
Race to survival during antibiotic breakdown

determines the minimal surviving population size

Lukas Geyrhofer1, Philip Ruelens2,3, Andrew D. Farr2,4, Diego Pesce2, J. Arjan G.M. de

Visser2, and Naama Brenner1

1Technion – Israel Institute for Technology, Haifa, Israel
2Wageningen University & Research, Wageningen, Netherlands

3University of Leuven, Leuven, Belgium
4 Max Planck Institute for Evolutionary Biology, Plön, Germany

August 4, 2022

Abstract

A common strategy used by bacteria to resist antibiotics is enzymatic degradation or modification.

Such a collective mechanism also enhances the survival of nearby cells, an effect that increases

with the number of bacteria that are present. Collective resistance is of clinical significance, yet a

quantitative understanding at the population level is lacking. Here we develop a general theoretical

framework of collective resistance under antibiotic degradation. Our modeling reveals that population

survival crucially depends on the ratio of timescales of two processes: the rates of population death

and antibiotic removal. However, it is insensitive to molecular, biological and kinetic details of the

underlying processes that give rise to these timescales. Another important aspect for this ’race to

survival’ is the degree of ’cooperativity’, which is related to the permeability of the cell wall for

antibiotics and enzymes. These observations motivate a coarse-grained, phenomenological model

and simple experimental assay to measure the dose-dependent minimal surviving population size.

From this model, two dimensionless parameters can be estimated, representing the population’s race

to survival and single-cell resistance. Our simple model may serve as reference for more complex

situations, such as heterogeneous bacterial communities.

1 Introduction

Antibiotic resistance is an outstanding global health problem [1, 2]. Much research has been devoted to

understanding the molecular mechanisms utilized by bacteria to resist antibiotics, and multiple resistance

and tolerance mechanisms have been discovered and described in the past decades [3]. Antibiotic resistance

poses serious problems when resistant cells spread in space and time through a population. The coupling

of molecular mechanisms with population dynamics is therefore crucial for deepening our understanding

of resistance and ultimately to control its spread.

It is increasingly apparent that antibiotic resistance also depends on population-level effects, which can

be broadly categorized into two classes. In the first class, the resistance of one cell positively affects the

survival of other cells nearby. This collective (or cooperative) resistance involves decreasing the effective

concentration of antibiotics in the environment, for example via binding to cellular components of cells or

enzymatic degradation [4, 5]. In the second class, efforts of an individual cell to resist antibiotics might
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harm its neighboring cells, for example via efflux pumps that keep the internal antibiotics concentration

low at the expense of local increases of the antibiotic concentration surrounding the resistant cells.

In this work, we concentrate on the first, collective form of antibiotic resistance. In particular we

focus on the production of enzymes that degrade or modify antibiotics, rendering them ineffective. In

some cases these enzymes are secreted outside the cells [6, 7], while in others, most of the degradation

takes place inside the cell [8]. β-lactamases are the best known enzymes implementing such a degradation

strategy by hydrolyzing β-lactam antibiotics, both inside the periplasm and leaking out of the cell through

outer-membrane porins [9, 7], but several other examples are also known [10, 11]. The result is a gradual

removal of antibiotic in the environment, which potentially alleviates stress and aids the survival of nearby

cells. This helps resistant cells to survive and establish a population [12, 13]. However, and perhaps more

conspicuously, this strategy may also enhance the survival of nearby sensitive (non-resistant) cells, as

once the antibiotic concentration has been reduced below their threshold for growth [8, 14], the sensitive

population can expand and even compete for resources with the resistant cells [15, 16, 17].

In collective resistance mechanisms, the size of the population matters: more cells produce more

degrading enzyme, which relieves antimicrobial stress more rapidly and enhances the probability of

recovery of the population before its extinction. Additionally, the time-window available before extinction

is directly dependent on population size. Therefore, collective resistance exhibits an inoculum effect [18]

and the concept of a standard MIC - the Minimal Inhibitory Concentration for bacterial growth - is

no longer well-defined, since the success of overcoming the antibiotics at a given concentration depends

on cell number. Previous work has addressed this inoculum effect with several different approaches.

Artemova et al. [19] studied evolutionary fitness and found that it is the single-cell MIC (scMIC) defined

for an isolated cell, rather than the standard inoculum-dependent MIC, which mostly determines fitness

of a resistant strain and is a better measurement for predicting the evolution of resistance. More recently

several kinetic models were tested to describe measurements of inoculum-dependent MIC in different

cases [20]. For example, Saebelfeld et al. [17] used a simple branching model to predict the MIC of

resistant strains in the absence of social interactions, as a reference to detect collective resistance.

Here, we are interested in the population dynamics of collective antibiotic resistance, and highlight

the interplay between cooperative and selfish aspects of such resistance. In particular, an enzyme that

hydrolyzes or modifies antibiotics could be public if it is excreted and shared across the environment,

or private if it remains intracellular and degradation happens inside the cell. In between, partial

enzyme excretion constitutes an intermediate level of privatization of antibiotic resistance via enzymatic

degradation. Our modeling framework allows for quantifying such a varying level of privatization in

collective resistance. We describe the sensitivity of a population to antibiotics by an inoculum-dependent

MIC, or alternatively, a minimal surviving population size (MSPS) that can overcome a given antibiotic

concentration. Using mathematical modeling, we show that the shape of this MSPS curve has universal

features and is only weakly dependent on molecular details and reaction kinetics. Rather, it reflects a

relationship between the timescales of the population death rate, the antibiotic removal rate, and the

level of privatization of the antibiotic-removal mechanism. We propose a simple experimental assay to

determine the MSPS curve and show that our predictions are in good agreement with experimental data.

2 Model

2.1 Dynamic model for collective race-to-survival

In a bacterial population, the number of cells N(t) grows exponentially with time t with growth rate α as

Ṅ = αN ⇒ N(t) = N0e
αt . (1)
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Figure 1: Effect of cefotaxime (CTX) on growth of sensitive E. coli populations using

conventional kill curves. (A) Growth rate α(B) is plotted as a function of scaled CTX concentration

B in the medium. In the absence of CTX, (B = 0; left narrow panel), bacteria grow with a rate α0 which

depends on environmental conditions. Around the threshold of B ≈ µ, growth rate decreases sharply, and

then saturates at a negative rate −γα0. Each data point in Fig. 1A is extracted from a CFU count as a

function of time, a few examples of which are shown in Fig. 1B. (B) Averaged trajectories of CFU counts

at selected antibiotic concentrations are shown, colored correspondingly to the arrows in the left panel.

The effect of antibiotics on a population can be described by a dependence of its growth rate on antibiotics

concentration B. Fig. 1A shows this dependence α(B) measured for E. coli cells exposed to different

concentrations of cefotaxime (CTX), a cephalosporin class β-lactam. In the absence of antibiotics (B = 0),

the population growth rate α0 reflects the specific bacterial strain and the nature of environment, e.g.

medium composition. Increasing antibiotics concentration reduces this growth rate sharply around a

threshold concentration B ≈ µ. Above this threshold, growth rate α becomes negative as cells are killed

by the antibiotics and the population size decreases. Increasing further the antibiotic concentration, it

has been observed that the rate of death levels out to a constant rate proportional to the growth rate in

the absence of antibiotics [21, 22].

It has been found in experiments that a good mathematical description of this dependence is a

decreasing sigmoidal curve (a Hill function) [23],

α(B) = α0
1− (B/µ)κ

1 + (B/µ)κ/γ
. (2)

Here µ is the concentration at which growth decreases to zero and turns into death; κ the steepness of the

decrease around this threshold; and −γα0 the maximal death rate. This formulation helps to separate the

dependence of growth on medium or strain, through α0, from the pharmacodynamics of the antibiotics

described by the sigmoidal function.

