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Abstract 12 

As synthetic biology expands and accelerates into real-world applications, methods for quantitatively 13 

and precisely engineering biological function become increasingly relevant. This is particularly true for 14 

applications that require programmed sensing to dynamically regulate gene expression in response to 15 

stimuli. However, few methods have been described that can engineer biological sensing with any level 16 

of quantitative precision. Here, we present two complementary methods for precision engineering of 17 

genetic sensors: in silico selection and machine-learning-enabled forward engineering. Both methods 18 

use a large-scale genotype-phenotype dataset to identify DNA sequences that encode sensors with 19 

quantitatively specified dose response. First, we show that in silico selection can be used to engineer 20 

sensors with a wide range of dose-response curves. To demonstrate in silico selection for precise, multi-21 

objective engineering, we simultaneously tune a genetic sensor’s sensitivity (EC50) and saturating output 22 

to meet quantitative specifications. In addition, we engineer sensors with inverted dose-response and 23 

specified EC50. Second, we demonstrate a machine-learning-enabled approach to predictively engineer 24 

genetic sensors with mutation combinations that are not present in the large-scale dataset. We show 25 

that the interpretable machine learning results can be combined with a biophysical model to engineer 26 

sensors with improved inverted dose-response curves. 27 

Introduction 28 

As the field of synthetic biology transitions from a qualitative, trial-and-error endeavour into a mature 29 

engineering discipline, methods that enable the engineering of biological function with quantitative 30 

precision are required, i.e., to produce an outcome that meets a quantitative specification. This need is 31 

particularly acute for genetic sensors, which form the basis for synthetic gene circuits and related 32 

approaches for programming cells to regulate gene expression dynamically in response to 33 

environmental stimuli. 34 

Most efforts to engineer genetic sensors have been qualitative in nature, e.g., demonstrations of new 35 

sensor architectures or sensors that respond to new inputs [1-6]. Those qualitative demonstrations are 36 

the necessary first steps in developing a toolkit of sensors for synthetic biology and for demonstrating 37 

the variety of cellular control circuits enabled by genetic sensors. However, for many applications, 38 

genetic sensors will also need to be engineered with a quantitatively specified dose-response curve 39 
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matched to each application [2, 4, 7-10]. That dose-response curve is typically described using a version 40 

of the Hill equation: 41 

 G�L� = G0 + 
G∞ – G0

1 + �EC50

L
�
n
, 

where L is the input signal level (e.g., concentration of ligand); G(L) is the regulated gene expression 42 

output from the sensor as a function of the input signal; G0 is the basal output level; G∞ is the saturating 43 

output level; EC50 is the input level required to give an output midway between G0 and G∞; and n is the 44 

Hill coefficient, which quantifies the steepness of the dose response. 45 

Although the importance of tuning the dose response of genetic sensors has been recognized for 46 

applications such as engineered living therapeutics, dynamic pathway control, and enzyme engineering 47 

[2, 4, 7-9, 11, 12], very few methods have been described that can accomplish the required tuning with 48 

any level of quantitative precision or accuracy. With RNA-based genetic sensors (e.g., riboswitches), the 49 

relatively predictable biophysics of base-pair interactions has enabled methods to engineer new sensors 50 

with quantitatively predictable G0 and G∞  [13, 14]. For protein-based genetic sensors, general guidelines 51 

have been given for tuning dose-response curves [7, 10, 15, 16], and several methods have been 52 

demonstrated to improve sensor performance by reducing EC50 or increasing the dynamic range (G∞/G0) 53 

[17-26]. But no methods have yet been described that can engineer protein-based sensors with specific 54 

quantitative values for the parameters of the Hill equation. 55 

Here, we leverage a large-scale, genotype-phenotype dataset to demonstrate two methods for 56 

quantitatively precise engineering of protein-based genetic sensors: in silico selection, and forward 57 

engineering enabled by machine-learning (ML). With in silico selection, we mine the large-scale dataset 58 

to find DNA sequences that encode genetic sensors that meet quantitative specifications. We show that 59 

in silico selection can be used to engineer genetic sensors with EC50 values spanning a wide range (from 60 

3 μmol/L to over 1000 μmol/L) and with quantitative accuracy (within about 1.3-fold). In addition, we 61 

demonstrate in silico selection for precise, multi-objective engineering: first, by engineering genetic 62 

sensors with both EC50 and G∞ within about 1.2-fold of specified values; and second, by engineering 63 

sensors with inverted dose-response and EC50 within about 2-fold of specified values. With ML-enabled 64 

forward engineering, we use the large-scale dataset to train an interpretable ML model, and we show 65 

that the model can predict both EC50 and G∞ for novel combinations of mutations, also with high 66 

accuracy (within 1.9-fold and 1.2-fold for EC50 and G∞, respectively). Finally, we use results from the 67 

interpretable ML model in combination with guidance from a biophysical model, to engineer new 68 

inverted LacI variants with improved EC50 and G∞. 69 

Results 70 

Many previous publications have described the effects of protein mutations on genetic sensor dose-71 

response curves. However, we are not aware of any previous work that has demonstrated the use of 72 

protein mutations to tune a genetic sensor dose-response curve to meet quantitative specifications. So, 73 

the objectives of this manuscript are to demonstrate methods whereby protein mutations can be used 74 

for quantitative tuning of dose-response curves and to test the accuracy and precision of those 75 

methods. To that end, the primary statistic we will use to assess different methods is the fold-accuracy: 76 

exp�RMSE�ln�x�	
, where x is the parameter to be tuned (e.g., EC50, G∞ from the Hill equation), and 77 
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RMSE�ln�x�	 is the root-mean-square difference between the logarithm of the actual value of x and the 78 

logarithm of the targeted or predicted value of x. We use the logarithmic scale to assess accuracy 79 

because the parameters of a genetic sensor dose-response curve can span multiple orders of magnitude 80 

and because the resulting fold-accuracy is the most suitable metric for applications of engineered 81 

genetic regulatory networks [27]. 82 

The methods we demonstrate here both require a large-scale genotype-phenotype dataset as a starting 83 

point (e.g., deep mutational scanning). For that, we used a recently published dataset that contains 84 

dose-response curves for over 60,000 variants of a protein-based genetic sensor, the lac repressor, 85 

