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Through their metabolism, heterotrophic microbes drive
carbon cycling in many environments (1). These microbes
consume (and produce) hundreds to thousands of different
metabolic substrates, begging the question of what level of de-
scription is required to understand the metabolic processes
structuring their communities: do we need to account for the de-
tailed metabolic capabilities of each organism, or can these ca-
pabilities be understood in terms of a few well-conserved carbon
utilization strategies that could be more easily interpreted and
more robustly predicted? Based on the high-throughput pheno-
typing of a diverse collection of marine bacteria, we showed that
the fundamental metabolic strategy of heterotrophic microbes
can be understood in terms of a single axis of variation, repre-
senting their preference for either glycolytic (sugars) or gluco-
neogenic (amino and organic acids) carbon sources. Moreover,
an organism’s position on this axis is imprinted in its genome,
allowing us to successfully predict metabolic strategy across the
bacterial tree of life . Our analysis also unveils a novel and gen-
eral association between metabolic strategy and genomic GC
content, which we hypothesize results from the difference in C:N
supply associated with typical sugar and acid substrates. Thus,
our work reveals a fundamental constraint on microbial evo-
lution that structures bacterial genomes and communities and
can be leveraged to understand diversity in functional terms,
beyond catalogs of genes and taxa.
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Next-generation sequencing has enabled the collection
of enormous amounts of data about the abundances of taxa
or genes in microbial communities (2–4). However, out-
side of highly specialized and taxonomically conserved func-
tions like photosynthesis or ammonia oxidization, it often
remains difficult to associate taxa to the processes that take
place in a community. This difficulty is particularly acute in
heterotrophic microbial communities, which perform many
important ecosystem functions such as organic matter recy-
cling, mediated by the metabolic actions and interactions of
their members. This is in part because most bacterial species
are not experimentally characterized and because we lack the
ability to accurately predict phenotypes from genomes. A
more fundamental problem, however, is that the functional
space of heterotrophic metabolism is enormous (5), given the
hundreds to thousands of metabolites typically found in het-
erotrophic ecosystems that each can serve as potential car-
bon and energy source for some subset of the community (6).
This substrate diversity gives rise to a huge number of po-
tential metabolic niches, about 1030 for just 100 metabolites.
Therefore, solving the challenge of understanding metabolic

processes in heterotrophic microbial communities requires
not only experimental characterizations and the development
of phenotype-genotype mappings, but also a way to concep-
tually simplify, i.e., to "coarse-grain", metabolic niche space
into a few easily interpretable metabolic strategies (7, 8).

We approach this problem through the high-throughput
metabolic profiling of 186 strains of marine heterotrophic
bacteria. Most strains were originally isolated from commu-
nities growing on polysaccharide particles (9, 10) and cho-
sen to maximize diversity across five abundant marine orders,
while also including close relatives to span a wide range of
pairwise phylogenetic differences (SI Fig. S1, SI Table 1).
All species were grown individually in minimal media con-
taining one of 135 potential carbon substrates, ranging from
glucose to amino acids to various polysaccharides (SI Table
2, see methods), for 15 days. Growth over time was assessed
by measuring optical density at least once per day and quan-
tified by extracting growth rates, lag times, and yields from
logistic fits (Fig 1a).

The resulting matrix of more than 22,000 growth rates
forms the basis for our subsequent analysis (SI Table 3). We
observed growth in 37% of all conditions, but the proba-
bility of observing growth varied widely both across strains
(SI Fig. S2) and substrates (SI Fig. S3): species consumed
between 2 and 66 different substrates, and substrates were
consumed by between 1 (tartrate) and 155 (glucose) strains.
Of the 135 substrates tested, 118 supported robust growth of
at least one species. We found practically insignificant cor-
relations between the number of consumed carbon sources,
growth rate, and yield, and no evidence for a trade-off be-
tween growth rate and yield (SI Fig. S4).

To uncover patterns in the matrix of growth rates, we
performed principal component analysis of the normalized
(by species) growth rates (Fig. 1b) and discovered that the
first principal component, i.e., the fundamental dimension of
metabolic phenotypes, corresponded to species’ preferences
for either acids or sugars. To show this, we averaged the load-
ings of each substrate according to their fundamental chem-
ical class (sugar, amino acid, organic acid); individual load-
ings are shown in SI Fig. S5. To quantify this correspon-
dence, we introduced the Sugar-Acid Preference (SAP), de-
fined from the average growth rate on sugars kS and acids kA

