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Abstract 

Circulating tumor DNA (ctDNA) analysis is increasingly providing a promising 
minimally invasive alternative to tissue biopsies in precision oncology. However, 
current methods of ctDNA mutation profiling have limited resolution because of the 
high background noise and false-positive rate caused by benign variants in plasma cell-
free DNA (cfDNA), majorly generated during clonal hematopoiesis. Although 
personalized parallel white blood cell (WBC) genome sequencing suppresses the noise 
of clonal hematopoiesis variances observed in ctDNA based liquid biopsy, the system 
cost and complexity restrict its extensive application in clinical settings. To address this 
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challenge, we describe a Matched WBC Genome sequencing Independent CtDNA 
profiling (MaGIC) approach, which enables the sensitive detection of recurrent tumor 
mutant information harbored by ctDNA from a bulk cfDNA background based on 
hybrid capture cfDNA deep sequencing, in silico background elimination, and a reliable 
readout measurement by the calculation the number of key mutated exons. Leveraging 
somatic mutation data from 10163 patients across 24 cancer types obtained from The 
Cancer Genome Atlas, we confirm that the MaGIC approaches are of ideal performance 
in prediction of prognosis by tissue biopsy samples of patients across multiple cancers. 
Meanwhile, MaGIC approaches enable the classification of prostate cancer patients 
from heathy cohorts by ctDNA sequencing data. We further profiled the ctDNAs of 80 
plasma samples from 40 patients with nasopharyngeal carcinoma before and during 
chemotherapy by MaGIC approaches. The MaGICv2 can predict the chemosensitivity 
with high accuracy by simply using one liquid biopsy sample of each patient before a 
stereotypical treatment course. We anticipate that this new approach has the potential 
utility of ctDNA detection in multiple clinical cancer contexts, thus facilitating precise 
cancer therapy. 

Teaser 

A liquid biopsy analysis method for multifunctional patient classification such as 
diagnosis and chemosensitivity prediction. 

Introduction 

Liquid biopsy, a minimally invasive and repeatable method for early diagnosis, 
prognosis prediction, and screening of cancers based on circulating biomarkers, has 
considerable clinical implications 1. The abundance of pre-clinical research has shown 
that circulating tumor DNA (ctDNA) released from apoptotic or necrotic tumor cells 
can act as an accessible biomarker detected by liquid biopsy 2. ctDNA can be detected 
in the blood of patients with multiple advanced cancers, and records valuable genetic 
information of the tumor genome, such as mutation signals and methylation profiles 3. 
Indeed, the blood tumor mutation burden (bTMB) and mean variant allele frequency 
(mVAF) measured by ctDNA sequencing represents the mutation density and 
abundance of the tumor genome, which can predict the outcomes of cancer 
immunotherapy and targeted therapy immunotherapy 4,5. 

However, ctDNA analysis has not yet become a standard tool in the clinical oncologist’s 
arsenal because of its modest sensitivity, low coverage of patients, and/or high cost 
using current ctDNA selection panels and background elimination methods 6. Moreover, 
previous clinical trials have shown that ctDNA could not be detected in more than 50% 
of patients who ultimately recurred 7,8. Given that the major source of cell-free DNA 
(cfDNA) present in the blood is generated from hematopoietic cells, whereas less than 
1% is tumor-derived, enrichment of trace amounts of blood ctDNA signals from the 
intense background noise associated with clonal hematopoiesis should be beneficial for 
improving ctDNA detection sensitivity 9-11. Recent approaches have designed different 
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panels covering commonly mutated driver genes or exons from tumors to characterize 
small amounts of ctDNA in large populations of cfDNA 12-15. In parallel, paired white 
blood cell (WBC) sequencing has been conducted to eliminate the misclassification of 
WBC-derived variants, rendering the detection of ctDNA alterations more accurate 16,17. 
However, the increased system cost and complexity challenge the further clinical use 
of this approach. Theoretically, an in-silico background elimination strategy could be 
cost-effective. Indeed, Newman et al. developed a computational strategy to polish the 
background noise by modeling position-specific errors in a training cohort of healthy 
donors to allow error suppression in independent samples 18,19. Greater efforts should 
be made to further characterize the stereotypical background errors, improve the 
detection accuracy, and highlight the clinical implications of the ctDNA biomarkers. 

In this study, we devised a Matched WBC Genome sequencing Independent CtDNA 
profiling (MaGIC) method, which synergically integrated a ctDNA capturing panel 
(termed Enricher), in silico background elimination approach (termed Filter), and 
optimal measurement strategy (termed KME) for ctDNA detection and monitoring 
(Figure 1). The ctDNA Enricher followed by TMB/bTMB readout measurement, 
initially exemplified by MaGICv1, was designed to target driver mutations and 
recurrently mutated exons within the cancer of interest, and can be used to hybrid 
capture next-generation sequencing of ctDNA, which is simply analyzed by the number 
of mutations. To further improve the ability of the selected biomarkers to classify 
patients with higher accuracy, we designed MaGICv2, a version that optimized the 
panel by filtering the potential benign mutant exons collected from the whole-exon-
sequencing data of healthy donors from the public database. Moreover, the filtered 
mutation exons were readout by a new KME calculation measurement, which is more 
reliable than bTMB to increase the signal-to-noise ratio in the context of plasma ctDNA 
sequencing. By applying both MaGICv1 and v2 approaches in tissue and liquid biopsies, 
they can effectively predict patient survival in multiple cancer types and classify the 
patients from the healthy cohorts. More importantly, the MaGICv2 can accurately 
predict the chemotherapeutic response in locally advanced nasopharyngeal carcinoma 
(NPC) at the early stage before the stereotypical treatment course independent of paired 
WBC or tissue biopsy sequencing. This may be of great benefit for precision medicine 
as the doctors can reconsider the necessity of the two-round chemotherapy in a 
relatively reliable and affordable manner. This synergic detection system may 
substantially advance the sensitivity and application scope of ctDNA detection 
independent of other paired genome sequencing, thereby increasing the use of ctDNA-
based liquid biopsy. 

Results 

Design of MaGICv1 for patient identification with high coverage 

We leveraged an iterative algorithm to construct a minimal panel of genomic recurrent 
mutation exons that can capture most of the patients in different cancers with a 
repetitive detection frequency of each patient 18. To improve the capture rate of patients 
and initial input, the WES data processed by TCGA database, including 781 patients 
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across TCGA-HNSC, TCGA-DLBC, and TCGA-SARC cohorts, were used as training 
datasets (Figure 2A). The measurement of the number of mutant exons (NME) was 
used to calculate the repetitive detection times, which reflect the detection robustness 
for each patient. The capture rate in each cohort was defined as the percentage of 
patients with NME > 0. After four sets of iterative calculations, 902 exons, with a total 
sequence length of approximately 610.7 kbp were selected to form Enricher-v1, which 
can capture 97.70% of patients at least once from the three pooled training datasets. 
Meanwhile, the capture rates of patients with more than two and three times of 
repetitive detection reached 85.28% and 71.57%, respectively (Figure 2B). The high 
capture rates were consistent in all three cancer datasets separately (Figure 2C). To test 
whether Enricher-v1 was available in multiple cancers, the WES data of 24 cancer types 
in TCGA were analyzed. As shown in Figure 2D, Enricher-v1 could identify > 90% of 
the patients across 11 cancer types, including esophageal, bladder, colorectal, lung, skin, 
prostate, stomach, ovarian, uterus, mesenchymal, and cervical, most of them 
comprising the top 10 most lethal cancers worldwide 41 (Supplementary Figure 1). 
These results indicate that Enricher-v1 is a potentially effective, robust, and versatile 
tool to identify various cancers by recurrent mutations. Considering the TMB as an 
emerging biomarker for patient stratification in oncology, we incorporated the TMB 
analysis into the Enricher-v1 mutation readout to form an analytical pipeline named 
MaGICv1. 