LacI [28]. Briefly, to create the large-scale genotype-phenotype dataset, error-prone PCR was used to 86 

generate a library of LacI variants with an average of 7.0 DNA mutations and 4.4 missense mutations 87 

(i.e., amino acid substitutions) per coding sequence. The library was barcoded and a growth-based 88 

barcode counting assay was used to measure the dose-response curve, G(L), for every variant in the 89 

library. Each dose-response curve was fit to the Hill equation to provide estimates for the Hill equation 90 

parameters and their associated uncertainties. In addition, long-read sequencing was used to measure 91 

the full-length protein coding sequence for each barcoded variant. 92 

Precision engineering via in silico selection 93 

The concept of in silico selection is fairly simple: use the large-scale dataset as a lookup table to identify 94 

variants with desired phenotypes along with their matching genotypes. That information can then be 95 

used to synthesize DNA sequences that will result in the required protein phenotype (i.e., dose-response 96 

curve). The keys to successful precision engineering with in silico selection are the number of measured 97 

variants and the diversity of phenotypes spanned by the large-scale dataset. The dataset must include 98 

sufficient diversity to cover the range of functional outcomes needed for the engineering objectives. For 99 

example, the LacI dataset includes variants with EC50 values from less than 1 µmol/L to over 100 

1000 µmol/L (Fig 1). So, with that dataset, it should be possible to engineer LacI variants with a wide 101 

range of EC50 values. As a first test of the in silico selection approach, we used the genotype-phenotype 102 

dataset to identify a set of LacI variants with EC50 ranging from about 3 µmol/L to over 1000 µmol/L (and 103 

with G0 and G∞ near the wild-type values). For each of those variants, we then synthesized the LacI 104 

coding sequence, integrated it into a plasmid where it regulated the expression of a fluorescent protein, 105 

and measured the resulting in vivo dose-response curves using flow cytometry (Fig 2A). The results 106 

indicate a fold-accuracy of 1.67 for engineering LacI variants with different EC50 values (Fig 2B; where we 107 

calculate the fold-accuracy as described above, using EC50 reported in the large-scale dataset as the 108 

predicted values and EC50 determined by flow cytometry as the actual values). However, there is a 109 

systematic error between the cytometry measurements and the large-scale dataset: at low EC50, the 110 

cytometry result tends to be higher than the large-scale result, while at high EC50, the cytometry result 111 

tends to be lower (Fig 2C). After correcting for this systematic error (using a linear fit to the ln(EC50) data 112 

shown in Fig 2B for the predicted values), we calculate a best-case fold-accuracy of 1.31 for in silico 113 

selection of EC50. 114 

In addition to providing quantitative accuracy and precision for a single phenotypic parameter, in silico 115 

selection is particularly well suited to multi-objective optimization of protein function. With in silico 116 

selection, one can simply search the large-scale dataset for sequence variants that satisfy multiple 117 

criteria simultaneously. This avoids the need for complicated multi-objective Darwinian selection 118 

schemes that are necessary for directed evolution. Both EC50 and G∞ need to be quantitatively tuned for 119 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted November 13, 2022. ; https://doi.org/10.1101/2022.08.04.502789doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502789


4 

 

optimal dynamic control of a metabolic pathway using a genetic sensor [9]. So, to demonstrate multi-120 

objective optimization with in silico selection, we first defined a set of quantitative specifications for 121 

EC50 and G∞. For those specifications, we chose a grid of EC50 and G∞ values with EC50 equal 122 

to 10 μmol/L, 30 μmol/L, or 100 μmol/L, and with G∞ equal to 16 kMEF or 25 kMEF (the units, MEF, are 123 

molecules of equivalent fluorescein from the calibration of cytometry data with fluorescent beads, see 124 

Materials and Methods). Next, we used the large-scale dataset to identify the DNA sequences most 125 

likely to encode LacI variants with both EC50 and G∞ close to the specified values (after correcting for the 126 

systematic error in EC50). In most cases, we chose the top three sequences for each specification (ranked 127 

by the probability of EC50 within 1.2-fold and G∞ within 1.1-fold of the target, based on the large-scale 128 

measurement uncertainty). For EC50 = 100 μmol/L, G∞ = 16 kMEF, the top two sequences were very 129 

similar (encoding for the missense mutation V95M, plus mutations to the disordered loops near the LacI 130 

tetramer helix), so for this specification, we also chose the fourth-ranked sequence. The specification 131 

EC50 = 100 μmol/L, G∞ = 25 kMEF is very close to the wild-type LacI phenotype, so we did not choose any 132 

sequences for that specification. We then synthesized each sequence, integrated it into a plasmid where 133 

it regulated the expression of a fluorescent protein, and measured the resulting in vivo dose-response 134 

curves using flow cytometry (Fig 3A). Comparing the cytometry results with the corresponding multi-135 

objective specifications, the in silico selection approach showed good performance, with 1.22-fold and 136 

1.14-fold accuracy for EC50 and G∞, respectively. However, there was some systematic deviation from 137 

the targeted G∞ for specifications with G∞ = 25 kMEF (Fig 3B). 138 

As a final test of the in silico selection approach, we used it to engineer LacI variants with inverted dose-139 

response (G∞ < G0) and with specified EC50. To identify sequences from the large-scale dataset, we used 140 

criteria similar to those described above to choose the sequences most likely to encode inverted LacI 141 

variants with EC50 equal to 10 μmol/L, 30 μmol/L, or 100 μmol/L. The dataset contains a much lower 142 

density of inverted variants (Fig 1C, G∞/G0 < 1). So, for each target specification, there was only a single 143 

sequence with a greater than 10% probability of having an EC50 within 1.5-fold of the targeted value 144 