as by

SAP = kS −kA

kS +kA
,

which ranged from +1 for extreme sugar specialists (no
growth on any acid) to −1 for extreme acid specialists (SI
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Fig. 1. a) Outline of the experimental proce-
dure: 186 marine isolates were grown in high
throughput over 17 days on 118 individual sub-
strates, including various sugars, organic acids,
and amino acids. We characterized the resulting
growth curves in terms of the lag time, growth
rate, and yield. b) Principal component anal-
ysis of the growth rates revealed overall taxo-
nomic cohesion and similarity between different
taxonomic groups. Averaging the loadings (how
much each substrate contributes to the first and
second principal component, inset; see SI Fig S5
for the individual loadings) provided a biologi-
cal interpretation for the first principal compo-
nent as the preference for sugars or acids (in-
set), which we quantify as the sugar-acid prefer-
ence (SAP). c) The phenotypic distance (cosine
distance between growth vectors) was correlated
with the phylogenetic distance (from GTDB-tk,
see SI Fig. S8 for other measures of genomic
similarity) but reached neither 0 nor 1 for very
closely or distantly related strains, respectively
(vertical lines correspond to the average phylo-
genetic distance at the different taxonomic lev-
els). Thus, there was in general no charac-
teristic phylogenetic distance below which we
can expect all strains to have the same pheno-
type. d) Sugar-acid preference was variable be-
tween species but roughly conserved at the or-
der level; exceptions to the order-wide tenden-
cies (squares) can be explained by fundamen-
tal niches that differ from the order median (see
main text). e) Variability within orders was mostly
explained by preferences at the genus level, but
some genera were highly variable within them-
selves (e.g., Shewanella). Only genera within
Alteromonadales with at least three representa-
tives are shown. f) Correlating sugar-acid pref-
erence with the preference in switching rate to
sugars or acids revealed that different character-
istics of the growth are correlated. Species that
prefer sugars had, on average, shorter lag times
on sugars than on acids, and vice versa. Error
bars represent standard deviations.

Fig. S5). Given its high correlation with the first principal
component (R2 = 0.92, SI Fig. S6), we focused on the SAP
as the primary index to quantify the metabolic preference
of each strain; while the second principal component corre-
lated mostly with the preference for amino or organic acids,
that correspondence was weaker (R2 = 0.5, see SI Fig. S6b).
Growth phenotypes and thus SAP were largely reproducible
across replicate experiments, such that we used the average
across up to three biological replicate experiments in the fol-
lowing (SI Fig. S7 and Supplementary Note 1).

More closely related strains tended to have more simi-
lar metabolic capabilities, but there was no fixed taxonomic
scale or measure of phylogenetic distance (e.g., via marker
genes, total gene content or pathway content, see SI Fig. S8)
where metabolic preferences became coupled or uncoupled
(Fig. 1c). As a result, the SAP was imperfectly correlated
with taxonomy (Fig 1d): for instance, species in the order
Flavobacteriales are known to degrade polysaccharides (11)
and indeed, they tended to prefer sugars in our screen (SAP >
0). However, exceptions to the median metabolic prefer-
ence emerged, indicated by squares in Fig. 1d, such as the
acid-specialist Tenacibaculum genus in the Flavobacteriales,
which includes fish pathogens (12). Conversely, the orders

Pseudomonadales and Rhodobacterales (commonly thought
to specialize in simple substrates (13)) tended to prefer acids
(SAP < 0), but we also found the sugar-specialist Pseu-
domonadales genus Saccharophagus, which are known sugar
degraders (14).

Beyond quantifying the preferences for growth on sug-
ars and acids, the SAP also predicted lag time differences
when switching between preferred and non-preferred sub-
strates (Fig 1a). Recent theory and experimental results in
E. coli and P. aeruginosa have suggested that different reg-
ulatory programs may prime organisms to grow rapidly on
glycolytic or gluconeogenic substrates upon switching be-
tween substrate types. We defined the lag-time preference
analogously to the sugar-acid preference, via the average (in-
verse) lag times on sugars τS and acids τA, as τS−τA

τS+τA
. We

found that sugar specialists on average tended to switch faster
to growth on sugars than on acids, and vice-versa (Fig 1d).
This suggests that the theory may indicate a general connec-
tion between metabolic strategies and lag times rooted in bio-
chemical trade-offs.
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Fig. 2. a) Two examples of pathway abundances (number of genes in the pathway normalized by the total number of genes in each strain) as a function of sugar-acid
preference. b) Computing the regression slopes in panel a across all pathways, we found that sugar specialist strains tended to have more genes in sugar catabolic pathways,
whereas acid specialist strains tended to have more genes in acid catabolic pathways. Gray symbols correspond to regression with a correct p > 0.05. c) Using the total
abundance of genes in sugar and acid degradation pathways, we developed a linear model that predicted sugar-acid preference with high accuracy (R2 = 0.73), even within
orders (except Vibrionales, see inset, which shows − log10 p for the linear regressions within each order). d) We estimated metabolic preferences for strains outside of our
experimental study from published trait databases and contrasted these estimates with SAP prediction for species-matched reference genomes, revealing a highly significant
correlation between them. Error bars represent standard deviations in panel a and standard error of the mean in c and e.

