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21 Abstract
22 Venom-induced haemorrhage constitutes a severe pathology in snakebite envenomings, 
23 especially those inflicted by viperid species. In order to both explore venom compositions 
24 accurately, and evaluate the efficacy of viperid antivenoms for the neutralisation of 
25 haemorrhagic activity it is essential to have available a precise, quantitative tool for empirically 
26 determining venom-induced haemorrhage. Thus, we have built on our prior approach and 
27 developed a new AI-guided tool (ALOHA) for the quantification of venom-induced 
28 haemorrhage in mice. Using a smartphone, it takes less than a minute to take a photo, upload 
29 the image, and receive accurate information on the magnitude of a venom-induced 
30 haemorrhagic lesion in mice. This substantially decreases analysis time, reduces human error, 
31 and does not require expert haemorrhage analysis skills. Furthermore, its open access web-
32 based graphical user interface makes it easy to use and implement in laboratories across the 
33 globe. Together, this will reduce the resources required to preclinically assess and control the 
34 quality of antivenoms, whilst also expediting the profiling of hemorrhagic activity in venoms for 
35 the wider toxinology community.
36

37 1. Introduction
38 Snakebite envenoming is a major public health problem, especially in the developing world 
39 [1]. Indeed, it is responsible for substantial morbidity and mortality, particularly in the 
40 impoverished areas of sub-Saharan Africa, South to Southeast Asia, Papua New Guinea, and 
41 Latin America [1–4]. Whilst accurate estimates are difficult to make, it is believed that between 
42 1.8–2.7 million people worldwide are envenomed each year, resulting in 80,000 to 140,000 
43 deaths and 400,000 survivors left with permanent sequelae [5–7].
44
45 The severity of a given envenoming is determined by several factors, such as  the amount of 
46 venom injected, the anatomical location of the bite, and the physiological status of the victim 
47 [8]. In addition, there is a great variability in the composition of the venoms and the 
48 predominant toxins present in different venoms, not only between genera, but also within a 
49 single species [9]. Consequently, the clinical manifestations and pathophysiological effects of 
50 envenomings can vary greatly depending on the offending snake species [10]. One such effect 
51 is haemorrhage. Indeed, envenomings by many snakes, predominantly by species belonging 
52 to the family Viperidae, but also some from the family Colubridae (sensu lato), induce local 
53 and systemic haemorrhage, further causing local tissue damage and cardiovascular 
54 disturbances [8,11,12]. Specifically, blood vessel damage leads to extravasation, which 
55 contributes to local tissue damage and poor muscle regeneration. In addition, massive 
56 systemic haemorrhage contributes to hemodynamic disturbances and cardiovascular shock 
57 [8,13]. Consequently, the underlying mechanisms by which snake venoms induce 
58 haemorrhage, the characterisation of hemorrhagic toxins, and the clinical manifestations of 
59 envenomings have, for a long time, presented a key area of fundamental, but also translational 
60 research within the field of Toxinology [11]. Venom-induced haemorrhage is mainly the 
61 consequence of the damage induced by snake venom metalloproteinases (SVMPs) on the 
62 microvasculature, due to the enzymatic degradation of key structural components in the 
63 basement membrane of capillary vessels [12]. The haemorrhagic activity of venoms is further 
64 potentiated by the action of venom toxins that affect haemostasis, which induce consumption 
65 coagulopathy, thrombocytopenia, and platelet hypoaggregation [1,14].
66
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67 The only specific treatment currently available for snakebite envenomings is the intravenous 
68 administration of animal-derived antivenom [8,15]. Importantly, each batch of antivenom that 
69 is produced needs to undergo rigorous quality control; this includes the assessment of the 
70 ability of antivenoms to neutralise the lethal effect of venoms in mice [16,17]. In addition, and 
71 owing to the complex pathophysiology of snakebite envenomings, other relevant effects, such 
72 as the antivenom’s neutralising potential of venom-induced haemorrhage, are also part of the 
73 preclinical assessment of antivenom efficacy [16]. The most widely used method for analysing 
74 haemorrhage is the skin test originally developed in rabbits [18], and later on adapted for use 
75 in rats [19] and mice [20]. In the adaptation of this method for mice, a range of different venom 
76 concentrations are injected intradermally in the abdominal region. After a predefined time 
77 interval, mice are euthanised and carefully dissected in order to allow the assessment of the 
78 inner surface of the skin. Originally, this was followed solely by a rough manual measurement 
79 of the area of the haemorrhagic lesion. Since this method did not take into account the intensity 
80 of the lesion, a computationally assisted update to this method was reported in 2017, in which 
81 an image of the lesion is taken, and both the size and the intensity are measured accurately, 
82 thus providing a more systematic and quantitative evaluation of extravasation [21]. The study 
83 also introduced a new unit for the assessment of the severity of a given venom-induced 
84 hemorrhagic lesion, i.e. the haemorrhagic unit (HaU) [21]. Whilst this method presented an 
85 improvement in accuracy and speed of the quantification of snake venom-induced 
86 haemorrhagic activity, it still required manual identification of the lesions and specialised 
87 equipment. It thus remained subject to human error and was not optimally accessible to 
88 researchers across the globe.
89
90 Thus, we present a new and more accessible artificial intelligence (AI)-guided tool for the 
91 automatic assessment of venom-induced haemorrhage, ALOHA (
92 https://github.com/laprade117/ALOHA). We trained a machine learning algorithm to 
93 automatically identify haemorrhagic lesions, adjust for lighting biases, scale the image, extract 
94 lesion area and intensity, and calculate the HaUs. Finally, we evaluate the performance of this 
95 algorithm and discuss its utility in relation to rapid, robust, and semi-automated assessment 
96 of snake venom-induced haemorrhage.
97