(based on the uncertainty of the large-scale results). The sparsity of inverted variants is at least partially 145 

due to the FACS pre-screening that was applied before the large-scale measurement to reduce the 146 

fraction of variants with high G0 [28], which would have removed all inverted variants from the 147 

measured library had it been perfectly efficient.   148 

As before, we synthesized the sequences identified by in silico selection, and we measured the in vivo 149 

dose-response curves for the resulting LacI variants with flow cytometry (Fig 4A). All three variants had 150 

inverted dose-response curves with G0 and G∞ satisfying the targeted specification (G0 within 1.3-fold of 151 

25 kMEF and G∞ < 12.5 kMEF, Fig 4B). However, for each of the sequences, the resulting EC50 was higher 152 

than the targeted values (by 1.9-fold, 2.6-fold, and 1.6-fold for targeted EC50 of 10 μmol/L, 30 μmol/L, 153 

and 100 μmol/L, respectively). 154 

To determine whether the deviations from the targeted EC50 were due to systematic errors in the large-155 

scale measurement, we synthesized and measured the dose-response for eight additional sequences, 156 

selected only based on the inverted phenotype (without a specified EC50). The cytometry results confirm 157 

that all eight variants have inverted dose-response curves (Fig 5). Furthermore, the results indicate an 158 

accuracy of 2.8-fold for EC50 of the inverted variants, with no systematic bias (Fig 6). The lower accuracy 159 

for the inverted variants (compared with the results in Fig 2B) is consistent with the estimated 160 

uncertainty of the large-scale measurements, and is due to the FACS pre-screening, which reduced the 161 

number of barcode reads associated with each inverted variant. 162 
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ML-enabled forward engineering 163 

For some applications, it can be important to predict the phenotype resulting from combinations of 164 

mutations that are not present in the large-scale dataset (e.g., to apply sequence constraints that could 165 

not be easily applied during construction of the large-scale library). In those situations, the large-scale 166 

data can be used to train a machine-learning (ML) models that can then be used to predict the 167 

phenotype resulting from novel combinations of mutations. To demonstrate this approach, we used the 168 

large-scale LacI dataset to train an ML model using LANTERN, a recently described approach that learns 169 

interpretable models of genotype-phenotype landscapes and that also provides good predictive 170 

accuracy (e.g., as good or better than neural network models)  [29]. We used the resulting model to 171 

predict EC50 and G∞ for 33 variants with mutation combinations that are not found in the large-scale 172 

dataset – and using only a restricted set of 16 missense mutations. We chose the 16 mutations to give a 173 

range of different effects on the dose-response, and we used mutations distributed across the LacI core 174 

domain (Fig 7, Table S1) but avoided mutations to the DNA binding domain that might disrupt 175 

interactions between LacI and its cognate DNA operator [21]. We then synthesized the LacI sequences 176 

for the 33 variants, measured their dose-response with cytometry, and compared the results with the 177 

predictions from the LANTERN model. Overall, the prediction accuracy of the LANTERN model was 178 

nearly as good as the accuracy of the underlying measurements, with 1.93-fold and 1.19-fold accuracy 179 

for EC50 and G∞, respectively (Fig 8). 180 

Surprisingly, five of the 33 variants had inverted dose-response curves, and all five had the same 181 

missense mutation: V136E. In addition, two double mutants with the V136E mutation had non-182 

monotonic dose-response: the double mutant V136E/G200C had a band-stop dose-response curve 183 

(referred to as the “reversed” phenotype in earlier literature [30-36]); and the double mutant 184 

V136E/S279T had a more complicated non-monotonic dose-response (high-low-high-low). We did not 185 

include the data for V136E/G200C or V136E/S279T in the quantitative comparison (Fig 8), because it did 186 

not match the form of the Hill equation. The single mutation V136E, applied to the wild-type 187 

background, gives a dose-response with reduced G∞ but G0 and EC50 similar to the wild type (Fig 7). 188 

Previous work has shown that single mutations that reduce G∞ relative to the wild-type can be 189 

intermediates toward the evolution of the inverted phenotype [37-39], though V136E is located more 190 

on the periphery of the protein structure than the intermediate mutations in those previous studies. The 191 

prediction accuracy for the five inverted variants was generally poor, particularly for EC50. This 192 

discrepancy was not surprising: the large-scale dataset used to train the model contained few examples 193 

of inverted variants, and so the model could not learn to predict them. If we consider only the 28 non-194 

inverted variants tested, the prediction accuracy of the LANTERN model improves significantly for EC50 195 

(1.31-fold) but only slightly for G∞ (1.17-fold).  196 

In addition to accurately predicting phenotype from genotype, LANTERN learns interpretable models 197 

[29]. Part of this interpretability comes from the way LANTERN learns to represent the effect of each 198 

mutation. LANTERN represents each mutational effect as a vector in a low dimensional latent space 199 

(three dimensions for the LacI dataset), and the combined effect of multiple mutations is simply 200 

represented as the sum of the corresponding vectors. The different components of the latent vector 201 

space learned by a LANTERN model often resemble a set of latent biophysical parameters (e.g., free 202 

energies) that control the protein phenotype. However, the latent parameters learned by a LANTERN 203 

model are unlabeled, meaning that while a connection between the parameters learned by LANTERN 204 

and biophysical parameters may exist, the model does not identify this connection. But, when an explicit 205 
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biophysical model is available, it can potentially be linked to the parameters learned by LANTERN. This 206 

has been demonstrated qualitatively for a biophysical model of LacI function [40-43] and the LANTERN 207 

model trained on the large-scale LacI dataset [29]. More specifically, the first (most significant) latent 208 

parameter learned by the LANTERN model seems to correspond to changes to any one of three 209 

parameters in the biophysical model (the binding free energy for LacI to its DNA operator, ΔεRA; the 210 

logarithm of the LacI allosteric constant, ΔεAI; or the ligand binding constant for the inactive state of 211 