Genotype-phenotype mapping

What are the genomic underpinnings of the measured pheno-
types? To solve this structure-function question and under-
stand what aspects of the phenotypes are predictable from the
genome, we connected our measured phenotype data with the
annotated draft genomes. First, we identified complete sub-
strate degradation pathways (see Methods) to predict whether
a given species would be able to grow on the respective
substrate. Surprisingly, we found the predictability on an
individual species-substrate level to be at chance level (SI
Fig S9); by any measure, growth of an individual species on
a given carbon substrate cannot be predicted accurately us-
ing current state-of-the-art annotation and metabolic model
creation pipelines.

While the ability to consume a specific substrate can-
not be predicted from genomic information (at least not with
current state-of-the-art tools), we did observe a correlation
between the overall metabolic strategy (i.e., SAP) and the
number of Carbohydrate-Active Enzymes (SI Fig. S10). Im-
portantly, we observed this trend even within orders (ex-
cept Vibrionales), indicating a biological signal beyond pure
taxonomy. This observation also explains the “phenotypic
outliers” in Fig 1d: flavobacteria with an acid preference
(genus Tenacibaculum) have fewer than average CAZymes,
whereas pseudomonads preferring sugars (genus Saccha-
rophagus) have more CAZymes than expected for that clade;
these genera thus occupy fundamentally different niches than
the typical representative from that order in our strains. These
findings led us to hypothesize that overall metabolic prefer-
ences may be predictable, even if specific growth phenotypes
are not.

Consistent with the increased number of CAZymes, we
found that sugar specialists tended to have more genes in
sugar degradation pathways, and conversely for acid special-
ists. As seen in the examples of the galactose (sugar) and
propionate (acid) degradation pathways (Fig 2a) and more
generally in Fig. 2b, we found that the relative abundance of
genes in sugar and acid catabolism pathways was, on aver-
age, positively and negatively correlated with SAP (Fig 2b),

respectively.

Two processes contribute to the evolution of these path-
ways alongside the metabolic preferences. Firstly, gaps in
the central part of the pathway get filled and auxiliary func-
tions are added, i.e., the number of unique reactions in a given
pathway increases (pathway completeness). For instance, in
the galactose degradation pathway (SI Fig. S12), in addition
to a complete chain of enzymes converting β-galactose into
glucose-6-phosphate, genomes with a high degree of pathway
completeness have genes converting other substrates, such as
galactitol or lactose, into β-galactose. Secondly, evolution
may select for an increase in the copy number of ortholo-
gous enzymes performing a given reaction in the pathway
(SI Fig. S11). These "copies" could either be bona fide du-
plications that simply increase gene dosage, or different vari-
ants that are likely to operate optimally under different envi-
ronmental conditions. By comparing orthologs between and
within genomes, we found support for the latter hypothesis,
as orthologs were often more similar to genes in distantly re-
lated taxa (e.g. different phyla) than to other "copies" in the
same genome. For example, the KEGG ortholog K01785,
converting β-galactose to α-galactose as part of the galactose
degradation pathway (SI Fig. S12), was present in up to 6
“copies” in a strain closely related to Zobellia galactanivo-
rans. However, some of the gene "copies" clustered closely
with genes derived from α- and γ-proteobacteria. This pat-
tern was general, with the similarities of ortholog copies
within the same organism and between organisms being sta-
tistically indistinguishable.

The correlations of pathways abundances with
metabolic preferences allow us to predict phenotypes with
high accuracy. We developed a generalized, 2-variable,
linear model (modified to yield predictions between -1 and
1, see Methods) to predict SAP based on the total relative
abundance of genes in sugar and acid degradation path-
ways, respectively. This model achieves remarkably high
predictive power (average R2=0.73 (95% CI [0.66, 0.79])
for 1000 out-of-sample predictions, Fig 2c) and importantly,
correctly predicts SAP even within taxonomic orders (Fig 2c
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inset) – thus, the model goes beyond simple correlations of
phenotypes with taxonomy. Supplementary to this simple,
yet surprisingly powerful model, a more sophisticated model
based on the relative abundances of all 46 KEGG pathways
in central metabolism achieves even higher predictive power
(R2=0.82) and can be used where this additional power is
required.

