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ABSTRACT 
The last decade has witnessed massive advancements in high-throughput techniques 

capable of producing quantifications of transcript and protein levels across time and space, and at 

high resolution. Yet, the large volume of big data available and the complexity of experimental designs 

hamper an easy understanding and effective communication of the results. 

Here we present expressyouRcell, a unique and easy-to-use R package to map the multi-

dimensional variations of transcript and protein levels in cell-pictographs. These variations are 

outcomes of differential and gene set enrichment analysis across space and time. Our tool directly 

associates these results with up to twenty specific cellular compartments, visualising them as 

pictographic representations of four different cellular thematic maps. expressyouRcell visually reduces 

the complexity of displaying gene expression and protein level changes across multiple time-points by 

generating dynamic representations of cellular pictographs. 

We applied expressyouRcell to six datasets, demonstrating its flexibility and usability in the 

visualization of simple and highly effective static and dynamic representations of time course 

variations in gene expression. Our approach complements classical plot-based methods for 

visualization and exploitation of biological data, improving the standard quantitative interpretation and 

communication of relevant results.  

 

INTRODUCTION 

In the world of big data we are living in today, visualisation tools and technologies are essential to 

analyse massive amounts of information, guide data-driven decisions and allow deeper understanding 

of the complexity of biological systems in physiological and diseased conditions1–4. During the last two 

decades, the generation of sequencing-based big data has witnessed an unprecedented explosion 

and a massive increase in the amount of raw information at our disposal5–10. As the complexity in the 

experimental designs - characterised by multiple variables, factors or covariates (e.g., conditions, time 

points and tissues) - increases, the biological data mining process has become more challenging. 

Thus, the scientific community requires next-generation visualisation tools and approaches to support 

the effective interpretation and intuitive presentation of results from complex experimental designs.  

Typically, the biological meaning of sequencing data is assessed through differential analyses and 

downstream pipelines, such as annotation enrichment analysis, coupled with network and clustering 
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analysis. However, with complex experimental designs, these approaches are of difficult 

interpretation, and they do not always satisfactorily disentangle the biological meaning of the data nor 

can effectively and rapidly communicate biological results.  

Humans are visual organisms, as Aristotle said in his Metaphysics: "All men naturally desire 

knowledge. An indication of this is our esteem for the senses; for apart from their use we esteem them 

for their own sake, and most of all the sense of sight." (Aristotle, Metaphysics ~ 400 B:C). Today more 

than ever, the visualisation of complex data in simple and information-rich graphical formats are of the 

utmost relevance to visually exploit complex abstract information. The overarching aim is to fulfil the 

double ambitious purpose of quantitative data mining and effective communication in a blink of an 

eye.  

Dedicated graphical tools have been proposed as means to represent biological information 

through graphical approaches in the past11–15. Available web applications, such as GeneCards, 

UniProt or Human Protein Atlas11,14,15 mainly consist of a user-friendly front-end for exploring gene 

and protein expression data obtained from experiments performed in various tissues, cell types and 

species. To highlight the localization of genes/proteins, the experimental results can be visualised 

using schematic representations of cells or organisms11,14,15. However, these tools lack versatility. In 

fact, they allow the users to just browse the information available in the database rather than 

customise the visualisation of his/her own data. An R package and accompanying web application 

have been developed to draw representations of expression datasets in human and mouse tissues13. 

However, this tool requires a series of advanced computational steps to handle and visualize the 

user's own data13. Recently, an R-based application has been proposed to compute and represent 

results from enrichment analyses through pictographs12, but none of these tools reduce the biological 

complexity of results from sophisticated experimental designs. The lack of efficient tools for next-

generation data exploitation is an urgent need in biology today. 

To portray quantitative gene expression changes in space and time in a very intuitive and effective 

manner, we propose expressyouRcell, an user-friendly and flexible R package that generates both 

static and dynamic cellular pictographs using custom-made complex NGS experiments. Leveraging 

the concept of choropleth maps, we used specific types of thematic maps for representing variations 

of variables, i.e., fluctuations in gene and transcripts expression levels. These values can be directly 

mapped to specific cellular compartments and visualised in pictographic representations of multiple 

cell types. ExpressyouRcell also generates movies of dynamic changes in the cellular pictographs at 

subcellular and organelle-level resolution. This function is uniquely suitable for visualising fluctuations 

in gene expression levels across multiple time points or to represent outcomes from differential 

longitudinal analyses. expressyouRcell unlocks an enormous simplification of data understanding and 

a conceptual shift as to how scientific data communication of biological results can be achieved. 