Consider a finite population placed in a closed environment with growth medium and an initial

concentration of antibiotics B0, larger than the threshold µ. As cells are killed and the population size

starts to decrease, the remaining cells produce enzymes that degrade or deactivate antibiotics. These two

processes define a dynamic race-to-survival in which antibiotics must be reduced below threshold before

all cells have been killed. The success of this strategy depends on the relative rates of these two processes,

but also on the initial population size and initial amount of antibiotics. A larger initial population extends

the time-window to achieve this goal, while more antibiotics decrease the time for the population to fight

back before it goes extinct.

The reaction that reduces antibiotic concentration B is implemented in different strains and conditions
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Figure 2: Survival depends on inoculum size and antibiotics concentration. Population size

across time, N(t), computed numerically from the model (3), with various parameters: inoculum size

of N0 = 10 (A), 10 (B), 1000 (C); relative initial antibiotic concentration B0/µ between 0 and 3 (line

colors; see legend). For B0/µ > 1 the bacterial population initially decays, but may recover depending on

inoculum size. For example, at antibiotics concentration of B0/µ = 2 (purple line in all panels), the larger

inoculum (C) survives while the smaller ones (A,B) do not. Extinction is prevented if enough enzyme

is produced during the initial population decay, such that antibiotics is reduced below the threshold

concentration µ. In all simulations ρε = 10−3.

by various kinetic processes. To illustrate the race to survival, we consider the production of an antibiotic-

degrading enzyme E with a rate of enzyme production ρ proportional to the bacterial population size N .

In turn, this enzyme degrades antibiotics B in a first-order biochemical reaction with catalytic efficiency

ε:

Ṅ = α(B)N , (3a)

Ė = ρN (3b)

Ḃ = −εEB . (3c)

With the model of Eqs. (3), we can integrate N(t), B(t) and E(t) over time. Examples of numerically

obtained trajectories are depicted in Fig. 2 for N(t), with various initial antibiotic concentrations (colors)

and inoculum sizes (panels). The most crucial property determining the population’s fate is whether or

not it drops below a single cell, N(t) < 1, indicating its extinction. This is the lower limit shown in the

figure; if any trajectory decreases below this limit, the population goes extinct. It can be seen that for

small antibiotic concentrations (orange and light brown curves) the population increases exponentially

and will continue to do so until it reaches saturation (not modelled here). In contrast, for larger antibiotic

concentrations (darker purple to blue curves) it eventually drops below one cell and becomes extinct.

Interestingly, for larger inoculum size, at intermediate antibiotics concentration the population starts

to decrease, but as antibiotic is degraded then turns around and succeeds to grow. Examples of this

behavior can be found in Fig. 2.

2.2 Minimal Surviving Population Size

Our model indicates that the inoculum effect of collective resistance is dynamic and is determined by

the relative contribution of two processes: cell death and antibiotic degradation. The standard measure

of Minimal Inhibitory Concentration (MIC) is used to characterize a threshold of initial antibiotic
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concentration B0 beyond which there is no growth at long times. However, the race to survival discussed

above implies that MIC depends on inoculum size [18, 20]. Turning this dependence around, it is

convenient to think about the minimal surviving population size as a function of antibiotic concentration:

this Minimal Surviving Population Size (MSPS) is a curve N0(B0) rather than a single quantity such as

MIC.

Using the model in Eqs. (3) we can develop an approximation to estimate this MSPS curve. If

the initial antibiotic concentration is large enough, most of the race-to-survival dynamics takes place

when antibiotic concentration changes only slowly. Thus, we approximate the sigmoid function for large

antibiotic concentrations B � µ, reducing the growth dependence on antibiotics to a simple constant:

α(B) ≈ −α0γ . (4)

The approximation in Eq. (4) allows to find solutions to our model, which in turn provide a expression of

the MSPS curve, N0(B0) (see Appendix A for derivation):

N0 ≥ τ log
(
B0/µ

)
. (5)

The MSPS curve, as shown in Fig. 3 (red lines), is an increasing function: when the initial antibiotic

concentration increases, a larger inoculum is needed to ensure survival. Its simple form is largely robust

with respect to the details of the mechanism for antibiotic degradation or inactivation (see Appendix A).

Let us consider the interpretation of the two parameters determining the MSPS. In our theory, µ is

the threshold antibiotic concentration allowing growth (see Fig. 1), which sets the scale for antibiotic

concentration. In terms of the plots presented in Fig. 3, µ is the intercept of the MSPS curve at the

antibiotic concentration axis, corresponding to the small-inoculum limit (single-cell MIC; see [19]).

In addition, the MSPS depends on the dimensional parameter

τ =
(α0γ)2

ερ
(6)

representing the ratio of timescales between killing dynamics, (α0γ)2, and the rates involved in antibiotics

degradation, ερ. Large τ corresponds to fast killing of bacteria relative to degradation, and thus results

in a higher MSPS. In terms of the plot of Fig. 3, the parameter τ shifts the curve along the population

size axis, see Fig. 3A.

If the initial antibiotic concentration smaller, we can employ a different approximation for the growth

rate. In appendix A.2 we show that α(B) ≈ −α0
κγ

1+γ log
(
B/µ

)
, which is valid close to B ≈ µ, still allows

to find solution to our model. However, a correction close to B ≈ µ should not affect the shape of the

MSPS curve too much, as the asymptotic behaviour for large B0 is still given by Eq. (5).

Importantly, although we developed Eq. (5) for a specific model of enzyme degradation, the shape of

the MSPS curve turns out to be insensitive to many details of the kinetics of collective resistance, as we

show in Appendix A. In several example mechanisms we have analyzed, the extant parameter τ depends

on combinations of underlying molecular parameters for different kinetic mechanisms. Nevertheless, its

interpretation is always the same: τ represents the ratio between the rate of population death α0λ and

the rate of reduction in antibiotic concentration.

2.3 Single cell privatization of resistance

Until now we have assumed that resistance is completely cooperative - produced enzymes are secreted

to the common environment and directly affect the global antibiotic concentration. In this view, the

antibiotic concentration is homogeneous across space and hence the same for the cell which produces

the resistant enzymes and any other nearby cells which benefit from this production. In reality, at least
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Figure 3: The universal MSPS curve: parameters and experiment (A) The shape of the MSPS

curve, Eq. (5), plotted in logarithmic axes (red curve). This universal curve only depends on its two

parameters τ and µeff . Increasing τ (brown curves) stretches or compresses the MSPS curve in the

direction of inoculum size (y-axis). Changes in the parameter µeff (purple curves) induce a shift of the

MSPS curve in the direction of antibiotic concentration (x-axis). (B) Experimental measurement of the

MSPS curve with data from a G238S mutant: A microwell plate is started with serial dilutions of the

inoculum size N0 and antibiotic concentrations B0 along the two axes. The threshold for survival is

apparent by color after a long time of growth: blue wells have a population in them, while white cells

do not. If the ranges of dilutions are chosen appropriately, the MSPS curve (red line) appears with its

typical universal shape as the boundary between wells with surviving an extinct populations.

part of the degradation takes place inside the cell (often in the periplasmic space), thus providing an

increased benefit to the producing cell relative to its neighbors. In environments which are not mixed

rapidly enough, even if enzymes are excreted they are more abundant in the vicinity of producing cells

and will take time to diffuse away, again providing an increased benefit to the secreting cell. Our goal is

now to quantify the level of privatization (or inversely, of cooperation) in collective antibiotic resistance.

A full model should include transport and diffusion of concentrations in space; as a first approximation,

we include the distinction between internal and external concentrations of both enzyme and antibiotics:

Ein, Eout, Bin, Bout (Fig. 4). The coupled kinetic equations for these variables can be found in Appendix

B. We assume that concentrations inside the cell equilibrate much faster than outside, corresponding to

its volume being tiny relative compared to the seemingly infinite reservoir of the external environment.