Our simple model can be used predict metabolic strate-
gies in a wide range of bacteria, including those out-
side of our experimental screen. To show this, we es-
timated metabolic strategies from a database of bacterial
traits (15). We counted the number of sugars S and acids
A that each species was reported to grow on, and esti-
mate the SAP for each species as SAP ≈ (S − A)/(S +
A). Then, we matched species names with genomes in the
proGenomes database (16), annotated the corresponding ref-
erence genomes, and predicted their SAP using our simple
model. The result of this procedure was a highly signifi-
cant (ρ = 0.55, p = 10−87) correlation between predicted and
estimated SAP for about 1100 species (Fig. 2d), including
species from two phyla (Firmicutes and Actinobacteria) for
which we did not screen a single representative (SI Fig. S13).
Thus, by simply quantifying the relative abundances of sugar
and acid catabolic pathways, we are able to predict metabolic
preferences across a wide range of bacteria.

Connecting metabolic strategies with GC
content
GC content is associated with differences in amino acid us-
age (17), which in turn translate to differences in the relative
demand of carbon (C) and nitrogen (N): low GC organisms
code for more C rich amino acids, like tyrosine and pheny-
lalanine, while high GC organisms code for more amino acids
with relatively higher N content, like glycine and arginine.
As a consequence, adaptation under carbon or nitrogen limi-
tation can bias GC content evolution (18). Accordingly, C:N
supply along the oceans depth profile has been shown to cor-
relate strongly with the average GC content of the microor-
ganisms that live in it, such that high N supply favors high
GC organisms and vice versa (19).

The idea that C:N supply could determine GC content
led us to ask whether GC content could be related to the
preference for sugars or acids. Sugars are rich in carbon but
contain nitrogen only in rare cases (such as amino sugars in
chitin). Conversely, many organic acids, especially amino
acids, contain nitrogen, and those that do not (e.g., TCA cy-
cle intermediates) have a lower carbon density than sugars.
Therefore, we hypothesize that the preference for sugars or
acids as defined here, should be correlated with the GC con-
tent, such that sugar specialists have a low GC and acid spe-
cialists high GC.

In agreement with this prediction, we found a highly sig-
nificant correlation (ρ = −0.48, p = 8.7 × 10−12) between
sugar-acid preferences and genomic GC content in our ex-
periments, such that species with low SAP (i.e., acid special-
ists) have an average GC of 60% whereas high SAP species
(sugar specialists) have an average GC around 40% (Fig. 3b).

Notably, this correlation was much stronger than the correla-
tion with other basic characteristics of the genomes, such as
the number of coding regions (p = 0.2). In contrast to our
previous analyses of pathway abundances as a function of
SAP, there was no correlation between SAP and GC within
orders (SI Fig. S14), possibly because GC content evolves
very slowly and is thus relatively conserved below the order
level.

To assess whether the correlation between GC content
and metabolic preferences holds more generally, we ana-
lyzed reference genomes from the proGenomes collection
(11,826 unique species, 80% of which came from four large
phyla (Proteobacteria, Firmicutes, Actinobacteria, and Bac-
teroidetes) and computed the relative abundance of central
metabolic pathways. As an example, consider the fructose
and mannose metabolism and the pyruvate metabolism path-
ways, which decreased/increased in relative abundance as
a function of GC content, respectively (Fig. 3c). Extract-
ing the linear slopes for each pathway, all of which were
highly significant, we arrived at a similar picture as Fig. 2b,
where sugar pathways tended to decrease and acid pathways
tended to increase in abundance as a function of GC content
(Fig. 3d). Consistently with this result, we predicted SAP for
all reference genomes in proGenomes and found a highly sig-
nificant correlation between predicted metabolic preference
and GC content, i.e., acid specialists generally have higher
GC content than sugar specialists (Fig. 3e). To our knowl-
edge, this is the first description of this very general trend
across a large number of genomes, sampled across the tree of
bacterial life.

Finally, if the connection between SAP and GC content
holds in the environment, we would expect natural micro-
bial communities assembled on sugar substrates to display a
lower community-average GC content than communities en-
riched on acids, and vice versa. To test this, we analyzed
16S we analyzed data from an enrichment experiment based
on 8 soil inocula grown with serial passaging across 24 dif-
ferent carbon sources (20) (Fig. 3f). We used the database
SkewDB (21) to estimate the genomic GC for each taxon in
the communities and computed the abundance-weighted av-
erage community GC content. In agreement with our predic-
tion, sugar-enriched communities had a significantly lower
average GC content than acid-enriched communities (Fig 3e,
TTest p < 10−5).