98 2. Methods
99 2.1 Snake venom

100 The venom of Bothrops asper was used in this study since its haemorrhagic activity has been 
101 widely studied. Venom of B. asper (batch number 03–06 Bap P) was obtained from adult 
102 specimens captured in the Pacific region of Costa Rica and maintained in captivity at the 
103 Serpentarium of Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa 
104 Rica. Samples of venom correspond to pools obtained from many adult specimens and were 
105 stabilised by lyophilisation and stored at −20 °C. Solutions of venoms in 0.12 M NaCl, 0.04 M 
106 phosphate, pH 7.2 buffer (PBS) were prepared immediately before use.
107
108 2.2 Haemorrhagic activity
109 Haemorrhagic activity was assessed following the method described by Jenkins et al. (2017) 
110 with some modifications (c.f. below). Briefly, groups of four mice of both sexes (18–20 g; CD-
111 1 strain) were injected intradermally with different amounts of B. asper venom (1, 2, 4, 8, 16 
112 μg) dissolved in 100 μL PBS. Two hours after injection, mice were sacrificed by CO2 inhalation, 
113 and their skin was dissected. Mice were first placed on a standardised A4 printout template 
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114 sheet to measure the haemorrhagic lesion on the inner surface of the skin, using the method 
115 described below; then the same mice were also placed on the table without the template 
116 printout sheet, with pictures being taken for both approaches. All experiments involving the 
117 use of mice were approved by the Institutional Committee for the Care and Use of Laboratory 
118 Animals (CICUA) of the University of Costa Rica (approval number CICUA 82-08).
119
120 2.3. Printout sheet
121 To allow for a standardised analysis of the haemorrhagic lesions, as well as to facilitate the 
122 image analysis algorithms, we prepared an A4 printout sheet which the mice were placed on. 
123 This sheet outlines where to place the mice and includes different lines and boxes of defined 
124 lengths that allow for the scaling of the image (Fig.1). We also used a cut out mask to be 
125 placed on the mice to facilitate lesion identification (Fig.1). Printable versions of these two 
126 components can be found in supplementary Figure 1 and 2.
127

128
129 Figure 1. Explanation of the printable template upon which the mice should be placed. 
130 The multiple scales across the page allow for the automatic scaling by the tool and take into 
131 account pictures obtained from different angles. The black frame acts as a cut out mask to 
132 facilitate the automatic identification of haemorrhagic lesions.
133
134 2.4. Description of machine learning guided approach of quantifying 
135 haemorrhagic activity
136 We trained a machine learning algorithm to automatically identify haemorrhagic lesions, adjust 
137 for lighting biases, scale the image, extract haemorrhagic lesion area and intensity, and 
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138 calculate the HaUs. This was then implemented in an accessible fashion via a graphical user 
139 interface (GUI) as the ALOHA tool (Fig. 2).
140