This assumption allows to estimate the stationary internal concentrations as

Ein ≈ Eout +
ρ

σE
, (7a)

Bin ≈
(

1 +
ερ

σBσB

)−1

Bout =
(
1 + Φ

)−1
Bout . (7b)

Here, σE, σB are the (linear) transport coefficients for enzyme and antibiotics respectively, passing through

the cell wall. High transport coefficients will work against maintaining a concentration difference across the

cell wall, and thus will promote cooperativity, while low transport coefficient will promote privatization.

The effect of transport on enzyme concentration is seen in Eq. (7a), which describes the difference

between internal and external enzyme concentration: internal is always larger, and high production ρ or

alternatively low transport σE work to increase this difference. We can also assume that external enzyme

concentrations are usually much smaller than internal concentrations.
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Figure 4: Factors affecting privatization of resistance. To describe different levels of privatiza-

tion/cooperativity in antibiotic resistance, we include in our model external concentrations of both enzyme

and antibiotics. The transport between external and internal spaces is determined by transport coefficients

σE, σB. Enzyme production and antibiotic degradation efficiency are determined by ρ, ε respectively. The

level of privatization is determined by the relative importance and speed of these processes.

Antibiotic concentration, in contrast, is always lower inside the cell, by a dimensionless factor that

depends on both production and transport parameters. Once again, high production and low transport

support a large difference, as is reflected in Eq. (7b). It is convenient to define the compound parameter

appearing in Eq. (7b) as a “privatization parameter” Φ = ερ/(σBσE). High privatization occurs for Φ� 1,

corresponding to very high enzyme production ρ, high catalytic efficiency ε, but low transport coefficients.

In this regime, cells combat the antibiotics individually, primarily by lowering their internal concentration

and not sharing degrading enzymes with neighbors. At the other end, Φ� 1, the concentration is almost

equal inside and outside the cell and the battle occurs in the public domain of the shared environment,

resulting in maximal cooperativity to all cells and we effectively return to the first, naive model, where

no distinction was made between internal and external concentrations. The privatization parameter

Φ enables to interpolate between these two extremes. As usual in our modeling approach, it is not a

mechanistic parameter but an effective one; ultimately, the level of privatization is determined by the

difference in concentration, resulting from enzyme efficiency, production, transport, or possibly other

microscopic processes.

In a real experimental setting, it is difficult – or even impossible – to measure internal concentrations

of drug and enzyme, and usually only external concentrations are measurable. Nevertheless, it is the

internal concentration which directly affects how antibiotics alter growth of a cell or cause its death. As

can be seen from Eq. (2), the effect of antibiotics on growth rate is measured in units of µ and always

appears as B/µ in all instances. Thus, Eq. (7b) allows us to translate between these two concentrations,

and to write the effective growth rate as a function of the observable external antibiotic concentration:

α

(
Bin

µ

)
= α

(
Bout

(1 + Φ)µ

)
= α

(
Bout

µeff

)
(8)

The discrepancy between (unmeasureable) internal and (measurable) external concentrations can be

attributed to a modification of the growth threshold µ, which we define as

µeff = (1 + Φ)µ . (9)

With this result, we need to modify the MSPS curve obtained in the previous section, which can now be
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stated in terms of the quantity B0 = Bout(t = 0):

N0 ≥ τ log
(
B0/µeff

)
. (10)

This MSPS curve in Eq. (10) has the same functional form as before with two fitting parameters τ and

µeff , but now one of them also includes transport properties; it is an effective parameter that deals with

the difference between external and internal concentrations.

The structure of the privatization parameter Φ allows to develop our theory further. We have

encountered τ as the ratio between the timescales of cell death (α0λ) and antibiotic degradation (that

includes enzyme expression ρ and kinetic efficiency ε). The transport processes for both antibiotics and

enzyme generate a third timescale in our model. Thus, we may write the privatization parameter as

Φ =
ερ

σEσB
=

ερ

(α0λ)2

(α0λ)2

σEσB
=
ϕ

τ
. (11)

This representation is useful, because it separates intrinsic bacterial properties represented by ϕ from

parameters of the antibiotic degradation mechanism. Using the expression, Eq. (11), predicts a relation

between the two fitting parameters of the MSPS, τ and µeff :

µeff =
(

1 +
ϕ

τ

)
µ . (12)

While each experiment will result in a MSPS curve with different parameters, they are not expected to

be randomly scattered in the plane (µeff , τ), but rather to be located on a curve defined by the Eq. (12).

3 Experimental validations

An experimental procedure that measures the MSPS curve is conceptually straightforward to do with

a 96-well assay. Populations are inoculated with increasing inoculum size N0 along one axis, and with

increasing antibiotic concentrations B0 along the other (Fig. 3B). Concentrations along the axes are

chosen appropriately, such that the shape of the MSPS curve fits on the plate (which requires some prior

knowledge about the ranges where the MSPS curve lies). Following overnight incubation of the cultures,

a clear difference is visible between surviving and non-surviving populations. As an example, Fig. 3B

shows all OD measurements of wells in different shades of blue (white indicating no growth), where an

automatic threshold detection distinguishes between survival (dark gray borders) and extinction (red

borders). Subsequently, one may fit Eq. (10) with its two parameters, τ and µeff , at this transition from

surviving to non-surviving populations on the plate. In Fig. 3 it is depicted by a red line. All steps in our

algorithm to extract parameters from OD measurements of plates are described in Appendix D.2. The

first parameter, τ , multiplies the MSPS curve and mostly determines the intersection on the N0 axis of

the plate for large antibiotic concentrations. The second parameter, µeff , corresponds to the intersection

of the curve on the B0 axis for small initial population sizes, i.e. the single-cell MIC [19].

We applied this experimental procedure to several E. coli strains expressing various β-lactamases. In

a first set of experiments, we used mutants of E. coli MG1655 with a chromosomally integrated gene

encoding and expressing β-lactamase TEM-1 at a single intermediate level. These include a consecutive

series of mutations in the TEM-1 enzyme (wildtype, G238S, G238S-E104K, G238S-E104K-M182T), which

exhibit increasing catalytic efficiency ε for cefotaxime [24]. A second set of experiments used E. coli

BW27783, where the TEM-1 gene is located on plasmid pBAD322T and its expression is controllable

using an arabinose-inducible promotor. This allows to manipulate enzyme production ρ; the subset of

mutations in TEM-1 again alters the catalytic efficiency ε to moderate and high values. A detailed

experimental protocol is described in Appendix D.1.
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Figure 5: Correspondence between µeff and compound parameters inferred from measured

MSPS curves using β-lactamase producing strains with varying resistance levels. (A) Best fit

of Eq. (9)) for strains expressing TEM-1 variants with different catalytic efficiency ε towards cefotaxime.

(B) Best fit of Eq. (9) for a strain with low (G238S, rhombus) or high catalytic efficiency ε (Triple, hexagon)

and different expression levels ρ. Error bars are estimated in the fitting algorithm (see Appendix D.2.2).

In this experimental setup only the gene (including its promotor) for TEM-1 is changed within both

sets of experiments. Thus, we can expect that the transport properties, which have been separated in

Eq. (12) as parameter ϕ should be unchanged. Ultimately, this is the reasoning behind deriving the

expression Φ = ϕ/τ .

For most experiments, the MSPS curve can be fit nicely to the data and the effective parameter

estimates inferred. An example of such a fit is shown in Fig. 3B. In some cases, the low resolution of a

96-well plate caused a large uncertainty in parameter values. Nevertheless, our repeated experiments

yielded similar parameter values in practically all tested cases.

The resulting fitting parameters, as estimated for our collection of experiments, are shown in Fig. 5.