LacI, KI; using the notation of [40, 42]). The second latent parameter, however, seems to correspond to 212 

changes to a single parameter in the biophysical model (the ligand binding constant for the active state 213 

of LacI, KA) 214 

To see if this potential link between LANTERN and biophysics could be used in forward engineering, we 215 

attempted to use the LANTERN model results together with insight from the biophysical model to 216 

engineer improved inverted LacI variants. Most inverted LacI variants in the large-scale dataset have 217 

relatively high EC50, and they are also somewhat leaky (G∞ > 1000 MEF, compared with G0 = 158 MEF for 218 

wild-type LacI). Based on the biophysical model, both EC50 and G∞ of inverted variants can be reduced by 219 

decreasing the ligand binding constant for the active state, KA, which tentatively corresponds to an 220 

increase in the second latent parameter of the LANTERN model. So, we chose three mutations with a 221 

significant predicted increase in that second latent parameter (S70R, V80L, and V136E). We synthesized 222 

and tested LacI variants composed of those mutations added onto the background sequences for two 223 

genetically distinct inverted variants. In both inverted backgrounds, the mutation V80L reduced EC50 by 224 

a factor of 5 or 6, and reduced G∞ by a factor of about 1.3 (Fig 9, blue). The other two mutations, 225 

however, did not have the intended effect: S70R increased EC50 in both inverted backgrounds (Fig 9, 226 

orange), and V136E resulted in constitutively high output (Fig 9, green). Although imperfect, this initial 227 

test of linking an interpretable, data-driven ML model to a biophysical model to engineer genetic 228 

sensors shows promise for engineering difficult-to-access phenotypes that differ significantly from the 229 

wild type.  230 

Discussion  231 

We have demonstrated two approaches for precision engineering of genetic sensors and quantitatively 232 

evaluated their accuracy and the range of engineered phenotypes they can access. With in silico 233 

selection, we engineered sensors with EC50 values spanning nearly three orders of magnitude with high 234 

precision (1.3-fold). In addition, we demonstrated that in silico selection can be used for facile, multi-235 

objective engineering to give genetic sensors with specified values for both EC50 and G∞, and with high 236 

accuracy relative to pre-defined specifications (1.22-fold and 1.14-fold for EC50 and G∞, respectively). We 237 

also showed that in silico selection can be used for multi-objective engineering of more difficult and rare 238 

phenotypes: inverted sensors with specified EC50, though with lower accuracy due to the relative 239 

sparsity of inverted variants in the large-scale dataset (1.6-fold to 2.6-fold for EC50). With ML-enabled 240 

forward engineering we demonstrated that an ML model can be trained with a large-scale genotype-241 

phenotype landscape dataset, and that model can then be used to predict the dose-response of new 242 

mutation combinations, again with good accuracy (1.3-fold to 1.9-fold for EC50 and ~1.2-fold for G∞). We 243 

further demonstrated that an interpretable ML model can be used together with insight from a more 244 

explicit biophysical model to engineer inverted genetic sensors with improved EC50 and G∞. To get a 245 

baseline for comparison of the performance of the precision engineering approaches, we measured 246 

multiple replicate dose-response curves for wild-type LacI (two biological replicates, with a total of 15 247 
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technical replicates measured on six different days). Across those wild-type replicates, the geometric 248 

standard deviation was 1.16-fold, 1.22-fold, and 1.11-fold, for EC50, G0, and G∞, respectively. 249 

For both approaches to precision engineering, it is important that the large-scale dataset contains 250 

sequence variants with multiple mutations, i.e., not just data for variants with single amino acid 251 

substitutions. Similarly, the dataset must contain results specifically related to each variant in the 252 

measured library rather than just an enrichment score associated with each mutation. With in silico 253 

selection, if we restrict the dataset to only single-mutant variants, the expected probability for success 254 

(i.e., engineering a dose-response satisfying the specification) drops significantly (Supplementary 255 

Information). Also, there are no single-mutant variants in the dataset expected to satisfy the 256 

specifications farthest from the wild-type (inverted dose response; or G∞ = 16 kMEF and 257 

EC50 = 10 μmol/L or 30 μmol/L; Table S2). So, with only single mutations, the range of phenotypes that 258 

can be engineered becomes more limited. Multi-mutant variants are also important for training the ML 259 

model, since multi-mutant data are required to make predictions for new mutation combinations 260 

without strong assumptions about the additivity and linearity of mutational effects [44].  261 

To compare the accuracy demonstrated here with previous work, we are only able to find four examples 262 

of quantitative evaluation of predicted vs. measured genetic sensor dose-response. Two of those were 263 

for RNA-based sensors, and the other two were focused on engineering the dose-response of protein-264 

based genetic sensors by varying the sequence of the cognate DNA operator (while using the wild-type 265 

protein sequences). Those previous publications included quantitative results for G0 and G∞ (or the ratio 266 

G∞/G0), and one included results for G(L), but none of them included quantitative results for EC50. 267 

Borujeni et al. developed a biophysical modeling approach to engineer RNA-based genetic sensors [13]. 268 

They tested the accuracy of the model by measuring the response of 67 riboswitches and showed that 269 

their model could predict the activation ratio, G∞/G0, with approximately 2.5-fold accuracy (i.e., within 270 

2-fold of the correct value for 55 % of the tested riboswitches). However, their model was less accurate 271 

for calculating the values of G0 and G∞ rather than their ratio (~8-fold and ~6-fold accuracy respectively). 272 

Angenent-Mari et al. trained several deep neural network models using a large-scale genotype-273 

phenotype dataset for RNA toehold switches [14]. Their best model was able to predict G0 and G∞ with 274 

about 3-fold accuracy. Yu et al. developed a biophysical model to predict how changes in promoter 275 

architecture and sequence affect G0 and G∞ [45]. Their model was able to predict G0 and G∞ with 1.6-276 

fold accuracy across a set of 8269 designed lac operators (i.e., predictions within 2-fold of the true value 277 