141
142 Figure 2. Overview of the workflow for ALOHA. First, the raw image is imported and 
143 converted from sRGB to linear RGB. Thereafter, the image is white balanced and 
144 subsequently further white balanced using the colour of the paper detected via the scaling 
145 squares. In parallel, the image is rescaled using the same squares. This processed image is 
146 then used for segmentation and automatic identification of the haemorrhagic lesions. 
147 Together, this information is used to compute the lesion area and luminance, which is then 
148 combined into a HaU score to assess the overall hemorrhagic lesion.
149
150 2.4.1. Conversion to linear RGB and white balancing
151 In order to create reproducible results across images, it is necessary to white balance the 
152 images prior to computing the HaUs. First, the images were converted to a linear RGB colour 
153 space as in Jenkins et al. 2017 [21], then auto white balancing, based on the method used in 
154 the GNU Image Manipulation Program (https://www.gimp.org), was applied. For images that 
155 use our template, we applied a second white balancing step for higher accuracy using 
156 information extracted from the template image. Firstly, we detected the black boxes in the four 
157 corners of the image using a template matching algorithm. We then computed a white point 
158 based upon the mean colour of the pixels located within each of the four boxes and a black 
159 point based upon the mean colour of the pixels in the black borders of these boxes. The image 
160 is then white balanced via the following formula:
161
162

163 𝐼_𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 =
(𝐼 ― 𝑏𝑙𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡) ∗  𝑚𝑒𝑎𝑛(𝑤ℎ𝑖𝑡𝑒_𝑝𝑜𝑖𝑛𝑡)

(𝑤ℎ𝑖𝑡𝑒_𝑝𝑜𝑖𝑛𝑡 ―  𝑏𝑙𝑎𝑐𝑘_𝑝𝑜𝑖𝑛𝑡)  

164
165 This formula does require the assumption that the paper which the template has been printed 
166 on is some value of grey, (i.e. the RGB values are all identical).
167
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168
169 2.4.2. Segmentation
170 To identify and segment the haemorrhagic lesions in images, a deep learning method based 
171 on the widely-used U-Net architecture was applied [22]. We also included a few modifications 
172 based upon more recent findings. Namely, we replaced the deconvolution layers in the 
173 expanding path with bilinear upsampling followed by a 2x2 convolution and included batch 
174 normalisation layers [23,24]. The resulting architecture contains approximately 31 million 
175 trainable parameters. 
176 Our dataset consisted of 29 training images taken via smartphone. Each image 
177 contains between 1 and 32 mice displaying varying levels of haemorrhagic damage for a total 
178 of 217 mice. To limit annotator bias, each image was annotated by two different annotators, 
179 resulting in two masks per image. For evaluating performance, we set aside 20% of the images 
180 at random as a validation test set. Thereafter, a 5-fold cross-validation was performed on the 
181 remaining 23 images, evaluating model performance on the validation test set for each fold. 
182 This was repeated 5 times to avoid test-set bias. 
183 At the time of training, the images were split into samples of size 256 x 256 pixels and 
184 fed into the model in batches of 32 samples. Batches were created such that each sample 
185 had a 75% chance of having a masked section of haemorrhagic tissue according to at least 
186 one annotator. The masks used for training were sampled from the set of annotators at 
187 random. Data augmentations included flips, rotations, noise, blurring, sharpening, distortions, 
188 brightness, contrast, hue, and saturation adjustments. Augmentations were selected to 
189 simulate the possible variation in both the lighting environment as well as the smartphone 
190 camera’s built-in post-processing implementations.
191 The models were trained using the Adam optimizer with a learning rate of 0.0001 for 
192 100 epochs. We used a loss function based upon a combination of the Mathews correlation 
193 coefficient (MCC) and cross-entropy [25]. We report the average F1 (Dice), MCC, and 
194 accuracy for each model as computed on the test set. F1/Dice is the harmonic mean of 
195 precision and recall and ranges between 0 and 1, where 1 is a perfect score. MCC ranges 
196 from -1 to 1, with 1 being a perfect score.
197
198 2.4.3. Scaling
199 It is essential for computing an accurate HaU that the scale of the images is determined. With 
200 the template, this can be done automatically by first detecting the black squares (via template 
201 matching) in the corners and then determining the number of white pixels inside the black 
202 square via thresholding. The inner white region is a 10 mm x 10 mm square, so the pixel 
203 resolution can be computed with the formula below.
204