Performance of MaGICv1 in patient classification 

To evaluate the ability of MaGICv1 in patient classification, we first tested its predictive 
value for OS and progress-free survival (PFS) based on the WES sequencing data of 
tumor tissue biopsies from 10163 patients with 24 different cancer types according to 
33 TCGA projects (Supplementary Table 1). Through analyzing the TMB of the exons 
involved in Enricher-v1, the median and the upper quartile (Q3) values of MaGICv1 
were 5 and 10, respectively, across 24 cancer types (Figure 3A). Considering the driver 
and recurrent mutations as being the major causes of tumorigenesis and progression 
42,43, we envisioned that the patients with different mutation patterns would have 
different outcomes in prognosis, which may constitute an effective biomarker. Thus, we 
defined the patients with MaGICv1 TMB = 0 as the low-mutation group (LMG), the 
patients with MaGICv1 TMB > 5 (the median value of TMB) or > 10 (the Q3 value of 
TMB) as the high-mutation group (HMG), and the patients between the two as being 
the middle-mutation group (MMG). As expected, all three groups showed significantly 
different prognoses across various cancer types (Figure 3B and Supplementary Figure 
2A). Notably, in several cases, such as kidney cancer and head and neck cancer, both 
significant PFS and OS benefits were observed within LMG groups, and significantly 
worse PFS and OS were found in HMG groups, suggesting that high mutation 
correlated with a high risk of poor prognosis (Figure 3C and Supplementary Figure 2B). 
Focusing on the top 10 most lethal cancers worldwide, more than 50% of them showed 
statistical discrepancies in the PFS and OS among all three HMG, MMG, and LMG 
groups (Supplementary Figure 3). These results suggest that MaGICv1-based WES 
sequencing with tissue biopsies is appropriate for the evaluation of prognosis in 
multiple cancers. 
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To further assess the patient classification outcomes of MaGICv1 in the context of 
liquid biopsies, we first used MaGICv1 to distinguish cohorts of healthy donors and 
patients with prostate cancer. The cfDNA WES data from patients with prostate cancer 
(BioProject ID: PRJNA554329) and healthy donors (SRA ID: SRP147273) were 
screened by Enricher-v1 and assessed by the bTMB. As shown in Figure 3D, the bTMB 
of the patients with cancer was significantly higher than that of the healthy donors (P = 
1.4×10-7), and the ROC curves with an area under curves (AUCs) score of 0.995 
revealed that the cancer population could be outstandingly distinguished from the 
healthy donors. Thus, this approach may provide an alternative means to perform 
minimally invasive diagnosis of prostate cancer. 

Next, we collected 80 plasma samples from 40 patients with locally advanced NPC 
before- and after- the first-round chemotherapy (FRC) treatment and analyzed them by 
MaGICv1-based ctDNA capture sequencing to predict the therapeutic outcome via 
liquid biopsies (Figure 3E, Supplementary Figure 4 and 5). In both populations of the 
responders and nonresponders to chemotherapy, the bTMB of the Enricher-v1 panel in 
the after-FRC group significant increased compared with that in the before-FRC group 
(responders: p=0.014, nonresponders: p=0.0051). However, there was no significant 
difference between the responders and the nonresponders by calculating the bTMB 
difference data between the after- and the before-FRC (a-b) groups (P = 0.5; Figure 3G). 
The ROC analysis showed that the a-b is unable to group the responders and 
nonresponders with an AUC score of 0.564 (Figure 3H). Similarly, there was no 
significance between the bTMB of the responders and the nonresponders when 
analyzing the before- or after-FRC samples separately (P = 0.13 and 0.083, respectively; 
Figure 3I), and the AUC also showed poor scores (0.64 and 0.661, respectively; Figure 
3J). These results suggest that MaGICv1-based ctDNA capture sequencing failed in 
prediction of chemosensitivity of patients with NPC using plasma samples at the early 
stage of a stereotypical treatment course. Further optimization of this approach is 
necessary to further reduce the background variants that may account for a large part of 
the ctDNA mutation signals readout by MaGICv1. 

Background suppression of Enricher-v1 for MaGIC optimization 

Inspired by the recognition that biological confounding factors generated by the 
hematopoietic cells seriously challenge the sensitivity of ctDNA detection 44, we sought 
to improve the performance of MaGIC-based ctDNA analysis for clinical patient 
classification by suppressing these potential benign mutant backgrounds in the 
Enricher-v1 panel. As previously described, hematopoietic cells accumulate clonal 
hematopoiesis variances (CHV) of indeterminate potential during aging and constantly 
release their genomic DNA segments into the blood to form a major component of the 
ctDNA pool 45,46. A matched cfDNA and WBC sequencing approach has been shown 
to provide a promising resolution in differentiating the mutation signal of tumors from 
the variants related to clonal hematopoiesis 17. To develop an alternative efficient 
strategy that is both simpler and cheaper for the patients, we designed an in silico-based 
Filter by data mining the noisy mutations from both WBC and cfDNA sequencing 
information of a large population of healthy individuals. The process of the Filter started 
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with the ctDNA Enricher-v1 exon panel and was performed in two stringent steps: (i) 
remove the exons with the mutant probability (Pw) > 0.001 in the WBC of healthy 
individuals; and (ii) remove the regions with the average benign mutation frequencies 
per kilobase (𝑚) > 1 in the cfDNA of healthy individuals (Figure 4A, Methods). For 
step i, the WES sequencing data of the WBC of 2504 healthy individuals from the 1000 
Genome Project database were analyzed 36. For step ii, the cfDNA sequencing data from 
nine healthy donors were analyzed 21. After filtering, 679 exons covering 303 kbp 
sequences (hereinafter referred to as Enricher-v2) were selected from the beginning of 
the 902 exons covering the 610.7 kbp sequence in the Enricher-v1 panel (Figure 4B). 