MATERIALS AND METHODS 
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User’s input data 

expressyouRcell is optimised for representing multiple gene expression datasets and accepts lists of 

tables. Each data table must contain a set of gene symbols which is sufficient to perform gene set 

enrichment analysis and visualise these results through cellular pictographs. 

Additionally, the gene symbols can be coupled with: i) their expression level expressed in read 

counts, count per million of reads (CPM) or reads per kilobase of gene per million (RPKM) or ii) fold-

changes (FC) and p-values from upstream differential analyses. FC are particularly useful to highlight 

the most affected cellular compartments and structures across different experimental conditions, time 

points and tissues. 

To improve the flexibility in handling different data structures, expressyouRcell provides the user 

with multiple options for colouring subcellular localizations (see details in section Visualizing gene 

expression data to the cellular pictograph for details). 

Gene localization mapping 

To define the colour and the shade of cellular pictographs, each gene must be previously mapped to a 

specific subcellular compartment. The localization of genes can be either provided by the user or 

assessed by expressyouRcell through the dedicated map_gene_localization function. This function 

requires as input a gene annotation file, provided in GTF format, and performs gene ontology 

enrichment analysis on the sets of input gene symbols. Single or multiple terms of the cellular 

component ontology, either cellular compartment or macromolecular complex, will be assigned to 

each gene. 

The subcellular compartments drawn in the pictographs are described by terms from the cellular 

component ontology. Since the logical data structure of the gene ontology is organized as an 

hierarchical tree graph, we selected a subset of higher-ranked terms as descriptors for the 

pictographic organelles and compartments.  

Cellular pictograph drawing 

expressyouRcell offers pictographs of four cell types: i) a typical animal cell, ii) a neuron, iii) a 

fibroblast and iv) a microglial cell. The desired cellular type has to be specified by the user in the 

color_cell function parameters. 

The spatial coordinates of regions/organelles are extracted from multiple vector graphic files, one 

for each subcellular region or organelle, through the rsvg_svg function of the rsvg R package. The 

resulting cellular structures are then stored in RData objects, provided by expressyouRcell, and used 

by the function geom_polygon from the ggplot2 package to generate the final pictographs. 

A selection of subcellular regions and organelles have been chosen and drawn to create the cell 

pictographs (Table S1). The selection was based on the highest ranked nodes in the gene ontology 

graph and includes the main cellular regions and organelles. The subset of cellular component terms 

used for the cellular pictograph is cell-type specific. 
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Visualising gene expression data to the cellular pictograph 

The color_cell function provides two main approaches for assigning colours to the subcellular 

localizations and for visualising gene expression data pictographs.  

The first option is based on the outcome of gene set enrichment analysis and on its representation. 

This approach takes into consideration the identity and localization of genes, but not their expression 

level. Starting from the complete list of gene symbols, expressyouRcell performs the gene set 

enrichment analysis for each cellular component and assesses the statistical significance of the 

enrichment by the Fisher’s test and the colour shade of each compartment is defined by its associated 

p-value. An optional gene classification can be specified by the user through distinct categorical 

variables (e.g., “down-regulated” and “up-regulated”). In this case, a cellular pictograph for each class 

is generated following the same procedure described above. 

The second option allows the visualisation of either gene expression levels or the result of previously 

performed differential analyses. This approach requires, for each gene, a numerical value reporting i) 

its gene or transcript expression level (reads count, TPM, CPM or RPKM) or protein levels, or ii) the 

outcome of differential analyses among multiple samples (e.g., fold changes, fold enrichments). The 

name of the column that defines the colour of the pictograph must be specified by the user. To 

provide further flexibility in data visualisation, expressyouRcell can generate cellular pictographs on 

the entire set of genes or on subsets defined by the user. In the first case the colour of each cellular 

compartment is defined by the mean (Equation 1), or median, of all gene-specific values associated 

with each localization 
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���

n
 

Eq. 1 

where  � 	  
�1, . . . , ��� is a cellular localization, n is the total number of genes associated with the 

localization l and gi
l is the gene-specific value (gene expression level or fold changes/enrichments). 