87% of the time). Zhou et al. used dose-response measurements for protein-based genetic sensors with 278 

2632 combinatorically designed operator sequences to train regression models for G(L) at each ligand 279 

concentration (L). Their best model had a predictive accuracy of about 1.2-fold [46]. By comparison, in 280 

our demonstration of the in silico selection method, all 16 of the engineered sensors with data shown in 281 

Fig 3 had both EC50 and G∞ within 2-fold of the specified target values, and two of the three inverted 282 

sensors (Fig 4) had EC50 within 2-fold or the target value. Also, our data-driven ML model was able to 283 

correctly predict EC50 and G∞ within 2-fold for 76 % and 97 % of the tested LacI variants, respectively. 284 

If we broaden our comparisons to include predictive models for constitutive gene expression, the best-285 

known examples are probably the various models for predicting the translation initiation rate from 286 

ribosomal binding site (RBS) sequences [47-52]. In a recent evaluation of several of those models using 287 

data for nearly 10,000 RBS sequences, the models’ predictive accuracy ranged from approximately 1.85-288 

fold to 11-fold (between 23 % and 74 % predicted within 2-fold of the measured value), with the most 289 

recent iteration of the RBS calculator giving the best performance [53]. A biophysics-based model was 290 
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also demonstrated for terminator strength in E. coli, with approximately 3.9-fold accuracy across a set of 291 

582 natural and synthetic designed terminators [54]. More recently, LaFleur et al. developed a 292 

biophysical model for the strength of promoters in E. coli [55]. That model was able to correctly predict 293 

in vitro transcription rates with 1.6-fold accuracy across a set of 5388 designed promoters (i.e., within 294 

2-fold of the correct value 92 % of the time), though it was less accurate for in vivo systems 295 

(approximately 2-fold accuracy). Similar predictive models of promoter function have been developed 296 

for eukaryotic cells [56-59]. However, those reports only evaluated model performance using the 297 

correlation coefficient, and the data comparing predicted and measured results are not available as part 298 

of the reports’ data supplements. So, it is not possible to estimate the predictive fold-accuracy of those 299 

models with the available information. 300 

In summary, the precision engineering approaches described here have very good accuracy compared 301 

with previous quantitative results. The question of how accurate an engineering method would need to 302 

be will depend on specific applications. Beal et al. have estimated that a target accuracy of 1.5-fold 303 

would be sufficient for most applications requiring engineered genetic regulatory networks [27]. 304 

The use of interpretable ML modeling in conjunction with a biophysical model also has the potential to 305 

become a useful engineering approach, as demonstrated here for the engineering of improved inverted 306 

LacI variants. But more rigorous methods would be needed to link the latent parameters of the ML 307 

model to the biophysical parameters before that approach could be used for engineering with 308 

quantitative precision. An alternative would be to fit the large-scale dataset directly with a biophysical 309 

model, if an appropriate model is available. One outstanding problem is that estimation of biophysical 310 

parameters from phenotype measurements can be ambiguous [60, 61]. A large-scale measurement 311 

approach, with measurements of many different multi-mutation combinations could help to overcome 312 

ambiguity, since it provides information on mutational effects across many different genetic 313 

backgrounds that can help resolve those ambiguities [62]. However, that kind of approach will probably 314 

prove much more challenging for protein-based genetic sensors, where the same change to the dose-315 

response curve can be explained by changes to several different biophysical parameters as shown by 316 

Razo-Mejia et al. [42] and demonstrated in our experience fitting the large-scale LacI dataset with a 317 

LANTERN model as discussed above. 318 

For most applications, there will be some shift in context between the large-scale measurement and the 319 

application (e.g., a change in strain, growth conditions, and/or the genes that are regulated by the 320 

sensor). Ultimately, successful use of the methods described here will depend on the ability to predict 321 

how a genetic sensor’s dose-response curve will change in response to those types of context shifts. The 322 

types of biophysical models discussed above, whether used in conjunction with interpretable ML or fit 323 

directly to data, provide a promising solution to the challenge of predicting function across different 324 

contexts. For example, Razo-Mejia et al. developed a biophysical model for allosteric regulation with 325 

LacI, and showed that it could accurately predict changes to the dose-response curve due to changes in 326 

LacI copy number or the interaction strength between LacI and its cognate operator [42]. Chure, 327 

Kaczmarek, and Phillips then demonstrated that the same model could accurately predict changes in the 328 

basal output level, G0, due to cell growth at different temperatures and with different carbon 329 

sources [63]. Notably, Chure, Razo-Mejia, et al. showed that the model could also be used to predict 330 

changes in dose-response resulting from combinations of mutations (using single-mutant data) [40]. 331 

Although they did not include a quantitative evaluation of the accuracy of those predictions, it appears 332 

to be quite good (e.g., six of six predicted EC50 within 2-fold of the correct value, based on a visual 333 
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inspection of Fig. 5A in [40]). Sochor showed that a similar biophysical model could be used to predict 334 

the in vivo dose-response curve of LacI using data from in vitro transcription measurements [64]. Finally, 335 

the model developed by LaFleur et al. [55] can predict changes in gene expression due to changes in 336 

sequence context upstream and downstream of a promoter site. So, although quantitative prediction of 337 

the effects of different biological contexts remains one of the outstanding challenges in the field [65], 338 

for genetic sensors at least, promising solutions exist. Admittedly, if biophysical models (or other means) 339 

are needed to correct for shifts in context between the large-scale measurement and the application, 340 

that will add an additional layer of uncertainty in the use of the methods described here. But that just 341 

highlights the need for the best possible quantitative accuracy of the underlying large-scale 342 

measurements. 343 

Currently, we are aware of only one large-scale dataset with quantitative results for the dose-response 344 

curves of a protein-based genetic sensor: the LacI dataset used here [28]. So, it is not yet possible to 345 

fully assess the generalizability of the methods presented here to other proteins. As an indication of the 346 

possible generalizability, though, we can compare the basic requirements of our methods with the 347 

requirements for directed evolution: both rely on the ability to generate phenotypic diversity via protein 348 

mutations. Directed evolution and related methods have been used to qualitatively improve a large 349 

variety of protein-based genetic sensors [17-26], in some cases with a single round of mutagenesis and a 350 

library diversity comparable to number of variants in the LacI dataset (10
4
 to 10