To evaluate the potential signal-to-background (s/b) intensity of Enricher-v2 in the 
ctDNA analysis, the cfDNA sequencing data from patients with prostate cancer 
(BioProject ID: PRJNA554329) 22 and healthy donors (SRA ID: SRP147273) 21 were 
analyzed. The 𝑚 of each exon involved in Enricher-v2 was calculated in these datasets. 
The exons in Enricher-v2 had significantly higher 𝑚  in the cfDNA of the patients 
(signal 𝑚) than of the healthy individuals (background 𝑚) (Figure 4C). There were also 
displayed striking differences in the distribution of 𝑚 in these two groups, where 90.7% 
of exons in the healthy donors had a background 𝑚 < 0.1, while 34.9% of exons in the 
patients with cancer had a signal 𝑚 ≥ 0.1 (Figure 4D). Compared to Enricher-v1, the 
rate of capturing patients with cancer at least once were not obviously decreased using 
the size-reduced Enricher-v2 panel (Figure 4E), whereas a better s/b intensity was 
acquired since Enricher-v2 showed a comparable signal 𝑚 (P = 0.17) but significantly 
lower background 𝑚 (P = 2.2×10-16) (Figure 4F). Upon further comparison with the 
recently published Enricher panels for ctDNA detection 18,23-28, Enricher-v2 showed 
significantly higher potential s/b intensity and lower false-negative detection rates, with 
comparable patient capture rates (Figure 4G). Thus, the Filter not only eliminated 
potential benign mutants but also reduced the size of the Enricher, which may further 
improve the detection sensitivity and simplify the analytical process of the MaGIC 
approach. 

Design of KME measurement for MaGIC optimization 

We next envisioned that using bTMB for the indiscriminate measurement of the tumor-
derived somatic mutations in the ctDNA pool may record significant background 
variants and result in false-positive identification. To confirm this hypothesis, we 
analyzed the high-intensity sequencing data of captured ctDNA, matched WBC, and 
tumor tissue biopsies from 124 patients with metastatic cancer presented in a previous 
rigorous study 20. The detection frequency of mutations in the ctDNA was significantly 
higher than that in the matched tumor biopsies, indicating that a large proportion of the 
mutation signals were not derived from the tumors (Figure 5A). Interestingly, more than 
95% of the mutant exons in the genomes of different tumors only carried one mutation 
according to TCGA mutation datasets (Figure 5B), and similar results were observed in 
the analysis of matched sequencing of the ctDNA and the tumor tissue biopsies, 
indicating that the exons with more-than-one mutations  might contain background 
variants not from tumor source (Figure 5C). To interrogate the origin of the ctDNA 
mutation repertoire, we mapped the mutations in the one-mutation exons of the ctDNA 
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to the matched sequencing data of the WBC and tumor biopsies and calculated the 
variant allele frequency (VAF) that is the percentage of sequence reads observed 
matching a mutation divided by the overall coverage at that locus. The distribution of 
the VAF differed significantly between the tumor-matched mutations and the potential 
background mutations (WBC-matched and unknown source), and a VAF of 1% could 
be set as a threshold to remove most of the backgrounds while retaining sufficient tumor 
mutation signals (Figure 5D). Encouraged by these observations, we sought to define a 
new measure, termed the number of key mutation exons (KME), to improve the 
accuracy of the identification of tumor-derived somatic variants from ctDNA (Figure 
5E). 

From this measurement, the ctDNA mutation data acquired by the Enricher-based 
capture sequencing were counted by the NME to avoid interference of the more-than-
one mutation exons. Subsequently, the mutations with VAF < 1% were removed, and 
the remaining mutation-harboring exons were analyzed. Indeed, with the measurement 
of KME, the mutations of ctDNA revealed the tumor-derived signals more reliably 
(Figure 5F). The Pearson correlation coefficient analysis also showed a stronger 
correlation of the tumor-derived TMB (tTMB) with the KME (r = 0.899) than with 
other conventional measurements, such as the mVAF (r = 0.073), bTMB (r = 0.798), 
and NME (r = 0.820) (Figure 5G, H). The signal-to-noise ratio, calculated as the number 
of tumor tissue-matched exons divided by that of the WBC-matched and unknown-
source exons, was remarkably increased with the KME measurement (Figure 5I). 
Therefore, the KME may be a valuable measurement in the MaGIC approach to mirror 
the ctDNA mutations from the tumor-derived signals with an improved signal-to-noise 
ratio. 

Performance of MaGICv2 in the context of tissue biopsies 

By incorporating the optimized Enricher-v2 and the KME measurement into MaGIC, 
MaGICv2 was devised. We then tested the ability of MaGICv2 to predict the OS and 
PFS of patients with multiple TCGA cancer types (Figure 6A). Similar to the above 
circumscription, the LMG, HMG, and MMG were defined to include the patients with 
MaGICv2 KME = 0, MaGICv2 KME > threshold (median value of 5 or Q3 value of 
10), and the MaGICv2 KME between them, respectively. The MaGICv2 measured 
using TMB and mVAF was also analyzed by the same algorithm for comparison (Figure 
6B). By statistical analysis, KME showed comparable or, in some cases, better 
performance than the TMB and mVAF in the classification of patients with a different 
OS or PFS, irrespective of the median value or at the Q3 value in the setting of the 
threshold (Figure 6C, Supplementary Figure 6A and Supplementary Figure 7). In 
particular, the KME showed remarkable significance in the classification of patients 
with breast cancer and kidney cancer (Figure 6D and Supplementary Figure 6B). As 
expected, both MaGICv2 and MaGICv1 have good performance in the prediction of 
the OS and PFS in multiple cancer types (Figure 6E and Supplementary Figure 8), while 
MaGICv2 outperformed MaGICv1 in prognosis prediction of the world top 10 most 
lethal cancer types (Supplementary Figure 9). Moreover, in comparison with other 
published ctDNA Enricher panels along with different measurements 18,23-28, MaGICv2 
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enabled efficient classification of patients with different OS and PFS in more cancer 
types, especially in the top 10 most lethal cancers worldwide (Supplementary Figure 
10). Collectively, these data suggest that MaGICv2 may be an approach with high 
accuracy to predict the clinical outcomes of patients with different cancer types via 
tumor tissue biopsies. 