The scaling relation predicted by the model, Eq. (12), is depicted as a gray line. Panel A shows the

results of our first set of experiments with TEM-1 and its three mutants at a single expression level. The

data points are not scattered in the plane, and follow the predicted curve to a good extent with TEM-1,

the single, double and triple mutant being positioned increasingly higher along the curve mirroring

their respective increase in resistance level [24]. Panel B presents the results for the second set of

experiments exhibiting different expression levels of two TEM variants (single and triple mutant). While

the single mutant follows our prediction, the triple mutant deviates from the curve at medium and high

expression levels. We speculate that this deviation could arise due to heavy stress on the bacteria from the

over-expression of β-lactamase, which significantly lowers their overall growth rate α0 (data not shown).

Moreover, it may be that the external enzyme concentration is not negligible and the approximation

Eq. (7b) is invalid. In these cases the relation between the two fitting parameters is not expected to obey

the scaling relation. However, in general, the set of experiments clearly do not scatter randomly in the

parameter plane, but are strongly correlated with one another, and – except for the two outlying points –

are well described by our model.
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4 Discussion

Collective resistance is a phenomenon by which a bacterial population can survive an antibiotic dose

which a single bacterium can not [16]. This collective behaviour may have a profound influence on

the effectiveness of an antibiotic therapy and thus may pose serious health risks. Using mathematical

modelling, we studied collective resistance via the common resistance mechanism of antibiotic degradation

or modification, and proposed a unifying framework to describe the minimal population size needed to

survive a specific antibiotic concentration. We developed a conveniently simple approximation of our

model that allows us to determine the dose-dependent minimal surviving population size (MSPS) curve.

This curve is a generally increasing function, with a larger inoculum being able to survive increasingly

higher antibiotic concentrations. Interestingly, we showed that basic features of this curve, and by

extension of collective resistance via antibiotic degradation or modification, are insensitive to details

of the exact resistance mechanism. Rather than kinetic parameters, the central quantities determining

survival are ratios between timescales, when populations race against time to survive by collectively

decreasing the antibiotic concentration.

A first parameter central to the MSPS curve describes the ratio of timescales between population

extinction by antibiotic killing and antibiotic degradation. This parameter, referred to as τ in our model,

is dimensionless and is agnostic to the exact mechanism by which the antibiotic is degraded or modified

(Appendix A). This is in line with previous work [25], which also reported that it is hard or even impossible

to determine details of the degradation mechanism by only observing microbial population dynamics. The

hiding of microscopic kinetic details from higher population level dynamics is a form of buffering between

levels of organization. While insights into the molecular mechanisms need to be known for a targeted

antimicrobial therapy to be effective, the relative robustness of population-level dynamics, as shown by

our modelling, is important for a basic understanding of resistance at the population or community level.

The second central feature in our model is the level of privatization of the resistance mechanism,

namely how much of the degradation or modification of antibiotics takes place in the shared environment,

relative to the intracellular environment. Previous work has considered the limit of maximally private

degradation which takes place inside the periplasmic space [26]. Their relation between internal and

external threshold concentration is similar to ours in that limit, consisting of the ratio between hydrolysis

rate and transport rate. Other works incorporated directly one form of collective resistance, namely,

the lysis of cells as they die and the release of their enzyme content [19]. Our general result Eq. (7b)

interpolates between the high privatization limit, and the other limit of low privatization where hydrolysis

takes place primarily in the public domain. This provides a coarse grained phenomenological description

that could apply specifically to lysis or secretion.

Although we here studied the MSPS curve of single strains, quantifying the level of privatization

may have far reaching consequences for cross-protection between microbial communities and the eco-

evolutionary dynamics of antibiotic resistance [13, 27]. The relationship between single-cell and population-

level MIC was characterized also in previous work, where it was found that the single-cell properties

affect long-term evolutionary outcomes [19]. Nevertheless, intermediate timescale dynamics of mixed

populations can also be strongly affected by the collective dynamics, highlighting the importance of the

MSPS concept.

Based on our model, we proposed a simple 96-well microtitre-plate assay that allows us to characterize

the parameters describing the MSPS curve. We provide a detailed protocol in Appendix D to perform

this assay and extract the relevant parameters, τ and µeff . This method relies on the idea that a 96-well

plate can serve to scan inoculum sizes and antibiotic concentrations in parallel and provide a platform for

mapping the MSPS curve. A similar idea was proposed for characterizing antibiotic persistence, where

the exposure time is a critical variable and is varied along one axis of a 96-well plate by changing the
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time at which the medium is inoculated [28].

The assay was used to assess the model at two levels. First, we tested the fit of our predicted MSPS

curve to describe the border between surviving and non-surviving populations and found good agreement.

Second, we performed two sets of experiments, where we independently varied the catalytic efficiency

or expression level of an antibiotic-degrading enzyme in bacterial strains. Under the approximation of

significant privatization and independence of other physiological properties of the bacteria, we derived

a relation between fitting parameters across the set of experiments, Eq. (12). The results show, that

this relation agrees rather well for all but two data points, specifically strains expressing a β-lactamase

with very high catalytic efficiency (the triple mutant) at high levels (Fig. 5). The current experiments

do not allow us to identify the source of this qualitative discrepancy, but since the triple mutant MSPS

curve was assayed at significantly higher antibiotic concentrations, this may affect cell physiology via the

induction of the SOS response and β-lactam-induced filament formation [29], or by a varying level of

lysis and release of enzyme. This would modify the privatization parameter, which the model assumes to

be fixed along the curve. Moreover, differences in cost of expression between β-lactamase alleles could

also lead to differential effects of expression on cell physiology and permeability potentially affecting the

timescale ratios describing the MSPS curve.

In summary, our work contributes to identifying generic mechanism-independent parameters that can

be inferred from population data. It identifies robust parameter combinations that govern population

dynamics in collective resistance. Specifically, it reveals relative timescales in the race for survival of

populations which inactivate antibiotics that kill them, as well as levels of cooperation vs. privatization

of resources in the fight against antibiotics. Our experimental framework adds a dimension to the

characterization of antibiotic resistance by a concentration threshold: it extends this notion to an

inoculum-dependent threshold relevant for cells utilizing a collective resistance mechanism. Our framework

is expected to be amenable for extension also to the interaction between resistant and sensitive strains,

which has been partially addressed from a different perspective [15].
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[10] Hervé Nicoloff and Dan I Andersson. Indirect resistance to several classes of antibiotics in cocultures

with resistant bacteria expressing antibiotic-modifying or-degrading enzymes. Journal of Antimicrobial

Chemotherapy, 71(1):100–110, 2015. doi: 10.1093/jac/dkv312.

[11] Justin R Lenhard and Zackery P Bulman. Inoculum effect of β-lactam antibiotics. Journal of

Antimicrobial Chemotherapy, 74(10):2825–2843, 2019.

[12] Helen K Alexander and R Craig MacLean. Stochastic bacterial population dynamics restrict the

establishment of antibiotic resistance from single cells. Proceedings of the National Academy of

Sciences, 117(32):19455–19464, 2020. doi: 10.1073/pnas.1919672117.

[13] Manja Saebelfeld, Suman G Das, Jorn Brink, Arno Hagenbeek, Joachim Krug, and J Arjan GM

de Visser. Antibiotic breakdown by susceptible bacteria enhances the establishment of β-lactam

resistant mutants. bioRxiv, 2021.

[14] Lee Alan Dugatkin, Michael Perlin, J Scott Lucas, and Ronald Atlas. Group-beneficial traits,

frequency-dependent selection and genotypic diversity: an antibiotic resistance paradigm. Proceedings

of the Royal Society B: Biological Sciences, 272(1558):79–83, 2005.

