr185)-JNK (CST 4668), p(Ser73)-cJun (CST 9164), 

β-tubulin (Sigma-Aldrich T5201). 

Viability assay 

Cells were seeded at 8000 cells/well in a 96 well plate (Corning 353219) 2 days prior to 

experiment. At the time of experiment, a BreatheEasy seal was placed on top of the 96 well 

plate, and cells were placed into incubator with Optoplate-96 directly on top of BreatheEasy seal 

for 3 hours. Cells that were induced with light received one hour light OFF, followed by two 

hours light ON. Light inputs ranged from 0-6.84mW. After induction, cells were immediately 

trypsinized with 100 ul/well for 5 mins. Cells were then spun at 500g for 5 min. After spinning, 

supernatant was removed and cells were washed in PBS. After PBS wash, cells were 

resuspended in diluted Live/Dead stain (Thermo Scientific L10120) and stained according to 

manufacturer’s instructions. After washing, cells were run on BD LSRFortessa or BD LSRII.  

 

Computational Details 

Analysis of RNA-seq data 

Reads were aligned to the Mus musculus genome using the cloud service Bluebee designed for 

Lexogen Quantseq data. Briefly, the reads were trimmed using Bbduk and then aligned to the 

GRCm38 genome using STAR (49). After alignment, counts were generated using HTSeq-
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count (50). Raw counts data was then used with DESeq2 to generate log2FC and FDR p values 

(51). Genes with average raw counts ≤ 2 across all samples of interest were dropped from the 

analysis. log2FC RelA-CLASP induction was calculated for genes significantly regulated (FDR p 

< .05) by RelA-CLASP as such: log2FC (RelA-CLASP time t vs time 0) - log2FC (pm-LOVTRAP 

time t vs time 0), where t is either 1 or 2 hours of light induction. log2FC TNFɑ induction was 

defined as log2FC (pm-LOVTRAP time T vs time 0) for 1 or 2 hours of TNFɑ induction. log2FC 

induction is calculated from 5 replicates for each cell line and input.  

Computational modeling 

Modeling is as described in Chen 2020 for the two-state promoter model. Briefly, ordinary 

differential equations representing promoter kinetics were constructed with three state variables 

and six parameters. Parameters for kon, koff, and ɣ1 were sampled with uniform and London 

Hypercube sampling across of 0.002-2, 0.004-4, and .001-1, respectively. Parameters for β0 

and β1 were set to 0.0032 and 4.92 for all simulations, respectively.  

Image analysis 

Microscopy images are analyzed for nuclear and cytoplasmic intensity using a custom Python 

script modified from nuclealyzer, which depends on StarDist, Scikit-image, and OpenCV (52–

54).  First, StarDist is used on nuclear BFP images to create masks of nuclei. Then, the 

cytoplasm is approximated by dilating the nuclear mask four times and subtracting a twice-

dilated nuclear mask. Background of each image is estimated by expanding all nuclear masks in 

an image by 50 pixels, which approximates the cell radius, and then taking the mode of the 

intensity of the pixels which are not labeled by a mask. Finally, OpenCV is used to track 

centroids of the nuclear masks throughout the experiment. Nuclear/cytoplasmic enrichment 

(background subtracted) is calculated as (avg nuclear intensity - background intensity) / (avg 

cytoplasmic intensity - background intensity) for each cell. Images where blue light is on are 

dropped from analysis due to inability to isolate the nuclear marker in BFP images. Max 

Nuclear/cytoplasmic enrichment (background subtracted, norm to 0m) is calculated as follows: 

for each replicate and input, the frame with the maximum median nuclear/cytoplasmic 

enrichment is selected, and the nuclear/cytoplasmic enrichment for each cell present in that 

frame is normalized to the maximum median nuclear/cytoplasmic enrichment for the no light 

input in that replicate. Norm change in Nuclear/Cytoplasmic Enrichment is calculated as the 

median change in nuclear/cytoplasmic enrichment for each replicate divided by the maximum 

value of the median change in nuclear/cytoplasmic enrichment across RelA-mScarlet and RelA-

CLASP cell lines. 

 

Western Blot Quantification 

Western blot band intensities (mean gray value) were quantified using ImageJ 1.53c. For 

determination of protein levels, blot background intensities are deducted from band intensities 
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and background-corrected intensities are divided by β-tubulin levels for the same sample. 

Phospho-protein background-corrected, tubulin-normalized intensities are further divided by 

corresponding total protein levels, normalized to tubulin. RelA (65 kDa) level relative to NIH3T3 

no light is calculated for each replicate as: (total RelA level (65 kDa)) /average(total RelA level 

(65 kDa)) where the average is taken across all NIH3T3 no light replicates. RelA (115 kDa) level 

relative to Rela-CLASP is calculated for each replicate as: (total RelA level (115 kDa)) 

/average(total RelA level (115 kDa)) where the average is taken across all Rela-CLASP no light 

replicates. p-Rela (65 kDa) level relative to TNF is calculated for each NIH3T3 replicate as: (p-

RelA level (65 kDa))/(p-RelA level (65 kDa), NIH3T3 TNF). p-Rela (115 kDa) level relative to 

TNF is calculated for each RelA-CLASP replicate as: (p-RelA level (115 kDa))/(p-RelA level 

(115 kDa), RelA-CLASP TNF). p-JNK level relative to TNF is calculated for each replicate as: 

(p-JNK level (54 kDa)/(p-JNK level (54 kDa), TNF for same cell line). For S4B, cell line and input 

combinations were compared to the reference using a two-sample t-test with Holm-Sidak 

correction. For S4C-D, cell line and input combinations were compared to the reference using a 

one-sample t-test with Holm-Sidak correction. 

Data processing 

Data processing was done with custom-written Python, R, and Matlab scripts, which are 

available upon request. 
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