Performance of MaGICv2 in the context of liquid biopsies 

We further tested MaGICv2 in the analysis of ctDNA liquid biopsies, which may help 
to assist cancer diagnosis or monitor therapy sensitivity. Similar to MaGICv1, the 
cfDNA WES data from 23 patients with prostate cancer (BioProject ID: PRJNA554329) 
and 9 healthy donors (SRA ID: SRP147273) were analyzed by MaGICv2. As well as 
the MaGICv1, MaGICv2 showed good performance in classification of patients from 
the healthy cohorts. The cancer patients showed significantly higher KME than the 
healthy cohorts (p=0.00033), indicating higher tumor mutation signals recorded in 
plasma ctDNA. The ROC curve showed good AUCs score of 0.995 (Figure 7A). To test 
the application of MaGICv2 in another scenario of therapeutic effect prediction, we 
analyzed 80 plasma samples from 40 patients with locally advanced NPC before- and 
after-FRC treatment using MaGICv2-based ctDNA capture sequencing (Figure 7B). 
Through MaGICv2, the responders showed a significantly increased trend in the after-
FRC samples compared to the before-FRC samples (p=0.00025), while the 
nonresponders showed decreased trend (p=0.0011, Figure 7C). These results may be 
reasoned by more potent tumor cell senescence and tumor DNA release during 
chemotherapy in the responders than that in the nonresponders. As expected, the results 
of a-b could outstandingly distinguish the responders and the nonresponders with p 
value of 8.3×10-7 and ROC AUC score of 0.956 (Figure 7C). Moreover, there was a 
significant differentiation between the responders and nonresponders according to their 
before-FRC samples (p =1.0×10-5, ROC AUC=0.909), indicating the advantage of 
MaGICv2 in predicting chemosensitivity via a single sample from each patient (Figure 
7D). Comparing MaGICv2 with different combinations of Enrichers and measures 
(including the MaGICv1), we found that MaGICv2 consistently produced the most 
accurate discrimination between responders and nonresponders early during 
chemotherapy in NPC (Figure 7E and Supplementary Figure 11). These data 
collectively demonstrate that the ctDNA analysis based on MaGICv2 could effectively 
classify the patients with prostate cancer from healthy people and, more importantly, 
predict the chemosensitivity of patients with NPC as early as before the treatment 
course in a simplified and cost-effective manner with the sample collection and analysis 
performed once only.  

 

Discussion 

Many studies of ctDNA-based liquid biopsies have designed sequencing panels that 
cover hotspot mutations of exons from key cancer genes. However, the ctDNA 
sequencing assays using these panel-probed hybridizations remain inaccurate to some 
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extent because the mutation signal output of these assays includes many variants that 
are absent in the respective tumor tissues and are inferred to be somatic. A prospective 
strategy with joint high-intensity sequencing of both cfDNA and WBC could mitigate 
the mutation detection artifacts, but it inevitably resulted in a cost increase for patients 
upon clinical use. Here we report MaGIC, an approach that enables robust de novo 
detection of tumor-derived mutations out of the massive repertoire of somatic variant 
backgrounds based on single ctDNA capture sequencing and in silico background 
elimination. This approach offers many possible choices of patient classification, 
including diagnosis, prognosis, and prediction of therapeutic benefits with liquid or 
tissue biopsies across multiple cancer types. 
MaGICv1 was initially designed with a new panel that could capture most of the 
patients across more than 10 cancer types. MaGICv1 can evaluate the prognosis of 
many cancer types via tissue biopsies and can classify the patients from the healthy 
cohorts of patients via liquid biopsies by interrogating the TMB/bTMB. However, it 
failed in prediction of chemosensitivity of patients with NPC at the early stage of a 
stereotypical treatment course. In MaGICv2, we optimized the panel by eliminating the 
exons with potential non-tumor-matched nonsynonymous somatic mutations according 
to the benign variants presented by both the tissue genomics and the cfDNA sequencing 
data of healthy people. The optimized panel, with a small size of only 679 exons 
covering 303 kbp sequences, is comparable to several other published panels but 
showed the highest signal-to-background intensity among them. We then devised the 
KME, which further removed the mutation signals with similar incidences to the 
potential backgrounds and were more likely to recapitulate the distribution feature of 
the mutations stemmed from tumors. The measurement of KME outperformed other 
conventional methods such as bTMB and mVAF, particularly in the context of ctDNA 
analysis, thus may supply a substitutive strategy for evaluating the genomic mutation 
density. The MaGICv2-based ctDNA capture sequencing and the following 
bioinformatics analysis shows comparable efficacy in prognosis prediction and 
diagnosis via tissue and liquid biopsies, respectively. Intriguingly, the MaGICv2 
achieves high accuracy in prediction of chemosensitivity of patients with NPC 
independent of any paralleled sequencing. Given that the treatment course of locally 
advanced NPC often includes two rounds of chemotherapies, MaGICv2 may account 
for a simpler and more cost-effective way to predict the outcome after this schematized 
course by acquiring only one liquid biopsy sample of each patient as early as before the 
first-round chemotherapy. This method may help to save monitoring time and avoid 
overtreatment to advance precision medicine.  
However, as the patient population in this study is limited in size and is not necessarily 
representative of the global target population, it is necessary to perform further testing 
on additional large patient cohorts within the context of clinical trials, which will 
provide a more accurate estimate of the performance of this approach. Moreover, much 
additional efforts using state-of-the-art technologies such as machine learning are 
needed to further improve the sensitivity of the ctDNA detection approach to predict 
the therapeutic outcome. Interfacing MaGIC with more cases of patient classification 
across different cancer types is essential to explore its potential to enable extensive 
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clinical applications. 
In summary, this study showcases the power of the MaGIC approach for ctDNA 
sequencing independently of any parallel WBC or tissue sequencing, thus enabling a 
high-accurate and relatively low-cost method for the clinical use of promising ctDNA 
biomarkers. Given its prevalent effectiveness in the context of both tissue and liquid 
biopsies in multiple cancer types, the MaGIC approach may have broad implications 
for patient stratification and clinical decision-making. 

Materials and Methods 

Acquirement of the public data 

The public data used in this study were acquired via the public databases and previous 
literature. The public databases include The Cancer Genome Atlas (TCGA, 
https://cancergenome.nih.gov/), the 1000 Genomes Project (1000G, 
https://www.internationalgenome.org), and the Sequence Read Archive (SRA, 
https://www.ncbi.nlm.nih.gov/sra). The data of matched mutation calling lists among 
the cfDNA, WBC, and tissue biopsy from 124 patients with lung, prostate, and breast 
cancers were obtained from Razavi et al. 20. The whole-exome sequencing (WES) data 
of cfDNA in 9 healthy donors were generated by Teo et al. 21. The mutation calling list 
of ctDNA in 23 patients with prostate cancer was obtained from Ramesh et al 22. Several 
published ctDNA capturing panels were used to perform a comparison with the 
Enrichers designed in this study, including the CAPP-Seq-NSCLC 18, CAPP-Seq-
HNSC 23, Grand360 24, Plasma SELECT 25, NCC-GP150 26, MSK-IMPACT 27, and 
F1CDx 28. The human whole-exome was acquired by the incorporation of the exome 
coordinates from GTF files (gencode.v22.annotation.gtf.gz). The mutation coordinates 
of the human whole-exome in all public datasets were converted to hg38 for consistency 
by the function import.chain of the R package rtracklayer. Genomic regions of the 
panels were extracted and mapped to the human whole-exome for the following 
comparative analyses. 