In the second case, expressyouRcell generates multiple pictographs, one for each subset of genes 

defined by the user according to an optional classification of genes (e.g., “down-regulated” and “up-

regulated”). With this option, a cellular pictograph for each class is generated and the colour of each 

cellular compartment is calculated as in Equation 2, for each gene subset. 

�c � �c�, . . , c��, ��l � �l�, . . , l��
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Eq. 2 

where � 	 
�1, . . . , ��� defines a class of genes, � 	  
�1, . . . , ��� is a cellular localization, n is the 

number of genes in class c associated with the localization l, and gi
c,l corresponds to their gene-

specific value (gene expression level or fold changes/enrichments). 

If no categorical variables are specified by the user, expressyouRcell classifies the genes 

according to a combination of cut-off values (e.g., fold-change and p-value thresholds). 
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Animated cellular pictographs 

expressyouRcell generates dynamic representations of data shown in the cellular pictographs. This is 

particularly useful when the user’s input data consists of multiple sets of time-course gene expression 

data. The generation of animated pictographs depends on information obtained by the color_cell 

function. 

In this step, multiple data structures obtained by the color_cell function are required as input to the 

animate function, which creates a short movie or an animated picture. Additional mandatory inputs 

consist of the name of data tables for generating the animation, the transition duration (in seconds) 

and the number of frames/transitions. A bar timeline at the top of the animation plot allows a better 

tracking of the changes over time. Hence, the user can use as additional input a vector of labels for a 

customised timeline.  

The working flow of this function begins with the generation of temporary frames with intermediate 

colour shades for each transition. The complete set of frame pictures is merged into a single animated 

picture (GIF) or short movie in mp4 format. The gifski and av packages are used to produce the 

animated GIF picture and the movie, respectively.  

Output 

expressyouRcell generates both static and dynamic representations of cellular pictographs that are 

associated with two main types of data structures.  

The color_cell function generates static cellular pictographs and returns a list with multiple data 

structures. The first is a data table with six columns, reporting, for each subcellular component: i) its 

name, ii) the numeric value computed during the colour assignment step, iii) a numeric identifier for 

grouping the cellular localizations by colour, iv) its associated colour shade, the v) the identifier of 

each dataset, and, if present, and vi) the variable used for grouping the genes by classification.  

The second data structure is a data table summarising the information on ranges used to 

categorise each subcellular localization (e.g., start, end, colour, and labels).  

The third and fourth data structures are lists of graphical objects of class ggplot, and datasets used 

to plot the resulting cellular pictographs, respectively. 

The animate function generates dynamic cellular pictographs and saves them either as movie (in 

mp4 format) or as animated pictures (in gif format). The saving step is performed directly within the 

function. 

 

 

RESULTS 

Workflow 

Here, we present expressyouRcell, an R package that generates static and dynamic cellular 

pictographs to represent outcomes of expression data analysis (RNAseq and proteomics) at sub-

cellular and organelle-level resolution (Figure 1A). The input of expressyouRcell consists of a list of 
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one or multiple tabular data structures with the biological information that the user desires to represent 

as cellular pictographs. 

A table that associates genes ID with subcellular compartments is also required and can be 

either provided or generated through the map_gene_localization function that is available in 

expressyouRcell. The list of data tables and the gene localization table represent the input of the 

color_cell function, which assigns colours to cellular compartments according to the statistical 

significance of enrichment analysis, or based on fold change averages for genes in each 

compartment. Then, the function outputs static cellular pictographs and the data structure required to 

generate animated cellular pictographs or movies (through the animate function).  

 

expressyouRcell provides the users with custom options for the generation of multiple static 

cellular pictographs or dynamic pictographs in the form of movies, and offers four thematic maps, 

based on different cellular types: i) a typical animal cell, ii) a neuron, iii) a fibroblast and iv) a microglial 

cell (Figure 1B). Each cell type comprises eighteen organelles and macromolecular complexes 

(nucleus, Golgi apparatus, endoplasmic reticulum, cell membrane, cytosol, chromosome, vesicles, 

endosomes, cytoskeleton, lysosomes, mitochondria, neurotransmitters, ribosomes, nuclear bodies, 

nucleolus, extracellular matrix (Figure 1B). In addition, the neuron pictograph includes the myelin 

sheath and its global structure is organized into cell body, axon and synapse (Figure 1B and Table 

S1). 