[15] Lukas Geyrhofer and Naama Brenner. Coexistence and cooperation in structured habitats. BMC

ecology, 20(1):1–15, 2020. doi: 10.1186/s12898-020-00281-y.

[16] Michael J Bottery, Jonathan W Pitchford, and Ville-Petri Friman. Ecology and evolution of

antimicrobial resistance in bacterial communities. The ISME Journal, 15(4):939–948, 2021.

[17] Manja Saebelfeld, Suman G Das, Arno Hagenbeek, Joachim Krug, and J Arjan GM de Visser.

Stochastic effects during the establishment of β-lactam resistant e. coli mutants indicate conditions

for collective resistance. bioRxiv, pages 2021–02, 2021.

[18] Itzhak Brook. Inoculum effect. Reviews of infectious diseases, 11(3):361–368, 1989.

[19] Tatiana Artemova, Ylaine Gerardin, Carmel Dudley, Nicole M Vega, and Jeff Gore. Isolated cell

behavior drives the evolution of antibiotic resistance. Molecular systems biology, 11(7):822, 2015.

doi: 10.15252/msb.20145888.

[20] Jessica R Salas, Majid Jaberi-Douraki, Xuesong Wen, and Victoriya V Volkova. Mathematical

modeling of the ‘inoculum effect’: six applicable models and the mic advancement point concept.

FEMS Microbiology Letters, 367(5):fnaa012, 2020.

12

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502802doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502802
http://creativecommons.org/licenses/by-nc/4.0/


[21] Elaine Tuomanen, Robert Cozens, Werner Tosch, Oto Zak, and Alexander Tomasz. The rate of

killing of escherichia coli by β-lactam antibiotics is strictly proportional to the rate of bacterial

growth. Microbiology, 132(5):1297–1304, 1986. doi: 10.1099/00221287-132-5-1297.

[22] Anna J Lee, Shangying Wang, Hannah R Meredith, Bihan Zhuang, Zhuojun Dai, and Lingchong You.

Robust, linear correlations between growth rates and β-lactam–mediated lysis rates. Proceedings of

the National Academy of Sciences, 115(16):4069–4074, 2018. doi: 10.1073/pnas.1719504115.

[23] Roland R Regoes, Camilla Wiuff, Renata M Zappala, Kim N Garner, Fernando Baquero, and Bruce R

Levin. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment

regimens. Antimicrobial agents and chemotherapy, 48(10):3670–3676, 2004. doi: 10.1128/AAC.48.10.

3670-3676.2004.

[24] Jennifer L Knies, Fei Cai, and Daniel M Weinreich. Enzyme efficiency but not thermostability

drives cefotaxime resistance evolution in tem-1 β-lactamase. Molecular biology and evolution, 34(5):

1040–1054, 2017.
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A Universality in antibiotic degradation dynamics

An intriguing theoretical observation is that the MSPS curve of Eq. (5) is insensitive to the specific

antibiotic decay mechanisms – it is universal to a good approximation. Below, we show that multiple

degradation dynamics lead to similar expressions for the curve, utilizing only the two extant parameters

τ and µ, that characterize the time scale ratio between cell death and degradation, and antibiotic

concentration at zero-growth, respectively. In the main text, we only considered antibiotic degradation

by an excreted extracellular enzyme. Other (bio)chemical or biological processes could provide resistance

against the action of the antibiotic by reducing its concentration. A few examples of such mechanisms,

stated as simple reactions (with rates indicated above arrows), are as follows,

Enzymatic degradation N
ρ−→ N + E , E +B

ε−→ E ,

Absorption and Internal degradation N +B
ζ−→ N ,

Irreversible binding to dead cell fragments (N0 −N) +B
ν−→ ∅ ,

Spontaneous degradation B
χ−→ ∅ .

(S1)

The first reaction in this list corresponds to the dynamics with excreted extracellular enzyme, with

linear kinetics, discussed in the main text. In the second reaction, antibiotics is absorbed into the cell,

and is degraded by some unspecified cellular reaction inside the cell. In the third example, we consider

irreversible binding of antibiotics to fragments of dead cells. Their concentration is proportional to the

number of cells that have died during exposure; this expression is relevant as long as population size is

decreasing. Finally, we also treat spontaneous environmental degradation of antibiotics, which cells do

not actively contribute to.

For all these mechanisms, the dynamics of cells and antibiotics can be described by the dynamical

system,

∂tN = α(B)N , (S2a)

∂tB = −f(B,N) , (S2b)

where f(B,N) specifies one of the degradation reactions of antibiotics, as listed above in Eq. (S1).

Throughout this appendix, we also use the notation ∂t for derivations with respect to time t, as it helps

with the ensuing calculations. Turning the reactions in Eqs. (S1) into equations, we find the different

mechanisms follow the kinetics:

Enzymatic degradation ∂tB = −εEB , ∂tE = ρN , (S3a)

Absorption and Internal degradation ∂tB = −ζBN , (S3b)

Irreversible binding to dead cell fragments ∂tB = −ν(N0 −N)B , (S3c)

Spntaneous environmental degradation ∂tB = −χB . (S3d)

Below, we will solve these dynamical systems in detail, leading to a condition on the minimal inoculum

size N0 that can recover from an initial antibiotic concentration B0:

N0 & 1 + τ
(
log(B0/µ)

)ξ
, ξ ∼ O(1) . (S4)

This is a general expression common to all kinetic mechanisms; it defines the universal MSPS. Each

degradation mechanisms is characterized by a timescale separation τ , which is the ratio between two

characteristic rates in that specific mechanism: a population kill rate and an antibiotic degradation

rate. The exponent ξ varies slightly depending on the mechanism, but always assumes values close to 1.
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Figure S1: Approximations for effective growth rate. Two regions are observed, a log-linear regime

around MIC and a constant death rate at antibiotic concentrations much larger that MIC.

Moreover, the different approximations for the growth rate α(B) explained in the next paragraph also

influence the value of ξ.

In general, the sigmoidal function for growth rate α(B), Eq. (2), can not be used in its full form to

compute solutions to the dynamics. As observed in Fig. 1, the effective kill-rate is constant for very large

antibiotic concentrations. In contrast, for antibiotic concentrations close to B/µ ≈ 1, it is approximately

linear in log
(
B/µ

)
. Mathematically, we will deal with two approximations corresponding to these regimes:

α(B) = α0
1− (B/µ)κ

1 + (B/µ)κ/γ

≈

{
−α0λ log

(
B/µ

)
, B/µ ∼ 1 ,

−α0γ , B/µ� 1
(S5)

with λ = κγ/(1+γ). Both approximations are illustrated in Fig. S1. Previous work has mainly considered

antibiotic concentrations where the linear regime is negligibly small and the curve can be approximated

by a step function [19]. We are here interested also in the tug-of-war dynamics that occurs around the

intermediate regime of antibiotic concentrations approximately linear. When deriving results below, we

will compare these two regimes. Specifically, section A.1 deals with the constant approximation for large

enough antibiotic concentrations, while section A.2 treats the logarithmic approximation close to B0 ≈ µ.

A.1 Solutions to different decay mechanisms with constant death rate

At first, we treat the regime with a constant death-rate, α(B) ≈ −α0γ. In the ensuing calculation, we

rescale time,

T ≡ α0γ t ,

such that bacterial death rate is 1 in these dimensionless units. With this rescaling, the population

dynamics is simply ∂TN = −N . We immediately find the solution for the microbial population as

N(T ) = N0 exp(−T ). This gives the time T1 = logN0 for survival in antibiotics: at this time, only one

cell would remain, (N(T1) = 1, if antibiotics are still present, and the population is essentially extinct.