5
 variants) [19-21, 26]. 351 

Furthermore, in an approach similar to the in silico selection method described here, Ogawa et al. used 352 

deep mutational scanning data for a library of single-mutant XylS variants to identify mutations that 353 

alter the ligand specific of that protein-based genetic sensor [66]. So, as large-scale genotype-phenotype 354 

measurements become more accessible, we expect that the type of precision engineering approaches 355 

described here could be readily generalized to engineer different types of genetic sensors or other 356 

complex biological functions.  357 

Compared with our approach, directed evolution has the advantage that it can be implemented with 358 

very large libraries of sensor protein variants: as many as 10
8
, compared with ~10

5
 for the LacI dataset 359 

used here. So, we think that directed evolution methods will remain important for engineering new, 360 

hard-to-access protein functions, such as sensitivity to new ligands [6, 10, 67]. However, it would be very 361 

difficult to implement a directed evolution method for precision sensor engineering, for example to give 362 

a quantitatively specified EC50. Similarly, promising new methods have been demonstrated for de novo 363 

computational design of genetic sensors [68], but those methods are unlikely to provide quantitative 364 

precision on their own. Therefore, we expect that methods like those described here will ultimate be 365 

used in conjunction with directed evolution or computational design, to provide quantitative precision 366 

when that is needed for real-world applications. 367 

Materials and Methods 368 

Large-scale dataset 369 

The large-scale dataset for LacI dose-response curves is described in ref[28]. It includes the estimated 370 

Hill equation parameters, EC50, G0 and G∞, for over 60,000 variants of the LacI genetic sensor, measured 371 

in E. coli. Those Hill equation parameter estimates, and their associated uncertainties, were obtained by 372 

fitting the measured dose-response curve of every variant to the Hill equation. That dataset is available 373 

via the NIST Science Data Portal, with the identifier ark:/88434/mds2-2259 374 
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(https://data.nist.gov/od/id/mds2-2259 or https://doi.org/10.18434/M32259). Here, we used the Hill 375 

equation parameter estimates and uncertainties as they are reported in that dataset. 376 

In silico selection 377 

For the in silico selection results shown in Fig. 3, LacI variants were chosen from the large-scale dataset 378 

based on the following criteria:  379 

1. EC50 within 1.2-fold of the target value (after correcting for systematic errors, see Fig. 2C) 380 

2. G∞ within 1.1-fold of the target value 381 

3. G0 < 2 kMEF  382 

Those criteria were first applied using the median values reported in the dataset for G0, G∞, and EC50. 383 

That resulted in multiple LacI variants for each specification (between 18 and 1513). To identify the best 384 

variants to synthesize and test, the uncertainty information reported in the dataset was then used to 385 

estimate the probability for success of each variant: more specifically, the posterior samples reported in 386 

the dataset (from Bayesian estimation of the Hill equation parameters) were used to calculate the 387 

probability that each variant would meet the listed criteria. The variants were then ranked based on 388 

their probability of success; and the highest ranking three variants were selected for testing. 389 

For the in silico selection results shown in Fig. 4, a similar procedure was used to choose LacI variants, 390 

with the following criteria: 391 

1. EC50 within 1.5-fold of the target value 392 

2. G∞ < 12.5 kMEF 393 

3. 19.2 kMEF < G0 < 32.5 kMEF  394 

When applied to the median values for G0, G∞, and EC50, those criteria were only met by one or two LacI 395 

variants for each specification. Also, the calculated probability to meet the listed criteria was greater 396 

than 10% for only one variant per specification. So, only a single variant was selected for each 397 

specification. 398 

Strains, plasmids, and culture conditions 399 

All reported measurements were completed using E. coli strain MG1655∆lac [69], in which the lactose 400 

operon of E. coli strain MG1655 (ATCC #47076) was replaced with the bleomycin resistance gene from 401 

Streptoalloteichus hindustanus (Shble). 402 

Dose-response curves were measured with flow cytometry using E. coli MG1655∆lac transformed with 403 

variants of the pVER plasmid, described previously [28]. The plasmid contained different variants of the 404 

lacI coding DNA sequence (CDS), as described in the text, and an expression cassette with enhanced 405 

yellow fluorescent protein (eYFP) under the control of the lactose operator (lacO). The lacI CDS was 406 

verified with Sanger sequencing for each variant. 407 

All cultures were grown in a rich M9 media (3 g/L KH2PO4, 6.78 g/L Na2HPO4, 0.5 g/L NaCl, 1 g/L NH4Cl, 408 

0.1 mmol/L CaCl2, 2 mmol/L MgSO4, 4 % glycerol, and 20 g/L casamino acids) supplemented with 409 

50 μg/mL kanamycin.  410 

For flow cytometry measurements, E. coli cultures were grown in a laboratory automation system that 411 

included an automated liquid handler (Hamilton, STAR), an automated plate sealer (4titude, a4S), an 412 

automated de-sealer (Brooks, XPeel), and two multi-mode plate readers (BioTek, Neo2SM).  413 
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Cultures were grown in clear polystyrene 96-well plates with 1.1 mL square wells (4titude, 4ti-0255). The 414 

culture volume per well was 0.5 mL. Before incubation, each 96-well growth plate was sealed by the 415 

automated plate sealer with a gas permeable membrane (4titude, 4ti-0598). Growth plates were 416 

incubated in one of the multi-mode plate readers at 37 °C with a 1 °C gradient applied from the bottom 417 

to the top of the incubation chamber to minimize condensation on the inside of the membrane. The 418 

plate readers were set for double-orbital shaking at 807 cycles per minute. Optical density at 600 nm 419 