Design of Enricher-v1 
Enricher-v1 was designed by the iteration of recurrence mutation exons among TCGA 
database, and the recurrent index (RI), defined as the number of unique patients with 
somatic mutations per kilobase of a given genomic unit 18, was used to assess the 
frequency of mutations occurring in an exon. Originally, the Mutation Annotation 
Format (MAF) files recording the genomic SNVs of head and neck squamous cell 
carcinoma, lymphoid neoplasm diffuse large B-cell lymphoma, and sarcoma, presented 
in TCGA-HNSC, TCGA-DLBC, and TCGA-SARC, respectively, were set as the 
primary datasets. The mutation exons in the MAF files were mapped to the human 
whole-exome to build the primary exon pool. Subsequently, we calculated the RI of 
every exon in the primary exon pool. All of the exons were ranked by the RI. The 
Enricher-v1 design algorithm was developed according to a previous publication with 
modifications 18. Briefly, the driver genes listed by the PANCANCER project in ICGC 
were used for the Phase 1 exon panel selection. In Phase 2, the mutation exons covering 
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more than five patients in HNSC, DLBC, and SARC were listed as candidates. Each 
exon that helps to identify more than one additional patient who has never been covered 
can be further selected. The calculation was iterated in the exon candidates in 
descending order of their RI. Afterward, the remaining exons with an RI of more than 
30 (Phase 3) or 20 (Phase 4) and with more than three patients’ coverage were picked 
up and were further used as candidates for the above iterative calculation to improve 
patient coverage. After the robustness and capture rate reached a certain threshold, the 
exon list, termed Enricher-v1, was formed (Supplementary Table 2). 

Design of the Filter and generation of Enricher-v2 

To evaluate the exons that commonly carried benign mutations in the Enriche-v1, we 
set up two variables, including the mutant probability (𝑃 ) and the average mutation 
frequencies per kilobase (𝑚) in healthy donors. The 𝑃  was calculated to evaluate the 
probability of occurrence of potential clonal hematopoiesis variances (CHV) in WBCs 
according to the massive WBC mutation data from 2504 healthy donors. The mutation 
data were summarized and the frequency of each mutation occurring in the total donors 
was calculated. The mutations with frequencies > 1% were discarded to avoid the 
interference of potential single nucleotide polymorphisms (SNP). Subsequently, the 
remaining mutations were mapped to the human whole-exome, and the number of 
donors carrying each mutant exon was calculated. The formula of the 𝑃  is as follows: 

𝑃
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑛𝑜𝑟𝑠 𝑤𝑖𝑡ℎ 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑒𝑥𝑜𝑛

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑜𝑛𝑜𝑟𝑠
. 

Meanwhile, the 𝑚 was calculated to remove the bulk background noises of the cfDNA 
using the published ctDNA sequencing data from healthy donors (SRA ID: 
SRP147273). First, the mutations in the dataset that passed the quality control (QC) 
were mapped to the whole human exome. The 𝑚 of each exon (𝑚 ) was defined as the 
sum of the number of mutations in this particular exon of all donors (∑ 𝑚 ) divided 
by the total number of donors (𝑛) and the length of this exon (𝑙 , kbp). The formula of 
the 𝑚 is as follows: 

𝑚
1

𝑛𝑙
𝑚 . 

The exons with 𝑃 0.001 or 𝑚 1were filtered from Enricher-v1 to form the exon 
list of Enricher-v2 (Supplementary Table 3). 

Design of the measurements 

We explored the performance of conventional clinically relevant measurements for 
mutation analysis, including the tumor mutation burden (TMB)/blood-based TMB 
(bTMB) and the mean variant allele frequency (mVAF), and compared them with our 
newly developed measurement, termed the number of key mutant exons (KME). The 
TMB/bTMB was defined as the number of somatic mutations (𝑚 ) per kbp of the 
interrogated exons (𝐿) with the following formula: 
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𝑇𝑀𝐵/𝑏𝑇𝑀𝐵
𝑚
𝐿

. 

The mVAF was defined as the average number of variant reads divided by the number 
of total reads of the interrogated exons, with the following formula:  

 

𝑚𝑉𝐴𝐹
1
𝑛

𝑉𝐴𝐹 , 

where the 𝑉𝐴𝐹   represents the variant allele frequency (VAF) of mutation 𝑖  and 𝑛 
represents the total number of mutations. To remove the potential CHV inference in the 
context of ctDNA detection, the KME calculation was started by filtering the exons that 
carried one mutation whose VAF was < 1%. The number of remaining mutant exons 
was directly counted (𝑅) and then divided by the sequence length of these exons in kbp. 

𝐾𝑀𝐸
𝑅
𝐿

 

In the context of tissue biopsy analysis, the VAF filtering process was skipped owing 
to the inexistence of CHV inference in tumor tissues. The KME for the tissue biopsy 
could be defined directly as the total mutant exons per kbp sequence length of the exon 
list, which is also termed the number of mutant exons (NME). 

Collection of the plasma samples from patients with nasopharyngeal carcinoma  

Plasma samples of patients with nasopharyngeal carcinoma were collected from the 
Department of Oncology, the Second Xiangya Hospital of Central South University, 
China. Informed consent was obtained after the nature and possible consequences of 
the studies were explained. All of the patients were treated with two cycles of 
chemotherapy followed by a concurrent chemoradiotherapy within three months after 
diagnosis. The nuclear magnetic resonance (NMR) imaging and the computerized 
tomography (CT) scans were examined at the time of primary diagnosis and after the 
second-round chemotherapy, respectively. The plasma samples of the patients upon the 
diagnosis and right after the first round of chemotherapy were used in this study. The 
patient characteristics are listed in Supplementary Table 4. 

CfDNA isolation, library preparation, and ctDNA capture 

CfDNA was isolated from 1 to 1.5 mL plasma from each sample using the MagMax™ 
Cell-free DNA Isolation Kit (Thermo Fisher Scientific) according to the manufacturer’s 
instructions. Subsequently, the cfDNA was modified and amplified to prepare the 
multiplexed paired-end sequencing libraries with the dual index using GenTrack 
Library Preparation Kit (GenScript). The sequencing libraries were prepared by end-
repair, A-tailing, adapter ligation, and library amplification, with 7 to 14 cycles of PCR 
using the Phusion High-Fidelity PCR Master Mix (Thermo Fisher Scientific). The 
ctDNA yield was quantified with the Qubit™ dsDNA HS Assay Kit (Thermo Fisher 
Scientific). For hybrid capturing of selected ctDNAs, a hybrid probe library with 6394 
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probes was designed and synthesized by GenScript. Magnetic bead-based capturing, 
washing, and elution were conducted according to the manufacturer’s protocol. The 
post-capture PCR amplification was set as eight cycles. Preliminary quantification of 
the captured ctDNA libraries was conducted using the Qubit™ dsDNA HS Assay Kit. 
The qualified libraries, ranging from 130 bp to 170 bp in length, were analyzed by the 
Agilent High Sensitivity DNA Analysis Kit, and subjected to 150 base paired-end 
sequencing on the Illumina NovaSeq 6000 instrument. 