 

     

 
Figure 1. Workflow overview and cellular pictographs 
(A) Flowchart representing the basic steps of expressyouRcell, the input requirements and the outputs. User’s 
input data are loaded within the package through the color_cell function, which also needs the gene-localization 
table. This data structure can be either generated through the map_gene_localization function (option 1) or 
provided by the user (option 2). The color_cell function assigns colours to cellular compartments according to i) 
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the statistical significance of enrichment analysis, ii) fold changes from differential analyses or iii) gene 
expression or protein level abundances, averaged for genes in each compartment. Then, it outputs static cellular 
pictographs (in PNG format) and the data structure required to the animate function for the generation of 
animated cellular pictographs (in GIF or MPG format). User’s input data are defined in light green boxes. 
Diamond boxes denote intermediate and final output data. Functions provided within the package are indicated in 
italic font.  
(B)  Set of available cellular pictographs, based on different cellular types: i) a generic animal cell, ii) a fibroblast, 
iii) a microglial cell and iv) a neuron. The chosen cellular pictograph has to be provided by the user to a dedicated 
parameter of the color_cell function. Default colours are assigned to organelles and subcellular compartments. 
 
 
Visualise longitudinal differential analysis 

To demonstrate the flexibility and power of expressyouRcell, we present six case studies (Table 

1), which represent particularly suitable applications of our tool. The selected studies share complex 

experimental designs with multiple variables, or covariates (e.g., conditions, time points and biological 

samples) based on two experimental techniques (RNA-Seq and mass spectrometry) and specific 

computational pipelines5–10.  

In the first case study, Chen and collaborators6 used TRAP-seq to characterise the transcriptome 

changes in a specific population of neurons after induction of long-term potentiation (LTP) at 30, 60 

and 120 minutes after stimuli. The canonical analysis and data exploration with volcano plots displays 

the quantity and magnitude of differentially expressed genes (DEGs) identified between LTP and 

control condition at each time point, and the corresponding GO enrichment analysis (Figure 2A and 

B), demonstrating the complexity in data interpretation.  

 

 

 

Table 1. Summary of works and related datasets used to evaluate expressyouRcell features. 

 

When we generated the neuron pictographs with expressyouRcell we clearly visualise at first 

glance: i) a gradual increase in the colour intensity over time, in particular for down-regulated genes 

(Figure 2C, red pictographs), and ii) changes in gene expression spreading across several cellular 

compartments (Figure 2C and movies S1-S2). With this visualisation we can appreciate the spatial 

localisation of gene expression changes and observe the emergence of down-regulated genes at 30’, 

with robust negative fold-changes encoding for proteins localised in the endoplasmic reticulum. At 

later time points, genes with negative fold changes are connected to mitochondria, nucleoplasm and 

the synaptic region of neurons.  
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Figure 2. Standard approaches and cellular pictographs for visualising results of differential analyses 
across time-points. 
(A) Volcano plot of DEGs between LTP and control condition at indicated time point from TRAP-seq of neurons. 
Fold changes are plotted against the –log(p value). The vertical dashed lines indicate the 0.4 fold change cut-off 
thresholds. 
(B) Enrichment analysis of Gene Ontology (Cellular Component) terms at indicated time point of differentially 
expressed genes from TRAP-seq of neurons. Colours of dots indicate the significance of the enrichments. Dot 
sizes define the number of genes associated with each category. 
(C) Neuron pictographs from TRAP-seq. Colour shades of cellular compartments and organelles are based on 
logFC values from differential analysis. Up- and down-regulated genes were defined with the threshold described 
in (6) (i.e., abs(log2FC) > 0.4 and FDR < 0.1). 
(D) Neuron pictographs from TRAP-seq. Colour shades of cellular compartments and organelles are based on 
the significance of the enrichments. Up- and down-regulated genes were defined with the threshold described in 
(6) (i.e., abs(log2FC) > 0.4 and FDR < 0.1). 