(OD600) was measured every 5 minutes during incubation, with continuous shaking applied between 420 

measurements (optical density at 700 nm and YFP fluorescence were also measured every 5 minutes). 421 

After incubation, the automated de-sealer was used to remove the gas-permeable membrane from each 422 

96-well plate to enable automated passaging of cultures and sample preparation for flow cytometry 423 

measurements.  424 

For each measurement, starter cultures were prepared from glycerol freezer stock in 5 mL of rich M9 425 

media in a 14 mL snap-cap culture tubes. Starter cultures were incubated at 37 °C with orbital shaking at 426 

300 rpm for between 4 h and 24 h prior to loading the automation system. The automation system then 427 

prepared 96-well growth plates, sealed and de-sealed the growth plates, incubated the growth plates, 428 

and prepared flow cytometry sample plates. The automated culture protocol consisted of the following 429 

steps: 430 

1. Prepare first growth plate, with 450 μL rich M9 media in each well. 431 

2. Pipette 50 μL of starter culture into each well in rows B-G of the plate (leaving rows A and H 432 

blank). 433 

a. Use a E. coli containing a different lacI variant for each row. 434 

3. Seal first growth plate with gas permeable membrane. 435 

4. Incubate plate in plate reader for 12 h to 14 h. 436 

a. Grow to stationary to provide a reproducible starting point for each measurement. 437 

5. Prepare second growth plate with 490 μL in each well. 438 

a. Dilution series of isopropyl-β-D-thiogalactopyranoside (IPTG): 11 columns of a 2-fold 439 

serial dilution gradient and one column with zero IPTG. 440 

6. Ten minutes before the end of the incubation cycle for the first growth plate, move the second 441 

growth plate to a heated station set to 47 °C. 442 

a. Ten minutes at 47 °C will pre-warm the media in the plate to 37 °C. 443 

7. De-seal the first growth plate (after completion of the stationary-phase incubation cycle). 444 

8. Pipette 10 μL from each well in the first growth plate to the corresponding well in the second 445 

growth plate. 446 

a. 50-fold dilution; using a 96-channel pipetting head. 447 

9. Seal second growth plate with gas permeable membrane. 448 

10. Incubate second growth plate in plate reader for 160 minutes. 449 

a. Sufficient for approximately 10-fold increase in cell density or 3.3 doublings. 450 

11. Prepare third growth plate with 450 μL in each well. 451 

a. Same dilution series as in second growth plate. 452 

12. Ten minutes before the end of the incubation cycle for the second growth plate, move the third 453 

growth plate to a heated station set to 47 °C. 454 

13. De-seal the second growth plate (after completion of the 160 minute incubation cycle). 455 
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14. Pipette 50 μL from each well in the second growth plate to the corresponding well in the third 456 

growth plate. 457 

a. 10-fold dilution; using a 96-channel pipetting head. 458 

15. Seal third growth plate with gas permeable membrane. 459 

16. Incubate third growth plate in plate reader for 160 minutes. 460 

17. Prepare flow cytometry sample plate (round-bottom 96-well plate, Falcon, 351177). 461 

a. Each well in rows B-G: 195 μL 1x PBS with 170 μg/mL chloramphenicol (Fisher 462 

BioReagents, cat. #BP904-100). 463 

b. Rows A and H: PBS blanks, focusing fluid blanks, and space for calibration bead sample 464 

18. At the end of the incubation cycle for the third growth plate, pipette 5 μL from each well to the 465 

corresponding well in the flow cytometry sample plate. 466 

At the end of the automated culture protocol, the flow cytometry sample plate was transferred to the 467 

flow cytometry autosampler for measurement. 468 

Flow cytometry 469 

Flow cytometry samples were measured with an Attune NxT flow cytometer equipped with a 96-well 470 

plate autosampler using a 488 nm excitation laser and a 530 nm ± 15 nm bandpass emission filter. Blank 471 

samples were measured with each batch of cell measurements, and an automated gating algorithm was 472 

used to discriminate cell events from non-cell events [70]. Fluorescence calibration beads (Spherotech, 473 

part no. RCP-30-20A) were also measured with each batch of samples to facilitate calibration of flow 474 

cytometry data to molecules of equivalent fluorescein (MEF) [71-73]. 475 

For each LacI variant, the dose-response curve was taken to be the geometric mean fluorescence from 476 

flow cytometry as a function of the IPTG concentration in the media of the third growth plate. For many 477 

variants, data from multiple measurements were used, e.g., from biological or technical replicates, or 478 

data across multiple, overlapping IPTG dilution series to extend the range of inducer concentrations. For 479 

some biological and/or technical replicates, the cytometry results differed significantly from the 480 

consensus results from other replicates (i.e., G∞ more than 1.25-fold different from the consensus 481 

value). Data for those outlier replicates were not used. The Hill equation parameters and their 482 

associated uncertainties were determined by fitting all of the non-outlier cytometry data for each 483 

variant to the Hill equation using Bayesian parameter estimation by Markov Chain Monte Carlo (MCMC) 484 

sampling with PyStan [74]. 485 

LANTERN ML modeling 486 

LANTERN was fit to the LacI dataset with methods described in Ref[29]. In this model, LANTERN learns to 487 

predict observed phenotypes � � 
� given a one-hot encoded form of the genotype � � �0, 1�� in two 488 

key steps. First, the genotype is projected to a low dimensional space � � ��, where � � 
��� and 489 

� � �. Second, LANTERN learns a smooth non-linear surface connecting this low dimensional space to 490 

observed phenotypes: � � ����. Both the matrix � and function ���� are unknown parameters and are 491 

learned by LANTERN in the form of an approximate variational posterior [75]. 492 

To quantify the predictive uncertainty of the LANTERN model for individual variants, we approximated 493 

the posterior predictive distribution for each variant under the learned model. This was done by taking 494 