205 𝑃𝑖𝑥𝑒𝑙_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
√(𝑛𝑢𝑚_𝑤ℎ𝑖𝑡𝑒_𝑝𝑖𝑥𝑒𝑙𝑠)

10  

206
207 For improved accuracy, we then averaged the results across the four black squares.
208
209 For images without the template, the scale was determined manually by using FIJI’s measure 
210 tool on a known distance in the image [26]. Once the image scale was determined, we resized 
211 all images to ensure a resolution of 5 pixels per mm, which also allows for rapid computation.
212
213 2.4.4 Calculation of HaU and minimum haemorrhagic dose
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214 Haemorrhagic units were calculated as described in Jenkins et al. 2017 [21]. Briefly, the RGB 
215 values and area of a given lesion were extracted and colour/scale adjusted. Thereafter, the 
216 luminance (i.e., intensity) was calculated, combined with the area of the lesion, and expressed 
217 as HaUs. Thereafter, the minimum haemorrhagic dose (MHD) of B. asper venom was 
218 calculated. This calculation was carried out using linear regression on the means of the values 
219 from table 4. From the resulting function, we calculated the venom dose needed for a 50 HaU 
220 signal by replacing the Y with 50 and calculating X. The software used was GraphPad Prism 
221 version 9.2.0.
222
223 2.4.5 Implementation in GUI
224 Using Streamlit (https://github.com/streamlit/streamlit) and localtunnel 
225 (https://github.com/localtunnel/localtunnel) with Google Colab, a simple web-based 
226 application to automatically analyse images was developed (
227 https://github.com/laprade117/ALOHA). A web-based application seems to be the most 
228 efficient way to quickly analyse data while working in the lab. Users can take a photo with a 
229 smartphone and upload it to the web-based tool (accessible via a smartphone browser) for an 
230 immediate result (supplementary Figure 3).
231
232

233 3. Results
234 In this study, we primarily present the results for the six images that used the template to 
235 evaluate the performance of our fully automated method, ALOHA. We used, as a model, the 
236 haemorrhagic lesions induced by the venom of B. asper on mice.
237
238 3.1 White balancing
239 To address the potential impact of lighting differences, the tool automatically performs white 
240 balancing. The white balancing works as expected and produces comparable results across 
241 images (Fig. 3).
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242
243 Figure 3. An overview of ALOHA’s automatic white balancing output across the 
244 different test images.
245
246 3.2 Scaling
247 Using the scaling method outlined in 2.4.3, the tool automatically detects the image scales 
248 and reports them (Table 1).
249
250 Table 1. Table outlining the input dimensions, detected scale, target scale, and output 
251 dimensions across six test images.
252

1 2 3 4 5 6

Input dimensions 
(pixel x pixel) 2448 x 3264 2448 x 3264 2448 x 3264 2448 x 3264 2448 x 3264 2448 x 3264

Detected scale 
(pixels per mm) 11.4765 11.4863 11.4575 11.3564 11.4654 11.8486

Target scale (pixels 
per mm) 5 5 5 5 5 5

Output dimensions 
(pixel x pixel) 1050 x 1400 1048 x 1398 1017 x 1356 1053 x 1405 1053 x 1404 1047 x 1396

253
254 3.3 Segmentation
255 To automatically identify lesion areas, the tool uses a machine learning guided segmentation 
256 approach. Overall, an average MCC score of 0.8612 and an average F1 (Dice) score of 0.9064 
257 was achieved, and we were able to predict 99.84% of the pixels correctly across 25 runs (Fig. 
258 4).
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259

260
261 Figure 4. Segmentation of all haemorrhagic lesions across the test images. The 
262 segmentations are coloured using the average RGB values detected within the lesion area 
263 and the amount of Bothrops asper venom injected into the mice indicated above each batch 
264 of images.
265
266
267 3.4 Haemorrhagic Units
268 To assess the severity of each lesion, the tool automatically computes the real-world area, 
269 luminance, and HaU for each mouse in all of the test images (Tables 2,3,4).
270
271 Table 2. Individual and average (across one image) lesion sizes for all of the six test 
272 images. The amount of Bothrops asper venom injected into the mice is indicated next to each 
273 batch of images. 