 

We also visualised as heatmaps the results of gene set enrichment analyses on differentially 

expressed transcripts at all time points (Figure 2B). A significant enrichment of down-regulated genes 
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for the cell membrane, which intensifies at the last time point (120’), can be swiftly observed. Up-

regulated transcripts show a clear enrichment for chromatin and nuclear-related themes, in particular 

at 120 minutes after LTP induction. Next, we used expressyouRcell to display the results of gene set 

enrichment analysis through cellular pictographs of neurons for up- and down-regulated genes at 

each time point (Figure 2D and movies S3-S4). Coherently with the heatmap visualisation, the 

representation obtained with our tool shows very effectively and intuitively that down-regulated genes 

are enriched in the cell membrane theme at 120 minutes after LTP induction. From cellular 

pictographs generated for the enrichment analysis on up-regulated genes, we can observe that 

nucleoplasm and chromosomes are highlighted at all the time points, but at 120’ the enrichment is 

even more evident. 

To appreciate the reduction in data complexity and the power of graphical representations provided 

by expressyouRcell, we analysed a second case study5. The dataset is characterised by higher 

complexity compared to the previous one in terms of number of time points. The experimental design 

consists of transcriptomes of mouse cortices at nine different time points during development5. It is 

clear that any pairwise comparison would generate three times more volcano plots and GO heatmaps 

than those shown in Figure 2 A-B. For each developmental time point we generated neuron 

pictographs (Figure 3) based on the expression level (expressed as transcript per million, TPM) of a 

subset of genes of interest selected by the authors5. We can very easily visualise and identify an 

increase in the TPM signal in myelin sheath-related genes starting from the fourth day after birth, 

accompanied by an increment of signal in the synaptic region. Applying the function movie, the results 

are even clearer and with strong communication impact (Movie S5). 

These results and those related to other case studies and applications of expressyouRcell 

(Supplementary Figures S1-S7, and Movies S1-S17) demonstrate that our tool is flexible and 

powerful allowing simple and intuitive data mining and visualisation for the next-generation of 

biological data exploitation. 
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Figure 3. Neuron cell pictographs from RNA-seq of cortical neurons.  
Colour shades of cellular compartments and organelles are based on gene expression levels (measured in TPM), 
described in 5. Counts of RNA-seq data from this study were processed through https://www.refine.bio. 
 
DISCUSSION 

Differential gene expression outcomes (i.e., the absolute number of differentially expressed 

genes/transcripts, their magnitudes and significance values) are usually displayed through bar plots, 

volcano plots or heatmaps. As methodologies to peer inside the complexity of biological mechanisms 

evolve, the amount of biological information to be disentangled explodes and standard procedures are 

no more sufficient to fulfil this task. Hence, new visualization approaches become essential for 

supporting the interpretation of outcomes from data analysis pipelines and visually conveying 

meaningful information. For instance, volcano plots are used to display significant changes, but they 

are not suitable to represent the spatial localization of fluctuations in gene expression levels across 

cellular compartments. Hence, the canonical representation of differentially expressed genes (DEGs) 

through volcano plots can be integrated with intuitive and informative representations of the 

localization and intensity of changes provided by expressyouRcell pictographs. 

Compared with standard methods, cellular pictographs generated through expressyouRcell offer 

an immediate approach to data exploitation, and a reduction of biological complexity. In particular, this 

method gives us the unique advantage of an immediate detection and intuitive illustration of the most 

affected cellular components, together with the intensity of the variations.  

A handful of tools with alternative representation methods11–15 have already been proposed, but at 

the time of this writing, there are no comparable alternatives to expressyouRcell. In fact, our tool 
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addresses the data visualization problem in a different and novel approach compared to existing 

ones11–15. It gives the unique possibility of creating dynamic illustrations, which can effectively support 

researchers in tracking the fluctuations in gene expression levels across multiple time points and 

reduces the complexity of biological information. Importantly, changes are dynamic by definition, and 

animated pictographs constitute a more appropriate solution for scientific communication than static 

illustrations. As of now, no other tool but expressyouRcell have been proposed to supply this need. 

Some of the currently available tools mainly consist of web interfaces designed to query biological 

databases in a human interpretable manner, which comes particularly handy to retrieve information on 

single genes and proteins11,14,15. In particular, these web resources rely on pictographic illustration of 

cells to display the location of protein at subcellular resolution. As such, their purpose and functionality 

differ from our approach, while remaining useful resources with a wealth of biological information.  