Bioinformatics pipeline for the process of ctDNA profiling data 

The ctDNA/cfDNA data from the hybrid capturing sequencing of patients with NPC, 
and the public datasets of the patients with prostate cancer (PRJNA554329, SRA 
database) and the healthy cohorts (SRP147273, SRA database), were processed 
according to the following steps. QC of sequencing reads was performed by fastp 
software 29. Reads with Phred quality scores < 30 in > 20% bases were discarded and 
the clean reads were used for the following analysis. The reference genome of hg38, 
covering the autosomes and sex chromosomes, was downloaded from the UCSC 
Genome Browser, and the paired-end reads were mapped to the reference genome with 
the BWA mem function 30. To further evaluate the sequencing data quality, the on-target 
rate, the average depth of every exon in the Enrichers, and the DNA size features were 
analyzed by the BEDTools coverage 31, the SAMtools depth 32, and the manual shell 
script, respectively (Supplementary Table 5; Supplementary Figure 4). A manual shell 
script was used to perform size selection in silico, and DNA fragments with lengths of 
130-170 bp were selected for ctDNA signal enrichment. The mutation calling pipeline 
was accessed by the GATK functions of MarkDuplicates, FixMateInformation, 
BaseRecalibrator, ApplyBQSR, and Mutect2 for mutation calling 33. Then, the raw 
mutations were annotated to refGene, cytoband, and clinvar libraries by ANNOVAR 34. 
The sequencing QC parameters of the allelic depth of the reference and alteration alleles 
(AD) and approximate read depth (DP) in Variant Call Format (VCF) files were 
considered. Mutations with the AD of altered alleles = 0 or DP = 0 were discarded. Next, 
the R package maftools was used to transform the VCF file to MAF format 35 and 
remove the silent mutations. To further reduce the interference of SNP, we analyzed the 
SNP potential of each filtered mutation using the population WBC data generated by 
the 1000 Genome Project (1000G) of 2504 healthy donors from different districts 
worldwide 36. The SNP reference file was established by collecting the variants in the 
1000G datasets of the mutations with frequencies > 1% and the total number of alternate 
alleles in called genotypes (AC) > 1000. The mutation working list was set by removing 
the mutations involved in the SNP reference files, which further resorts to the 
subsequent mapping to the Enricher exons. 

Statistical analysis 

Data analysis was performed using R software (Version 4.0.5) 37. The overall survival 
(OS) and progress-free survival (PFS) analysis was based on the R packages survival 
and survminer. The OS data were fit to a univariable Cox regression model and tested 
by a log-rank test. The Pearson’s correlation coefficient was used to measure the 
similarity of variables to tTMB. The receiver operating characteristic (ROC) curve was 
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plotted with the assistance of the R package pROC 38. The threshold, AUC, specificity, 
and sensitivity are listed in Supplementary Table 6. The main visualization work was 
based on the R package ggplot2 39. The R package GenomicRanges was used to deal 
with genomic problems 40. The two-sided Wilcoxon test and t-test were used to assess 
the statistical differences between groups unless mentioned otherwise. Different levels 
of statistical significance were assessed based on specific p-values (*P < 0.05, **P < 
0.01, and ***P < 0.001). 

Data and code availability 

All data for this study are included in this article and its supplemental materials. The 
hybrid-capturing sequencing data of the ctDNA in patients with NPC are available via 
NCBI SRA: PRJNA796715 (https://www.ncbi.nlm.nih.gov/bioproject/796715). The 
source code was mainly based on the R language. Custom scripts and additional data 
related to support the findings of this work will be available to the academic community 
upon reasonable request to the lead contact. 
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Figure and table legends 

Figure legends 

Figure 1. Schematics of the design and application of the MaGIC approaches 

The MaGIC approaches were developed by systematical incorporation of the exon 
capturing panel with cancer-relevant mutations (Enrichers) and the effective mutation 
readout measurements (bTMB/TMB and KME). In the evolution of the two versions of 
MaGICs, a rational in silico background elimination process (Filter) was conducted to 
remove potential benign mutations that exist extensively in a healthy population. The 
MaGICs were sought to be applied in ctDNA detection for cancer diagnosis and, in 
particular, chemosensitivity prediction at a very early stage of the stereotype treatment 
course, as well as in prognosis evaluation in the context of tissue biopsies. 

ctDNA, circulating tumor DNA. TMB, tumor mutation burden. bTMB, blood-based 
TMB. KME, the number of key mutated exons. OS, overall survival. PFS, progress-
free survival. LMG, low-mutation group. MMG, middle-mutation group. HMG, high-
mutation group. ROC, receiver operating characteristic. 

 

Figure 2. Design of MaGICv1 

a. Schematics of the generation of Enricher-v1. The iteration algorithm was built to 
interrogate the genomic mutation data from the public cancer databases and rigorously 
select the exons enriched with cancer-relevant mutations from the human whole-exome 
pool. Enricher-v1 formed with the selected exons was used to identify the patients 
whose mutations occurred on the exon pool. 

b. The iteration algorithm phases and the patient coverage of Enricher-v1. The dashed 
lines indicate the number of selected exons at the end point of each iteration algorithm 
phase. The filled areas in blue, pink, and green indicate the proportion of patients in the 
training datasets that were captured at least once, twice, and three times, respectively, 
with Enricher-v1. 

c. Comparative analysis of the patient coverage of Enricher-v1 in three cancer datasets 
of training cohorts. 

d. The patient capture rate of Enricher-v1 in multiple cancer types. The cancer types 
with 90% of the patients who can be captured at least once with Enricher-v1 are 
highlighted in the green area. 

TCGA, the Cancer Genomic Atlas. RI, recurrent index. HNSC, head and neck 
squamous cell carcinoma. DLBC, lymphoid neoplasm diffuse large B-cell lymphoma. 
SARC, sarcoma. 
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Figure 3. Performance of MaGICv1 in patient classification 

a. Mean TMB (𝑇𝑀𝐵) analysis of the exons in Enricher-v1 among various cancer types 
in TCGA. 𝑇𝑀𝐵 is defined as the average TMB of pateints in each cancer. The dashed 
line represents the Q3 and median values of the 𝑇𝑀𝐵 across all cancer types. The dot-
boxplot indicates the distribution of 𝑇𝑀𝐵 all datasets. 

b. Evaluation of the OS and PFS of patients with multiple cancers by MaGICv1. The 
patients are classified as HMG (TMB = 0), MMG (1 ≤ TMB ≤ median value threshold), 
and LMG (TMB > median value threshold) of each cancer. The P-value between each 
comparison is labeled in the heatmap and assigned to different colors (log-rank test). 

c. The univariable Cox curves of PFS and OS of representative cancer type (kidney 
cancer and head and neck cancer) where the patients are classified by MaGICv1 (HMG 
thresholds: median value). 

d. Classification of patients with cancer from healthy cohorts using ctDNA sequencing 
data by MaGICv1. 

e. Schematics of the application of MaGICv1 in chemosensitivity prediction. The 
photographs of responders and nonresponders are Patient R1 and Patient N9, as 
recorded in Supplementary Table 4. 

f–h. The performance of MaGICv1 in chemosensitivity prediction according to the 
ctDNA sequencing data of liquid biopsies before and after FRC. The difference level 
between responders and nonresponders to the chemotherapy is presented as paired 
bTMB analysis (f), bTMB difference analysis (g), and ROC analysis (h). 

i, j. The performance of MaGICv1 in chemosensitivity prediction according to the 
ctDNA sequencing data of separate liquid biopsy samples before or after FRC. The 
difference level between responders and nonresponders to the chemotherapy is 
presented as bTMB analysis (i) and ROC analysis (j). 