Monte Carlo draws from learned approximate posterior (fifty draws were taken for each variant). Then, 495 
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the mean and standard deviation of these draws were used to summarize the posterior predictive 496 

interval, as shown in Fig 8. 497 

 498 
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Figures 515 

 516 

Figure 1. Diversity of dose-response phenotypes in the large-scale dataset. The colored points are the 517 

values as reported in the genotype-phenotype dataset, with colors indicating the relative density of 518 

similar phenotypes. The gray ‘X’ in each plot shows the parameter values for the wild-type LacI dose-519 

response curve.  520 

4 
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 521 

Figure 2. Accuracy and precision of EC50 from in silico selection. (A) Example dose-response curves for 522 

LacI variants selected to span a wide range of EC50 values. Each variant is plotted with a different color, 523 

with lines showing the fits to the dose-response using the Hill equation. The wild-type dose response is 524 

plotted with the gray ‘X’ markers. (B) EC50 from the flow cytometry measurements plotted vs. EC50 from 525 

the large-scale dataset. The dashed line indicates equality between the cytometry and large-scale 526 

results. (C) The ratio: (EC50 from flow cytometry) ÷ (EC50 from the large-scale dataset) plotted vs. EC50 527 

from the large-scale dataset. In both B and C, results for non-wild-type LacI variants are plotted with 528 

blue circles, and results for wild-type LacI are plotted with gray X’s (there were multiple copies of the 529 

wild-type in the large-scale dataset, each plotted separately). Error bars indicate ± one standard 530 

deviation. 531 

5 
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 532 

Figure 3. Multi-objective in silico selection of LacI variants with different EC50 and G∞ values. 533 

(A) Example dose-response curves for LacI variants selected to satisfy multi-objective specifications for 534 

EC50 and G∞. One variant is plotted for each target specification, each with a different color and with 535 

lines showing the fits to the dose-response using the Hill equation. The wild-type dose response is 536 

plotted with the gray ‘X’ markers. (B) Evaluation of multi-objective selection performance. The dashed 537 

rectangles show the target specifications in a 2D plot of G∞ vs. EC50, with a different color for each 538 

specification. For each specification, three or four distinct LacI variants were selected, and the resulting 539 

G∞ and EC50 values (from cytometry) for those variants are plotted with different markers (with marker 540 

color indicating the targeted specification). Error bars indicate ± one standard deviation and are typically541 

smaller than the markers. 542 

 543 

544 

Figure 4. Multi-objective in silico selection of inverted LacI variants. (A) Dose-response curves for LacI 545 

variants selected to have inverted dose-response curves with specified EC50. One variant is plotted for 546 

each target specification, each with a different color and with lines showing the fits to the dose-547 

response using the Hill equation. The wild-type dose response is plotted with the gray ‘X’ markers. 548 

(B-C) Evaluation of multi-objective selection performance. The dashed rectangles show the target 549 

specifications in a 2D plot of G0 (B) and G∞ (C) vs. EC50, each with a different color. For each specification,550 

one LacI variant was selected, and the resulting G0, G∞ and EC50 values (from cytometry) for those 551 

variants are plotted (with marker color indicating the targeted specification). For comparison, the wild-552 

type G0, G∞ and EC50 are plotted with gray ‘X’ markers. Error bars indicate ± one standard deviation and 553 

are typically smaller than the markers. 554 

6 
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 555 

Figure 5. Additional inverted variants. Dose-response curves for eight additional inverted LacI variants 556 

selected to test the accuracy of the large-scale measurements. 557 

 558 

7 
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559 

Figure 6. Accuracy of large-scale measurement for inverted variants. (A) EC50 from the flow cytometry 560 

measurements plotted vs. EC50 from the large-scale dataset. (B) G0 from the flow cytometry 561 

measurements plotted vs. G0 from the large-scale dataset. (C) G∞ from the flow cytometry 562 

measurements plotted vs. G∞ from the large-scale dataset. In all three plots, results for the inverted 563 

variants selected to have specified EC50 are plotted with markers colored to match the results in Fig. 4; 564 

results for additional inverted variants are plotted with gray markers. Error bars indicate ± one standard 565 

deviation. 566 
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567 

Figure 7. Mutations used for ML-enabled forward engineering. (A) LacI protein structure showing 568 

location of mutations. The DNA-binding configuration is shown on the left (DNA at the bottom of the 569 

structure in light orange, PDB ID: 1LBG [76]) and the ligand-binding configuration is shown on the right 570 

(IPTG in cyan, PDB ID: 1LBH [76]). Both configurations are shown with the view oriented along the 571 

protein dimer interface, with one monomer in light gray and the other monomer in dark gray. Colored 572 

spheres highlight the positions of mutations used for ML-enabled forward engineering, with silent 573 

mutations in blue and non-silent mutations in orange. (B) Dose-response of single-mutant LacI variants 574 

with each of the mutations used for ML-enabled forward engineering. In each plot, the single-mutant 575 

dose-response is plotted in blue (for silent mutations) or orange (for non-silent mutations), and the wild-576 

type dose response is plotted in gray. 577 
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 578 

Figure 8. Accuracy of ML-enabled forward engineering. (A) EC50 from the flow cytometry 579 

measurements plotted vs. EC50 predicted by the LANTERN ML model. (B) G∞ from the flow cytometry 580 

measurements plotted vs. G∞ predicted by the LANTERN ML model. In each plot, results for LacI variants581 

with different numbers of mutations are plotted with different colors. Results for the five unexpectedly 582 

inverted variants are marked with black dots. Error bars indicate ± one standard deviation.  583 

 584 

 585 

 586 

Figure 9. Forward engineering to improve inverted sensors. Each plot shows dose-response curves for a587 

‘parent’ inverted LacI variant and for that parent with the addition of mutations chosen to improve the 588 

inverted variant (by reducing EC50 and G∞). (A) The parent variant has three missense mutations: A87P, 589 

V301M, and E357G. (B) The parent variant has five missense mutations: V96E, T154I, S158R, V238D, 590 

M254I, and V264I. 591 
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