Two available R-based applications (i.e., gganatogram and subcellulaRVis) aim at representing 

biological data through cellular pictographs. gganatogram mainly produces anatomical pictographs for 

different organisms13. It offers nicely detailed pictographs of various whole-body organisms for 

visualizing biological data at organs and tissue level. The set of available pictographs also includes 

one generic cellular map complete with multiple organelles. Although the great advantage of 

visualizing biological data at the subcellular level, this option limits the users in representing specific 

cellular types with particular subcellular compartments. Furthermore, the tool requires a series of 

advanced computational steps to integrate and visualize the user's own data. subcellulaRVis is a web 

R-based application which performs and visualizes results from enrichment analysis. This tool 

provides the users with two graphical options: a generic cellular pictograph and a more specific 

visualization of the endosomal system12 which is particularly useful to represent detailed and specific 

information for the endosomal compartments. The user-friendly web page interface offers the 

possibilities of performing enrichment analysis also to less-experienced users, and of generating 

easy-to-interpret graphical results. Unfortunately, this tool currently does not manage multiple data 

types, making it well-suited for performing only enrichment analysis. 

Overall, expressyouRcell meets both users’ needs for dealing with a variety of different data types 

and their desire for customized visualizations. Our tool provides the scientific community with a fresh 

and original approach for representing gene expression changes and for effective, fast and dynamic 

communication of results through various cellular pictographs. This visualisation can support and 

complement the standard and already widely adopted methods with the additional knowledge on both 

the intensity and spatial localization of gene expression variations and open a completely new 

scenario as to how biological data exploitation can move towards the future. 

 

DATA AVAILABILITY 

expressyouRcell is a package written in the R programming language which depends on multiple R 

packages, such as ggplot2 for data visualisation, clusterProfiler for gene ontology enrichment 

analysis, gifski and av for the GIF animation and video realisation, respectively. expressyouRcell 

source code can be downloaded from the following GitHub repository: 

https://github.com/LabTranslationalArchitectomics/expressyouRcell, accompanied with installation 
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instructions and functions documentation. expressyouRcell is an Open-Source software package 

(distributed under the MIT licence), which is compatible with Linux, Mac, or Windows PCs. Future 

releases may be expanded by additional cellular pictographs to support the visualisation of data on a 

wider range of cellular types. Also, an interactive web application could also be deployed through the 

Shiny framework to further expand the usability and reachability of our tool. 

The package includes the R implementation of expressyouRcell, data used in this article, extensive 

documentation and a stable release. 

 

ACCESSION NUMBERS 

This paper analyses existing, publicly available data. The accession numbers for the datasets are 

listed in the following table. 

RESOURCE SOURCE IDENTIFIER 

Deposited data 

TRAP-seq - RNA 
Expression in Excitatory 
Neurons during 
Hippocampal LTP 

Chen et al., 
2017 

https://www.frontiersin.org/articles/file/downloadfile/24424
3_supplementary-materials_datasheets_1_xlsx/octet-
stream/Data%20Sheet%201.XLSX/1/244243 
 
GEO ID: GSE79790 

RNA-seq - temporal 
regulation of alternative 
splicing during neural 
development 

Weyn-
Vanhentenryck 
et al., 2018 

https://www.refine.bio/experiments/SRP055008/developin
g-mouse-cortex-rna-seq 
 
NCBI Short Read Archive ID: SRP055008 

RNA-seq - microglia 
activation in response to 
pathological tau 

Wang et al., 
2018 

https://static-
content.springer.com/esm/art%3A10.1186%2Fs13024-
018-0296-
y/MediaObjects/13024_2018_296_MOESM2_ESM.xlsx 
 
GEO ID: GSE123467 

RNA-seq Wound 
reprogramming and 
peripheral nerve 
regeneration 

Clements et al., 
2017 

https://www.cell.com/cms/10.1016/j.neuron.2017.09.008/a
ttachment/229d65b5-db13-442e-9721-
fe2763746e2f/mmc7.xlsx 
 
GEO ID: GSE103039 
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RNA-seq - Changes in GE 
during disease progression 