TMB, tumor mutation burden. bTMB, blood-based TMB. 𝑇𝑀𝐵, Mean TMB. Q3, the 
upper quantile. OS, overall survival. PFS, progress-free survival. HMG, high-mutation 
group. MMG, middle-mutation group. LMG, low-mutation group. TCGA, The Cancer 
Genome Atlas. NMR, nuclear magnetic resonance map. CT, computerized tomography. 
FRC, first-round chemotherapy. SRC, second round chemotherapy. ROC, receiver 
operation characteristic. AUC, area under curve. **P < 0.01, ***P < 0.001, NS, not 
significant. NA, data not available. 

 

Figure 4. Development of Enricher-v2 

a. Schematics of the workflow of Filter and the design of Enricher-v2. 

b. Acquirement of Enricher-v2 by filtering the exons with potential high benign 
mutation background in Enricher-v1. The gray dots indicate all of the exons in the entire 
human exome. The blue dots indicate the exons involved in Enricher-v1. The red dots 
indicate Enricher-v2 containing the filtered exons with low benign mutation frequency. 
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c, d. The evaluation of potential signal to background (s/b) intensity of exons in 
Enricher-v2. The mutation features of patients with cancer and healthy cohorts are 
presented as paired analysis of the 𝑚 of each exon (c) and the percentage of exons with 
different mutation features (d) in Enricher-v2.  

e. Comparison of patient coverage between the two versions of Enrichers in multiple 
cancer types. The cancer types with 90% and 80% of the patients who can be captured 
by at least once with Enricher-v1 are highlighted in the pink and yellow areas. The 
boxplot shows the NME value of Enrichers across various cancer types. 

f. Comparison of s/b intensity between the two versions of Enrichers. 

g. Comparison of the s/b intensity of Enricher-v2 with that of other published genomic 
region panels for enriched cfDNA analysis. 

cfDNA, cell-free DNA. 𝑃  , mutant probability in healthy donors. 𝑚 , the average 
mutation frequencies per kilobase in healthy donors. s/b intensity, signal/background 
intensity. NME, the number of mutated exons. **P < 0.01, ***P < 0.001, NS, not 
significant. 

 

Figure 5. Design of KME measurement for MaGIC mutation readout 

a. Analysis of the mutations of each patient harbored by the exons of Enricher-v2 in 
paired ctDNA and tumor tissue. The high-intensity sequencing data of matched ctDNA, 
WBC, and tumor tissues from 124 patients with metastatic cancer were used. 

b. The distribution of the exons of Enricher-v2 with different mutational features in 
tumor tissues across various cancer types. All of the mutations in the TCGA datasets 
were included. 

c. The proportion of exons of Enricher-v2 with different mutational features in matched 
sequencing data of ctDNA, WBC, and tumor tissues from patients with breast cancer 
(BRCA), lung cancer (LNCA), and prostate cancer (PRCA). 

d. The variant allele frequencies (VAFs) of the ctDNA mutations in matched WBC, 
tumor tissues, or unknown sources. A VAF = 1% was arbitrarily set as the threshold to 
define the ctDNA mutation with or without high confidence to reflect the mutation in 
tumor tissue. 

e. Schematics of the calculation of KME measurement. 

f. Comparison of the proportion of effective ctDNA mutations in Enricher-v2 matched 
to different sources before and after KME calculation. 

g, h. Pearson correlation analysis of different ctDNA-related and tumor-related 
measurements. The bar chart shows the Pearson correlation coefficients of ctDNA-
related measurements with tTMB. 

i. Comparison of the signal-to-noise (S/N) ratio of ctDNA-related measurements 
according to the paired values (the left boxplot) and fold changes (the right boxplot). 
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BRCA, breast cancer. LNCA, lung cancer. PRCA, prostate cancer. VAF, variant allele 
frequency. KME, the number of key mutation exons. mVAF, mean VAF. bTMB, blood-
based tumor mutation burden. tTMB, tissue-based tumor mutation burden. NME, the 
number of mutation exons. tNME, the NME calculated by tissue samples. cfDNA, cell-
free DNA. ctDNA, circulating tumor DNA. S/N ratio, signal-to-noise ratio. ***P < 
0.001, NS, not significant. 

 

Figure 6. Performance of MaGICv2 in prognosis evaluation in the context of 
tissue biopsy 

a. Schematics of the workflow of MaGICv2 for prognosis evaluation. 

b. Different measurements (TMB, mVAF and KME) for mutation readout in Enricher-
v2 among various cancer types in TCGA. The dashed line represents the Q3 and median 
values of the readout data across all cancer types. The dot-boxplot indicates the 
distribution of 𝑇𝑀𝐵, 𝑚𝑉𝐴𝐹 and 𝐾𝑀𝐸 for all datasets. 

c. Evaluation of the OS and PFS of patients with multiple cancers by MaGICv2. The 
patients are classified as HMG (KME = 0), MMG (1 ≤ KME ≤ median value threshold), 
and LMG (KME > median value threshold) of each cancer. The P-value between each 
comparison is labeled in the heatmap and assigned to different colors (log-rank test). 

d. The univariable Cox curves of PFS and OS of representative cancer types (head and 
neck cancer and brain cancer) where the patients are classified by MaGICv2 (HMG 
thresholds: median value). 

e. A comparison of the performance of the two versions of MaGICs in prognosis 
evaluation (HMG thresholds: median value). 

Q3, the upper quantile value. OS, overall survival. PFS, progress-free survival. LMG, 
low-mutation group. MMG, middle-mutation group. HMG, high-mutation group. TMB, 
tumor mutation burden. KME, the number of key mutant exon. mVAF, mean variance 
allele frequency. 𝑇𝑀𝐵 , mean TMB. 𝑚𝑉𝐴𝐹 , mean VAF. 𝐾𝑀𝐸 , mean KME. NS, not 
significant. NA, data not available. 

 

Figure 7. Performance of MaGICv2 in patient diagnosis and chemosensitivity 
prediction in the context of liquid biopsy 

a. Classification of patients with cancer from healthy cohorts using ctDNA sequencing 
data by MaGICv2. 

b. Schematics of the application of MaGICv2 in chemosensitivity prediction. The 
photographs of responders and nonresponders are Patient R1 and Patient N9, as 
recorded in Supplementary Table 4. 

c. The performance of MaGICv2 in chemosensitivity prediction according to the 
ctDNA sequencing data of both the liquid biopsies before and after FRC. The difference 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.08.04.502459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502459


 

 

level between responders and nonresponders to the chemotherapy is presented as paired 
bTMB analysis (the left graph), bTMB difference analysis (the middle graph), and ROC 
analysis (the right graph). 

d. The performance of MaGICv2 in chemosensitivity prediction according to the 
ctDNA sequencing data of separate liquid biopsy samples before or after FRC. The 
difference level between responders and nonresponders to the chemotherapy is 
presented as bTMB analysis (the left graph) and ROC analysis (the right graph). 

e. Comparison of the performance of the two versions of MaGICs in chemosensitivity 
prediction using single or both liquid biopsy samples. 