Area (mm2)

Venom (μg) Mouse 1 Mouse 2 Mouse 3 Mouse 4 Average Std. Dev.

0.5 0.00 0.00 63.08 23.16 21.56 25.77

1 98.80 132.68 68.80 86.84 96.78 23.32
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2 138.88 39.36 169.40 101.32 112.24 48.50

4 111.84 90.80 139.04 72.60 103.57 24.74

8 174.92 115.96 156.48 179.28 156.66 25.01

16 248.32 286.84 221.00 320.32 269.12 37.69

274
275 Table 3. Individual and average (across one image) lesion luminance for all of the test images. 
276 The amount of Bothrops asper venom injected into the mice is indicated next to each batch of 
277 images. 

Luminance (cd/m2)

Venom (μg) Mouse 1 Mouse 2 Mouse 3 Mouse 4 Average Std. Dev.

0.5 0.00 0.00 0.32 0.39 0.18 0.18

1 0.24 0.27 0.38 0.22 0.27 0.06

2 0.19 0.27 0.21 0.23 0.23 0.03

4 0.07 0.10 0.09 0.11 0.09 0.02

8 0.10 0.09 0.07 0.07 0.08 0.01

16 0.10 0.04 0.09 0.11 0.09 0.03

278
279 Table 4. Individual and average (across one image) lesion haemorrhagic units for all of the 
280 test images. The amount of Bothrops asper venom injected into the mice is indicated next to 
281 each batch of images. 

Haemorrhagic units (HaU)

Venom (μg) Mouse 1 Mouse 2 Mouse 3 Mouse 4 Average Std. Dev.

0.5 0.00 0.00 19.56 5.93 6.37 7.99

1 42.01 49.98 18.09 40.34 37.60 11.84

2 74.79 14.43 79.00 44.38 53.15 26.04

4 154.67 90.69 154.71 63.15 115.81 40.09

8 180.76 134.09 239.51 266.37 205.18 51.41

16 248.77 644.71 233.08 280.86 351.85 169.96

282
283 3.4 Calculation of minimum hemorrhagic dose
284 Using linear regression (Figure X), we obtained the function 
285 𝑌 = 21.83( ∓ 1.18)𝑋 + 13.73( ∓ 8.91), from which we calculated the MHD on the proposed 
286 method from our earlier work (50 HaU) [21]. This resulted in a MHD of 1.66 (SD: -0.34, +0.30).  
287
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288
289 Figure 5. Linear regression of the means calculated from table 4, with standard 
290 deviations shown as error bars. The y-axis shows the HaUs and the x-axis shows the 
291 amount of venom used for the corresponding HaU level. Analysis was carried out using 
292 GraphPad Prism version 9.2.0.
293
294 3.5 Tool GUI
295 To ensure accessibility and easy implementation of ALOHA across research, production, and 
296 quality control laboratories, a graphical user interface was developed (
297 https://github.com/laprade117/ALOHA). Our tool can be used to quickly upload an image and 
298 receive statistics on the lesion area, luminance, and HaU for each mouse in the image (Fig. 
299 5).
300

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 5, 2022. ; https://doi.org/10.1101/2022.08.04.502754doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502754
http://creativecommons.org/licenses/by/4.0/


12

301
302 Figure 6. Image of ALOHA’s web interface. By uploading an image file of the experiment, 
303 the tool will, within seconds, provide the white balanced reference image, the individual lesions 
304 it detected, and how it decided to segment them, as well as all relevant data on lesion area, 
305 luminance, and HaUs.
306