The exponential decay of the population size allows to solve the dynamics of the antibiotic concentration

in other cases as well. In order to obtain these solutions for the antibiotic dynamics, we introduce its

logarithmic concentration,

L ≡ log
(
B/µ

)
, (S6)

15

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502802doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502802
http://creativecommons.org/licenses/by-nc/4.0/


which simplifies the dynamics, as in all kinetic cases defined above the dynamics of antibiotics itself is linear

in B, see Eqs. (S3). We multiply each equation with 1/B, and use the identity 1
B∂tB = α0γ ∂TL. The

change of time units from t to T for the derivation introduces the coefficient α0γ. Using the logarithmic

antibiotic concentration L, and inserting the solution N(T ) = N0 exp(−T ) for the population size, we

can integrate all trajectories L(T ), and obtain

Enzymatic degradation L(T ) = L0 −
ερ

(α0γ)2
N0

(
e−T − 1 + T

)
, (S7a)

Absorption and Internal degradation L(T ) = L0 −
ζ

α0γ
N0

(
1− e−T

)
, (S7b)

Binding to dead cell fragments L(T ) = L0 −
ν

α0γ
N0

(
e−T − 1 + T

)
, (S7c)

Spontaneous environmental degradation L(T ) = L0 −
χ

α0γ
T . (S7d)

In these solutions, we observe that every parameters occurs in a single coefficient, and thus can be

combined into an effective and dimensionless parameter. We define the timescale separation τ for each of

the different degradation mechanics as,

τ =

{
(α0γ)2

ερ
,
α0γ

ζ
,
α0γ

α0ν
,
α0γ

χ

}
, (S8)

in the same order as above. Independent of the mechanism, τ is always the ration of the rate for bacterial

death over the rate of antibiotic degradation. In the case of enzymatic degradation, which consists of two

steps with enzyme production and then degradation, the death rate is squared to make τ dimensionless.

Now checking for population survival, we evaluate the antibiotic concentration L(T1) at time T1 =

logN0. If L(T1) < 0 (which translates to B(T1) < µ), then the antibiotic concentration has been reduced

far enough, that the population reached already positive values for its growth rate α(B), and started

growing before it reached a single cell. Conversely, if still L(T1) > 0, then the population would decay

more and go extinct. Inserting T1 = logN0 into each of the solutions in Eq. (S7), evaluating the condition

L(T1) < 0, and finally reverting back to B0 from L0 yields the expressions

Enzymatic degradation N0(logN0 − 1) > −1 + τ log
(
B0/µ

)
, (S9a)

Absorption and Internal degradation N0 > 1 + τ log
(
B0/µ

)
, (S9b)

Binding to dead cell fragments N0(logN0 − 1) > −1 + τ log
(
B0/µ

)
, (S9c)

Spontaneous environmental degradation logN0 > 1 + τ log
(
B0/µ

)
. (S9d)

to antibiotic concentration B0 instead of L0. With the exception of spontaneous environmental degradation,

we neglect the logarithmic population size dependence, and arrive at the universal expression for the

MSPS curve,

N0 & τ log
(
B0/µ

)
. (S10)

A.2 Solutions by linear approximation close to MIC

Now we focus on the dynamics of competition when the initial antibiotic concentrations is intermediate,

close to B0/µ ≈ 1. In this regime, antibiotic-dependent growth rate is approximated with the linear

expansion in (S5):

α(B) ≈ α0λ log
(
B/µ

)
.

We utilize again a rescaling of time and the logarithmic antibiotic concentration

T ≡ α0λt , (S11a)

L ≡ log
(
B/µ

)
. (S11b)

16

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502802doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502802
http://creativecommons.org/licenses/by-nc/4.0/


Then, the equation for population dynamics takes the form

∂TN = −LN. (S12)

For each of the four reactions specified above, we define a dimensionless parameter τ , given by (in order

of the reactions)

τ =

{
(α0λ)2

ερ
,
α0λ

2ζ
,
α0λ

ν
,
α0λ

2χ

}
. (S13)

These parameters are the again ratios of timescales between population death and antibiotic degradation.

Due to the coupling of antibiotic concentration and population size dynamics in ∂TN = −LN , solving

these dynamics is more involved as before. Thus, we treat each mechanism is a separate section in the

following.

A.2.1 Enzymatic degradation

For enzymatic degradation, in the newly defined variables the equations are

∂TL = − ε

α0λ
E , ∂TE =

ρ

α0λ
N .

Differentiating the first equation again with respect to T , then using the second equation for ∂TE, we

find two coupled equations for population size and antibiotics

∂TN = −LN , (S14a)

∂2
TL = −1

τ
N . (S14b)

We cannot state explicit closed form solutions for this case. Nevertheless, we can assume a constant

exponential decay of the bacterial population, which is most of the time is close to the exact solution

(checked numerically). Only close to the turning point (where bacteria start to grow again due to degraded

antibiotics), we expect significant deviations from this simple exponential decay.

To this end, we use N(T ) ≈ N0 exp
(
−L0T

)
, which can be integrated twice to obtain the trajectory

L(T ). Initial conditions for the latter are (∂TL)(0) = 0 (no enzyme present at the beginning) and

L(0) = L0. The solutions are

N(T ) ≈ N0 exp
(
−L0T

)
,

L(T ) ≈ L0 −
N0

τL2
0

(
exp
(
−L0T

)
− 1 + L0T

)
.

Estimating the time T1 = (logN0)/L0 from inverting N(T1) = 1, we compute the condition for survival

of the bacterial population again from L(T1) < 0. Algebraic rearrangements of this inequality lead to

N0(logN0 − 1) > τL3
0 − 1 ,

which in turn can be expressed in the Lambert-W function W (also called product-logarithm),

N0 >
τL3

0 − 1

W
(
τL3

0 − 1)/e
) .

For large values of τL3
0 (note that τ ∼ O(106), cf. Fig. 5), we have W(X) ∼ logX. This logarithmic

correction is usually small, and we neglect it to arrive at the MSPS curve,

N0 & τL3
0 = τ

(
log
(
B0/µ

))3
. (S15)

However, in contrast to before we find an exponent 3 for the (logarithmic) antibiotic concentration. In

terms of our experiments, this would introduce a sharper bend on the plate close to the transition to the

vertical part. For larger initial concentrations B0, however, the MSPS curve transitions into the solution

with constant death rate treated before.
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A.2.2 Absorption and internal degradation

The dynamics for absorption and internal degradation can be solved analytically. This mechanism assumes

a first order mass-action absorption reaction of antibiotics to cells, and then immediate degradation

of antibiotics inside the cell (or at least very fast compared to absorption). The system of differential

equations is given by

∂TN = −LN , (S16a)

∂TL = − 1

2τ
N (S16b)

where τ is the second definition in (S13). Upon taking the ratio of both of these equations, we find
dN
dL = 2τL. This auxiliary differential equation can be integrated to arrive at N(L) = τL2 + a with a

an integration constant. Consequently, (S16b) becomes ∂TL = −L2/2 − a/(2τ). Although non-linear,

this differential equation has a solution in trigonometric functions, and we have after inserting L(T ) into

N(L) the two solutions

L(T ) =

√
a

τ
tan

[
b−

√
a

τ

T

2

]
,

N(T ) = a cos−2

[
b−

√
a

τ

T

2

]
,

where b is the second integration constant. Using the initial conditions N(0) = N0 and L(0) = L0, we find

L(T ) =

√
N0

τ
− L2

0 tan

[
arctan

[√
τL2

0

N0 − τL2
0

]
−
√
N0

τ
− L2

0

T

2

]
,

N(T ) =
N0 − τL2

0

cos2

[
arctan

[√
τL2

0

N0−τL2
0

]
−
√

N0

τ − L
2
0
T
2

] .
Although these expressions look complicated, we can utilize the special trigonometric functions to proceed.