Doktor et al., 
2017 

https://oup.silverchair-
cdn.com/oup/backfile/Content_public/Journal/nar/45/1/10.
1093_nar_gkw731/2/gkw731_Supp.zip?Expires=1654590
951&Signature=e-
4zy41FxwlXyOfa7onnHXKu6eaZe53WDLzeZx5xJTZWev
pUxc48XW9BX64YZFbbcIhgJKzzjmqiY8-syWuxofEakd8-
9UFJTY1cigUDhqqG2-
mMa~4SOWuBUZIcJefNM0RWKeWzvxFrc-
nsPeKqeskf1-
zwSVsJMTmqKoemxoFORsbo8dNdVIMKbvYfApwpYHCj
1o-Pm8rXdsXOg-
dFi11f43BpHa0ELUW0aiRmdibACuK5F4tEFiLW0GbrEx2
xEmcHDKuP5FiLoMWFA6QQ2AjjkrgsOsre7RodBRaYGu
xSI60gEqunVWKoHbKuoZlCDYpXzzD4zJeot9EY7plSGg
__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA 
 
ArrayExpress ID: E-MTAB-3664 

Protemics - protein levels 
in cells during 
differentiation from hiPSCs 
to hepatocyte-like cells  

Hurrell et al., 
2019 

https://www.nature.com/articles/s41598-019-39400-
1#Fig2 
 
Raw dataset ID not available 

Mouse reference genome 
97 

Ensembl http://jul2019.archive.ensembl.org/ 

Software and algorithms 

R code for 
expressyouRcell package 

This manuscript https://github.com/LabTranslationalArchitectomics/expres
syouRcell 

 

 

ACKNOWLEDGMENT 

The authors thank Ludovica Maria Ferrari for the graphical support, Emma Busarello and Christian 
Ramirez Amarilla for the comments.  
 
FUNDING 

This work was supported by Telethon (reference no. GGP19115). 
 
AUTHOR CONTRIBUTIONS 

M.P. developed the R package, organised all figures and wrote the draft of the paper. T.T. and F.L. 
advised on data interpretation and R package development. G.V. designed the work and obtained the 
funding. All authors wrote the paper and critically reviewed the manuscript. 
 
CONFLICT OF INTEREST 

GV is scientific advisor of IMMAGINA Biotechnology s.r.l. 

REFERENCES 

1. Serratì, S. et al. Next-generation sequencing: advances and applications in cancer 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.04.502810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502810
http://creativecommons.org/licenses/by-nc/4.0/


diagnosis. Onco. Targets. Ther. 9, 7355–7365 (2016). 

2. Hong, M. et al. RNA sequencing: new technologies and applications in cancer 

research. J. Hematol. Oncol. 2020 131 13, 1–16 (2020). 

3. Morash, M., Mitchell, H., Beltran, H., Elemento, O. & Pathak, J. The Role of Next-

Generation Sequencing in Precision Medicine: A Review of Outcomes in Oncology. J. 

Pers. Med. 8, (2018). 

4. Kerren, A., Kucher, K., Li, Y. F. & Schreiber, F. BioVis Explorer: A visual guide for 

biological data visualization techniques. PLoS One 12, 1–14 (2017). 

5. Weyn-Vanhentenryck, S. M. et al. Precise temporal regulation of alternative splicing 

during neural development. Nat. Commun. 9, (2018). 

6. Chen, P. B. et al. Mapping gene expression in excitatory neurons during hippocampal 

late-phase long-term potentiation. Front. Mol. Neurosci. 10, 39 (2017). 

7. Wang, H. et al. Genome-wide RNAseq study of the molecular mechanisms underlying 

microglia activation in response to pathological tau perturbation in the rTg4510 tau 

transgenic animal model. Mol. Neurodegener. 13, 1–19 (2018). 

8. Doktor, T. K. et al. RNA-sequencing of a mouse-model of spinal muscular atrophy 

reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res. 

45, 395 (2017). 

9. Clements, M. P. et al. The Wound Microenvironment Reprograms Schwann Cells to 

Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 96, 

98 (2017). 

10. Hurrell, T., Segeritz, C. P., Vallier, L., Lilley, K. S. & Cromarty, A. D. A proteomic time 

course through the differentiation of human induced pluripotent stem cells into 

hepatocyte-like cells. Sci. Reports 2019 91 9, 1–11 (2019). 

11. Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human 

proteome. Protein Sci. 27, 233–244 (2018). 

12. Watson, J., Smith, M., Francavilla, C. & Schwartz, J.-M. SubcellulaRVis: a web-based 

tool to simplify and visualise subcellular compartment enrichment. Nucleic Acids Res. 