307 4. Discussion
308 Haemorrhage is one of the key pathophysiological manifestations of snakebite envenomings, 
309 particularly those inflicted by species of the family Viperidae [1,11]. Therefore, the preclinical 
310 assessment of antivenom efficacy includes the evaluation of the neutralisation of 
311 haemorrhagic activity [27]. This results in both a need for robust and reliable, but also rapid 
312 assay approaches, while limiting required resources, which would allow their implementation 
313 in diverse laboratory settings. In our earlier study, we were able to improve the classical rodent 
314 skin test by increasing the accuracy of haemorrhage characterisation and reducing the time 
315 required for analysis in comparison to the original approach, as well establish that HaUs 
316 accurately reflect haemoglobin content analysis18. Therefore, our previous tool has been used 
317 in a series of later publications [28–37]. Nevertheless, our prior approach still remained time 
318 consuming, and required familiarisation with a new software and access to a colour pantone. 
319 Furthermore, it was subject to human error as lesions were manually annotated, which 
320 required training and would still differ from one individual to another. 
321
322 In this study, we aimed to address these shortcomings by implementing a fully automated 
323 analysis pipeline, aided by vision AI, i.e. U-Net. We found that our tool, ALOHA, was able to 
324 rapidly and robustly assess the training images that covered a range of haemorrhagic lesion 
325 severities. We observed consistent white balancing, error-free scaling, and accurate 
326 segmentation. Notably, segmentation was conducted on a limited dataset to minimise animal 
327 usage prior to validation of this approach. Nevertheless, U-Net has demonstrated, across 
328 many studies [22,38–40], its robustness despite small training datasets, as was the case in 
329 our study; segmentation consistently aligned with our expert opinion, even when artificially 
330 manipulating the images to simulate a range of different laboratory/lighting conditions for a 
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331 harsher image testing environment. Additionally, the HaU values calculated across the test 
332 images fall within the same range as prior findings [21,28,32,37], allowing for easy comparison 
333 and the prior validated suggestion of 50 HaU as MHD [21]. 
334
335 To ensure optimal accessibility and ease of implementation into existing workflows, we 
336 developed a GUI-based web tool that allows users to conduct fast and accurate analyses of 
337 haemorrhagic lesions. Using a smartphone, it takes less than a minute to take a photo, upload 
338 the image, and receive accurate information on the severity of a venom-induced haemorrhagic 
339 lesion in mice. This substantially decreases the analysis time required, from hours, to just a 
340 few minutes. Furthermore, the ease-of-use significantly boosts the accessibility of our method 
341 and provides a standard tool to be used across labs that does not require training or prior 
342 knowledge on lesion assessment.
343
344 Despite the benefits ALOHA holds, some possible limitations may exist. In properly illuminated 
345 environments, the white balancing performs accurately. However, in shadowed, or strangely 
346 lit environments, the white balancing may not perform as well. To mitigate this, it is 
347 recommended to photograph in bright, uniformly lit environments. It is especially important to 
348 avoid casting shadows on or covering the black squares on the template paper for optimal 
349 results. Furthermore, due to the translucency of a single sheet of paper, it is best to avoid 
350 placing the template on a brightly colored table or desk when photographing. Scaling is 
351 computed via information obtained from the black squares at the corners of the template 
352 paper. This computation assumes that the black squares are perfect 10 mm x 10 mm squares. 
353 Thus, for the most accurate results, it is best to use flat unwrinkled paper and photograph 
354 directly from above, so that there is the least amount of distortion applied to the black squares.
355

356 5. Conclusion
357 With ALOHA, we introduce a new algorithm for the assessment of venom-induced skin 
358 haemorrhage in mice by relying on machine learning guided image analysis approaches. This 
359 algorithm eliminates the risk of human biases in assessing lesion areas and increases the 
360 speed of analysis substantially. Furthermore, its open access web-based graphical user 
361 interface makes it easy to use and implement in laboratories across the globe. This markedly 
362 decreases the resources required for a given analysis, such as analysis and training time, and 
363 ensures reproducibility of the results.
364
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493 Supplementary Figure S1: A4 printout template to be used for haemorrhage assays.
494
495 Supplementary Figure S2: A4 printout cover sheet to be used for haemorrhage assays.
496
497 Supplementary Figure S3: Graphical illustration of how to use the ALOHA tool. First you 
498 open the Google colab tool (1.), then follow the instructions and connect to the server (2.), 
499 open the menu bar if not already visible, and select Runtime -> Restart and run all (4.). After 
500 a brief wait you use the link provided at the bottom of the page and follow the instructions.
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