NPC, nasopharyngeal carcinoma. KME, the number of key mutation exons. ROC, 
receiver operation characteristic. AUC, the area under curve. FRC, first-round 
chemotherapy. mVAF, mean value of variant allele frequency. KME, number of key 
mutated exons. TMB, tumor mutation burden. bTMB, blood-based TMB. *P < 0.05, 
**P < 0.01, ***P < 0.001, NS, not significant. 

 

Supplementary Figure 1. The patient capture rate of Enricher-v1 in the top 10 
most lethal cancers worldwide. The cancer types with 90% of the patients who 
can be captured at least once with Enricher-v1 are highlighted in the green area. 

 

Supplementary Figure 2.  Evaluation of OS and PFS of patients with multiple 
cancers by MaGICv1 at Q3 threshold. 

a. The patients are classified as LMG (TMB = 0), MMG (1 ≤  KME ≤ Q3 value 
threshold), and HMG (TMB > Q3 value threshold) of each cancer. The P-value between 
each comparison is labeled in the heatmap and assigned to different colors (log-rank 
test). 

b. The univariable Cox curves of PFS and OS of representative cancer type (kidney 
cancer and head and neck cancer) where the patients are classified by MaGICv1 (HMG 
thresholds: Q3 value). 

OS, overall survival. PFS, progress-free survival. TMB, tumor mutation burden. LMG, 
low-mutation group. MMG, middle-mutation group. HMG, high-mutation group. Q3, 
upper quantile. NS, not significant. NA, data not available. 

 

Supplementary Figure 3. Performance of MaGICv1 in prognosis evaluation of 
the top 10 most lethal cancers worldwide in the context of tissue biopsy. 

The patients are classified as LMG (TMB = 0), MMG (1 ≤  KME ≤ median or Q3 value 
threshold), and HMG (TMB > median or Q3 value threshold) of each cancer. The P-
value between each comparison is labeled in the heatmap and assigned to different 
colors (log-rank test).  
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OS, overall survival. PFS, progress-free survival. TMB, tumor mutation burden. LMG, 
low-mutation group. MMG, middle-mutation group. HMG, high-mutation group. Q3, 
upper quantile. NS, not significant. NA, data not available. 

 

Supplementary Figure 4. The quality control of ctDNA capture sequencing data 
from patients with nasopharyngeal carcinoma 

a. The on-target rate of the exons in Enricher-v1. The error bars in the barplot represent 
mean on-target rate ± standard deviation.  

b. Histogram shows the fragment length of aligned ctDNA for sequencing. The bin 
width was set to 5bp.  

c. Boxplot shows the fragment length of aligned ctDNA after deduplicated and size 
selection within each sample.  

ctDNA, circulating tumor DNA. 

 

Supplementary Figure 5. The NMR and CT images of patients with 
nasopharyngeal carcinoma at the time points before-FRC and after-SRC.  

NMR, nuclear magnetic resonance map. CT, computerized tomography. FRC, first-
round chemotherapy. SRC, second round chemotherapy.  

 

Supplementary Figure 6. Evaluation of OS and PFS of patients with multiple 
cancers by MaGICv2 at Q3 threshold. 

a. The patients are classified as LMG (KME = 0), MMG (1 ≤ KME ≤ Q3 value 
threshold), and HMG (KME > Q3 value threshold) of each cancer. The P-value between 
each comparison is labeled in the heatmap and assigned to different colors (log-rank 
test).  

b. The univariable Cox curves of PFS and OS of representative cancer types (head and 
neck cancer and brain cancer) where the patients are classified by MaGICv2 (HMG 
thresholds: Q3 value). 

OS, overall survival. PFS, progress-free survival. TMB, tumor mutation burden. mVAF, 
mean variant allele frequency. KME, the number of key mutated exons. LMG, low-
mutation group. MMG, middle-mutation group. HMG, high-mutation group. Q3, the 
upper quantile. NS, not significant. NA, data not available. 

 

Supplementary Figure 7. Performance of MaGICv2 in prognosis evaluation of 
the top 10 most lethal cancers worldwide in the context of tissue biopsy 

OS, overall survival. PFS, progress-free survival. TMB, tumor mutation burden. mVAF, 
mean variant allele frequency. KME, the number of key mutated exons. LMG, low-
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mutation group. MMG, middle-mutation group. HMG, high-mutation group. Q3, the 
upper quantile. NS, not significant. NA, data not available. 

 

Supplementary Figure 8. Comparison of the performance of the two versions of 
MaGICs in prognosis evaluation (HMG thresholds: Q3 value). 

OS, overall survival. PFS, progress-free survival. TMB, tumor mutation burden. LMG, 
low-mutation group. MMG, middle-mutation group. HMG, high-mutation group. Q3, 
upper quantile. NS, not significant. NA, data not available. 

 

Supplementary Figure 9. Comparison of the performance of the two versions of 
MaGICs in prognosis evaluation of the top 10 most lethal cancers worldwide. 

OS, overall survival. PFS, progress-free survival. TMB, tumor mutation burden. LMG, 
low-mutation group. MMG, middle-mutation group. HMG, high-mutation group. Q3, 
upper quantile. NS, not significant. NA, data not available. 

 

Supplementary Figure 10. Comparison of the performance of MaGIC-v2 with 
other published panels in combination with KME measurement in prognosis 
evaluation of the top 10 most lethal cancers worldwide.  

LMG, low-mutation group. MMG, middle-mutation group. HMG, high-mutation group. 
KME, the number of key mutated exons. 

 

Supplementary Figure 11. Comparison of the performance of MaGIC-v2 with 
MaGIC-v1 and other different combinations of Enrichers and measurements in 
chemosensitivity prediction of nasopharyngeal carcinoma.  

bTMB, blood-based tumor mutation burden. mVAF, mean variant allele frequency. 
FRC, first-round chemotherapy. SRC, second round chemotherapy. a-b, the difference 
value of after-FRC and before-FRC. ROC, receiver operation characteristic. AUC, the 
area under curve.  

Table legends 

Supplementary Table 1. TCGA whole exome sequencing projects used for tissue 
biopsy analysis 

Supplementary Table 2. The Enricher-v1 targeted exons. 

Supplementary Table 3. The Enricher-v2 targeted exons. 

Supplementary Table 4. The characteristics of patients with nasopharyngeal 
carcinoma. 

Supplementary Table 5. Statistical analysis of the quality of sequencing data. 

Supplementary Table 6 Data of the ROC curves in ctDNA analysis. 
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