The arguments of tan and cos−2 in these solutions are identical, and we know that the zeros of tan

correspond to minima of cos−2 with value 1 ((tan[X] = 0)⇔ (cos−2[X] = 1), ∀X). Thus, we know that

the time TL, defined as L(TL) = 0 leads to N(TL) = N0 − τL2
0, which we have to check if it is bigger or

smaller than one. Consequently, we obtain the MSPS curve

N0 & 1 + τL2
0 = 1 + τ

(
log
(
B0/µ

))2
, (S17)

from rearranging this condition.

A.2.3 Irreversible binding to cell fragments

Another degradation mechanism is irreversible binding of antibiotics to dead cell fragments and their

consequent inactivation. The dynamic equations in this case are

∂TN = −LN , (S18a)

∂TL = −1

τ

(
N0 −N

)
. (S18b)

We approximate an exponential decay as solution to the bacterial population size, and then integrate the

second equation for the (logarithmic) antibiotic concentration. This yields

N(T ) ≈ N0 exp
(
−L0T

)
,

L(T ) ≈ L0 −
1

τL0
N0

(
exp
(
−L0T

)
− 1 + L0T

)
.
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Using these solutions, we again check L(T1) < 0, which translates into the condition on the minimal

population size

N0

(
logN0 − 1

)
> τ

(
log
(
B0/µ

))2
. (S19)

A.2.4 Spontaneous environmental degradation

As the simplest of all cases, we treat spontaneous environmental degradation. The set of two equations is

given by

∂TN = −LN , (S20a)

∂TL = −2/τ . (S20b)

This system can be solved almost trivially: We immediately find L(T ) = L0 − 2T/τ , which we can insert

into the dynamics of N to find N(T ) = N0 exp
(
T 2/τ − L0T

)
. This solution for the population size has

a minimum at time Tmin = τL0. Thus, the population will survive if N(Tmin) = N0 exp
(
−τL2

0

)
> 1.

Reverting back to original variables yields the condition

logN0 > τL2
0 = τ

(
log
(
B0/µ

))2
. (S21)

Here, we again find a logarithmic dependence on initial population size N0, which deviates from the

MSPS curve.

Overall, we have seen in this section, that for initial antibiotic concentrations close to µ, the exponent

in the MSPS curve increases. This leads to a sharper bend away from the vertical part (see Fig. 3B).

However, on plates which increase the initial antibiotic concentrations fast enough along one axis, we

soon arrive at a dynamic where the constant approximation treated in section A.1 is more appropriate.

B Privatization effects of an extracellular enzyme

The main text only contained an overview of the steps involved in deriving a model that includes dynamical

privatization. Here, we present a more detailed account of these computations.

Our original model included bacterial growth, together with production of an enzyme (eg. β-lactamase)

that reduces antibiotics. Now, we include additional ODEs explicitly describing the time-evolution inside

and outside of cells,

∂tN = α(Bin)N (S22a)

∂tEin = ρ+ σE(Eout − Ein) (S22b)

∂tEout = σEηN
(
Ein − Eout

)
(S22c)

∂tBin = −εEinBin + σB
(
Bout −Bin

)
(S22d)

∂tBout = −εEoutBout + σBηN
(
Bin −Bout

)
. (S22e)

Enzyme E and antibiotics B are transported between the inside and the outside with rates σE and σB,

respectively. The volume-separation factor η indicates how much slower the concentrations outside cells

change, compared to the rather fast dynamics within. This factor occurs, as the volume of the culture

medium Vmedium is usually much larger as the volume of all cells Vcells, and we have to account for

the fact that a single molecule passing through the membrane affects concentrations in different ways

for internal and external concentrations. Thus, we need to couple the transport processes via a factor

Vcells/Vmedium = ηN , where η is the ratio of volumes for a single cell. As long as η � 1, we can assume that
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adjustment of inner concentrations (Ein and Bin) is essentially instantaneous compared to the dynamics

outside cells. Explicitly, for our experiments we have Vmedium = 2 · 10−4mL and Vcell ≈ 10−15mL, such

that η ≈ 5 ·10−12. Hence, we can make an approximation that these internal concentrations are stationary,

and set both ∂tEin ≈ 0 and ∂tBin ≈ 0. This allows to algebraically rearrange Eqs. (S22b) and (S22d) to

express inner concentrations as functions of the (slower varying) outer concentrations,

Ein ≈ Eout +
ρ

σE
,

Bin ≈
(

1 +
ε

σB

(
Eout +

ρ

σE

))−1

Bout .

These relations indicate that the effective enzyme concentration inside cells is higher by an additive term

ρ/σE compared to outside cells. Moreover, assuming the outside enzyme concentration remains small

relative to inside, Eout � ρ/σE the effective antibiotic concentration is reduced by a factor
(
1 + ερ/σEσB

)
.

Inserting these two expressions in the outside dynamics leads to

∂tEout ≈ ησEN
((
Eout +

ρ

σE

)
− Eout

)
= ηρN ,

∂tBout ≈ −εEoutBout − σBηN

 ε
σB

(
Eout + ρ

σE

)
1 + ε

σB

(
Eout + ρ

σE

)
Bout .

In the first line, we recover the expected dynamics of enzyme production, ∂tE = ρηN , where the original

production rate ρ needs to be adjusted to also incorporate the volume-separation factor η. The dynamics

of antibiotics can be rewritten as ∂tB ≈ −ε(Eout +σBηN)B, which now also exhibits a second term similar

to the case of ’absorption and internal degradation’, described above in Eq. (S3b) and section A.2.2. There,

we effectively had 1
B∂TB = −N/(2τ). However, we expect that this new additional term proportional

to σBηN only affects the dynamics late into the experiment, when many cells are already present. This

fact is corroborated when inserting extracted values for parameters from our experiments, where the first

coefficient is 1/τ ∼ O(10−6) from which we can deduce that the second coefficient appearing now in the

antibiotic degradation is O(10−9). All these considerations change the timescale separation τ for the

explicit treatment of internal concentrations to

τ ≈ (α0γ)2

ερη
, (S23)

which contains an additional factor η. Note, however, that this does not change the value of τ itself, but

rather which values we have to attribute to the microscopic parameters ρ (and maybe ε) when conducting

simulations that are supposed to match either experiments or simulations for the dynamics without these

explicit inner concentrations.

So far, we always measured antibiotic concentrations B in units of multiples of µ. The dynamics of

B itself, see Eqs. (S22d) and (S22e), is invariant under multiplication with a scale factor, that can be

chosen arbitrarily (and we used µ to fulfill this role). The only point in our model, where we need proper

units for the antibiotic concentrations, is to quantify the effects on growth rate, defined via Eq. (2), where

the ratio B/µ enters. Moreover, in the derivation of privatization effects above, we found that the cell

effectively sees a slightly reduced concentration of antibiotics, Bin, as can be measured in media, Bout.

Thus, we can write

L = log
(
Bin/µ

)
≈ log

(
Bout

(1 + ερ/σBσE)µ

)
= log

(
Bout/µeff

)
. (S24)

This allows to state the overall dynamics in the outer concentration Bout as we did in Eq. (S24), we can

now relate the effective single cell MIC µeff to the underlying dynamical parameters. In the main text
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we introduced the privatization parameter Φ = (ερ)/(σBσE) that occurs here. Writing Φ in terms of the

timescale separation τ) in Eq. (S23), we obtain a parameter ϕ characterizing the privatization effect,

ϕ =
(α0λ)2

ησE σB
, (S25)

such that Φ = ϕ/τ .

Specifically, we find that the antibiotic concentration where population growth turns into death in

resistant populations is given by

µeff =
(

1 +
ϕ

τ

)
µ . (S26)

This relation (S26) is linear in 1/τ , which is the one parameter characterizing an allele. In general, we

expect ϕ to be a constant for both our sets of experiments.