50, 718–725 (2022). 

13. Maag, J. L. V & Nakaya, H. I. gganatogram: An R package for modular visualisation of 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.04.502810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502810
http://creativecommons.org/licenses/by-nc/4.0/


anatograms and tissues based on ggplot2. F1000Research 2018 71576 7, 1576 

(2018). 

14. Bateman, A. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, 

D506–D515 (2019). 

15. Safran, M. et al. The GeneCards Suite. Pract. Guid. to Life Sci. Databases 27–56 

(2021) doi:10.1007/978-981-16-5812-9_2. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2022. ; https://doi.org/10.1101/2022.08.04.502810doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502810
http://creativecommons.org/licenses/by-nc/4.0/


MAIN TABLE AND FIGURES LEGENDS 

Figure 1. Workflow overview and cellular pictographs 
(A) Flowchart representing the basic steps of expressyouRcell, the input requirements and the outputs. User’s 
input data are loaded within the package through the color_cell function, which also needs the gene-localization 
table. This data structure can be either generated through the map_gene_localization function (option 1) or 
provided by the user (option 2). The color_cell function assigns colours to cellular compartments according to i) 
the statistical significance of enrichment analysis, ii) fold changes from differential analyses or iii) gene 
expression or protein level abundances, averaged for genes in each compartment. Then, it outputs static cellular 
pictographs (in PNG format) and the data structure required to the animate function for the generation of 
animated cellular pictographs (in GIF or MPG format). User’s input data are defined in light green boxes. 
Diamond boxes denote intermediate and final output data. Functions provided within the package are indicated in 
italic font.  
(B)  Set of available cellular pictographs, based on different cellular types: i) a generic animal cell, ii) a fibroblast, 
iii) a microglial cell and iv) a neuron. The chosen cellular pictograph has to be provided by the user to a dedicated 
parameter of the color_cell function. Default colours are assigned to organelles and subcellular compartments. 
 
Figure 2. Standard approaches and cellular pictographs for visualising results of differential 
analyses across time-points. 
(A) Volcano plot of DEGs between LTP and control condition at indicated time point from TRAP-seq of neurons. 
Fold changes are plotted against the –log(p value). The vertical dashed lines indicate the 0.4 fold change cut-off 
thresholds. 
(B) Enrichment analysis of Gene Ontology (Cellular Component) terms at indicated time point from TRAP-seq of 
neurons. Colours of dots indicate the significance of the enrichments. Dot sizes define the number of genes 
associated with each category. 
(C) Neuron pictographs from TRAP-seq. Colour shades of cellular compartments and organelles are based on 
logFC values from differential analysis. Up- and down-regulated genes were defined with the threshold described 
in (6) (i.e., abs(log2FC) > 0.4 and FDR < 0.1). 
(D) Neuron pictographs from TRAP-seq. Colour shades of cellular compartments and organelles are based on 
the significance of the enrichments. Up- and down-regulated genes were defined with the threshold described in 
(6) (i.e., abs(log2FC) > 0.4 and FDR < 0.1). 
 
Figure 3. Neuron cell pictographs from RNA-seq of cortical neurons.  
Colour shades of cellular compartments and organelles are based on gene expression levels (measured in TPM). 
Counts of RNA-seq data from this study were processed through https://www.refine.bio. 
 

Organism Cells/tissues # time 
points 

Study title Reference 

Mouse Microglia 4 microglia activation in response to 
pathological tau 

Wang et al., 2018 
 

Mouse Neurons 3 RNA Expression in Excitatory Neurons during 
Hippocampal LTP 

Chen et al., 2017 

Mouse B/SC/M/H/K 2 Changes in GE during disease progression Doktor et al., 2017 

Mouse Schwann 
cells 

6 Wound reprogramming and peripheral nerve 
regeneration 

Clements et al., 2017 

Mouse Neurons 9 temporal regulation of alternative splicing 
during neural development 

Weyn-Vanhentenryck 
et al., 2018 

Human hiPSCs 7 Protein levels in cells during differentiation 
from hiPSCs to hepatocyte-like cells 

T. Hurrell et al., 2019 

 
Table 1. Summary of works and related datasets used to evaluate expressyouRcell features. 
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