Susceptible cells should correspond to a limit of τ → 0, as then either production is negligible (ρ→ 0)

or the (non-existent) enzyme is not effective (ε→ 0). As a sanity check, extrapolating the scMIC values

to τ = 0 should give the µ value measured in kill curve experiments.

C Quantification of bacterial growth with antibiotic dosage

Methods used to estimate the impact of antibiotic levels on the growth of bacterial cultures – referred

to as “kill curves” – were adapted from [23]. Briefly, Escherichia coli MG1655 galK::SYFP2-FRT was

cultured overnight in M9 minimal media (supplemented with 0.4% glucose, 0.2% Casamino acids, 1 µg/mL

thiamine, 2 µg/mL uracil and 50 µM IPTG). Stationary phase cultures were diluted 1:1000 into minimal

media and incubated shaking, meanwhile dilution series were made of cefotaxime in minimal media,

140 µL of each dilution was aliquoted into a row of a 96-well plate. All media for subsequent culturing

was then pre-warmed to aid continuous growth of bacteria. After 120 minutes, the concentration of cells

was measured by flow cytometry, and diluted in minimal media to approximately 2 · 106 cells/mL, and

140 µL of cells were added to each well containing cefotaxime. A 20 µL sample was immediately taken,

and the plate was incubated with orbital shaking for 60minutes at 37°C with further 20 µL samples taken

every 10 minutes. For each sample a dilution series of 10−1 to 10−3 was made and 100 µL of each dilution

was plated on minimal media solidified with agar. Plated cell solution were spread with 12-14 3 mm

glass beads. Plates were incubated for ∼ 24 h and colony forming units were counted from appropriate

dilutions.

D Experimentally determining the MSPS curve

D.1 Detailed protocol to perform 96-well microtitre plate assay

The proposed assay exposes different inoculum sizes of bacteria to different concentrations of antibiotics

until the boundary between wells with surviving and extinct populations is evident. The population size

is varied across the eight rows (A-H) of a 96-well plate while antibiotic concentrations varies across the

twelve columns of the plate. Care should be taken when choosing the antibiotic dilution range to fully

capture the MSPS curve. If the standard MIC is known, the dilutions series may be chosen so that the

MIC is the 8th or 9th dilution of this dilution series.

1. Grow strain of interest overnight in a suitable growth medium.

2. Prepare an antibiotic solution in the chosen growth medium that is four times the highest concen-

tration that will be tested.
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3. Fill all wells in a sterile 96-well plate with 100 µL growth medium.

4. Dispense 100 µL of the antibiotic solution with a concentration 4X of the intended final concentration

in column one of the microtitre plate. Using a multi-channel pipette, mix the antibiotics and transfer

100 µL from column one to column two. Mix again and repeat this procedure down to column 12.

Discard 100 µl solution from column 12.

5. Prepare a serial dilution of the bacterial overnight culture in eight appropriate tubes. The highest

concentration should be twice the desired highest inoculum. The highest inoculum size in the

validation experiments was approximately 1.25 · 106 CFU/ml or 2.5 · 105 CFU/well.

6. Dispense 100 µL of this serial dilution series across the rows of 96-well plate.

7. Incubate the plates at 37°C for 24h or until satisfactory growth is obtained.

8. Growth can be visually assessed or by spectrophotometric reading (OD600).

The validation experiments described in this study were performed using the above-mentioned protocol.

For the set of experiments using enzyme variants with a different catalytic activity, TEM-1 and three

alleles (G238S, E104K-G238S, E104K-M182T-G238S) were amplified from previously described plasmid

constructs [30], and introduced into chromosomal galK of Escherichia coli MG1655 by using the ’Quick

and Easy E. coli Gene Deletion Kit’ (Gene Bridges). Mutants were selected by selection for ampicillin

resistance and the introduction of β-lactamase genes were confirmed by PCR and sanger sequencing.

The MSPS assay was performed with the same minimal media used for kill-curves. For the set of

experiments assessing the effect of expression, TEM-1 alleles G238S and E104K-M182T-G238S were

subcloned into pBAD322T behind an arabinose-ineducable promoter and transformed in E. coli BW27783

(CGSC#12119) which carries a deletion for the arabinose metabolizing genes [31, 32]. Here, the MSPS

curve was performed in standard LB medium supplemented with 0.1% (High Expression), 0.003125%

(Medium Expression) 0.00078125% (Low Expression), and 0% (No/Leaky Expression) L-Arabinose where

appropriate. For both sets of experiments, growth was measured after 24h using a Victor3 plate reader

(Perkin-Elmer).

D.2 Parameter estimation on plates

Estimating the two parameters τ and µeff from the OD of one plate involves multiple steps. First, we

interpolate the 12× 8 grid of the 96-well plate onto a much finer grid with a Gaussian Process Regression

(GPR). Using this finer grid, we estimate a threshold between growth and no-growth by applying Otsu’s

method to find a threshold value that separates the modes in a bi-modal distribution of OD values. We

compute the contour line in the fine grid at this threshold value to obtain points on a curve close to the

growth/no-growth threshold. In the last step we fit the the predicted MSPS curve, N0 ≈ τ log
(
B/µeff

)
,

to this contour line, which yields values for τ and µeff . The main concepts and equations of all steps are

described in more detail below.

The implementation in Python can be found on https://github.com/lukasgeyrhofer/antibiotics.

D.2.1 Otsu’s Method for threshold detection

The next step in extracting the parameters from plates is to estimate the threshold between growth and

no-growth in an automated way. We use a slightly modified version of Otsu’s method [33] for finding

this threshold. Originally, this method has been proposed for binarizing images into black and white by
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separating the all observed values into two classes. It works by minimizing variance within a class, or

equivalently, by maximizing variance between the two classes.

In order to compute the threshold, we first sort the OD values from all replicate plates into a vector a

of length M ·R (with M = 96 the number of OD values and R the number of replicates),

a ≡ sort (log OD) .

Here, we use logarithmic values, as usually only the magnitude of the growth and no-growth OD values is

important, which allows to get a clearer threshold value. Then, one can show that Otsu’s method can be

reduced to finding the index m that maximises the expression,

m = arg max
1<m<MR

((
m
∑MR
i=1 ai −MR

∑m
j=1 aj

)2
m(MR−m)

)
. (S27)

Originally, Otsu’s method used equally distant bins and counts the number of values within these bins.

However, in our modified version, Eq. (S27), we use ’bins’ with only one observation, and space them

according to the actual measurements.

The threshold between growth and no-growth is then defined as G = 1
2 (am + am+1). All OD values

above this threshold G are considered growing, while all values below are considered no-growth.

D.2.2 Parameter estimation

With the set of points for the threshold between growth and no-growth, obtained in the previous step,

we first transform both axes to their logarithmic scales, which gives a set of the initial conditions(
log(N − 1)

)
i
,
(
logB

)
i

for each of the wells. Then we fit the (non-linear) functional form

(
logB

)
i

=
1

τ
exp
((

log(N − 1)
)
i

)
+ logµeff , (S28)

to first obtain values for (1/τ) and intercept (logµeff) using Python’s scipy.optimize.curve fit. Then,

using the Python module uncertainties, we use the covariance matrix between these two fitted parameters

to compute the actual values τ and µeff , in addition to their standard deviations, which are shown in

Fig. 5. The advantage of using logarithmic values for both axes of initial population size and antibiotic

concentration is that distances are weighted according to distances on the plate. Evaluating the exp(logNi)

term to obtain the direct linear dependency on N would emphasize large initial populations too much in

the fitting procedure.
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E Supplemental Figures

Robust Fit (High Expression G238S) Sensitive Fit (High Expression Triple)

Figure S2: Individual fits from microtitre plate experiments showing a robust and sensitive

fit of the MSPS curve.
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