Discussion
By characterizing the growth of diverse marine bacteria
across many substrates, we have uncovered the preference for
sugars and acids as the primary axis of metabolic strategies
among marine heterotrophic bacteria (as well as heterotrophs
from soil, SI Fig. S15) and identified genomic correlates that
allow us to quantitatively predict these preferences.

We propose that this dichotomy of sugars and acids is
rooted in the structure of central metabolism, i.e., the major
pathways of glycolysis/gluconeogenesis and the citric acid
cycle, and various short pathways that shuttle amino acids,
organic acids, and simple sugars into these two main path-
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Fig. 3. a) Description of a possible mechanism for selection for GC content in different environments: since GC content biases the nutrient requirements of the proteome,
evolution carbon or nitrogen limitation can drive GC content evolution. b) In our experiment, GC content was highly correlated with sugar-acid preference. c) Example for the
correlation of pathway abundance with GC content in more than 11,000 diverse reference genomes, including many phyla outside of our experimental screen. The relative
abundance of genes in pyruvate metabolism increases with GC content, whereas the abundance of the fructose and mannose metabolism pathway decreases with GC.
d) Measuring the regression slopes for all sugar/acid metabolic pathways, sugar/acid pathways tended to become less/more abundant with genomic GC. e) Predicting the
SAP using our trained models (using either total abundance of sugar/acid genes or the individual abundances across all sugar/acid metabolic pathways) reveals a highly
significant correlation between GC content and predicted SAP. f) Analyzing communities enriched on sugars and acids, we estimated the average community GC content,
which tended to be lower for sugars than acids, in agreement with the prediction that sugar/acid specialists should have low/high GC content.

ways. Recent research has indicated that biochemical con-
straints (e.g., the accumulation of counteracting enzymes and
the resulting futile cycling) in central metabolism precludes
the existence of species that grow fast on both glycolytic
(e.g., glucose) and gluconeogenic (e.g., succinate) substrates,
while at the same time being able to switch rapidly between
both types of substrates (22, 23). Thus, we propose that
species may "choose" to have a preferred direction of running
their central metabolism (either glycolytic or gluconeogenic),
and that this preference may be hardcoded in the genome and
locks in their global metabolic strategy. Alternatively, gener-
alists with no obvious preference for acids or sugars emerge,
which may be metabolically agile but may have to pay for
their metabolic capabilities by requiring high maintenance
energy (22).

Our systematic exploration of metabolic strategies and
their genomic correlates revealed that while coarse-grained
descriptions of metabolic strategies are predictable, individ-
ual phenotypes are (currently) not. We argue that this lack
of predictability is at least not entirely due to technical lim-
itations such as incomplete annotation databases, but is an
expression of the evolutionary processes at work on differ-
ent time scales: the ability to degrade specific substrates can
vary rapidly (on the level of species or even subspecies) be-
cause it can be switched on (e.g., through horizontal trans-
fer of a CAZyme) or off (e.g., through gene loss or changes
in regulation) very easily, even on time scales of laboratory

evolution (24–26). Overall metabolic strategies evolve more
slowly (perhaps at the level of genera or families) because
they rely on the expansion of whole pathways, which may
allow an organism to run those pathways efficiently under
various environmental conditions (SI Fig. S12).

On long evolutionary timescales (at or above the level
of orders), slow adaptation of genomic GC content may opti-
mize whole taxonomic clades to the nutrient availabilities in
that clade’s typical ecological niche. Thus, metabolic strate-
gies that are well-adapted to the nutrient requirements of the
proteome may be one of many potential factors shaping GC
content evolution, including biases in mutations and their re-
pair (27–29), DNA stability (30), and GC-biased gene con-
version (gBGC) (31).

The dataset we have presented here constitutes, to our
knowledge, the largest and most detailed metabolic char-
acterization of bacteria from the same ecosystem to date.
Datasets such as this will serve as a resource for future stud-
ies of bacterial physiology and its genomic underpinnings.
By developing better genotype-phenotype mappings, we will
be able to assign function to taxa, better understand metabolic
interactions in microbial communities, and develop more de-
tailed ecosystem models.

Methods
Media. All experiments were performed in liquid culture using ei-
ther rich (MB 2216, Difco) or minimal media (MBL, see SI Table 2)

Gralka et al. | My Template bioRχiv | 5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2022. ; https://doi.org/10.1101/2022.08.04.502823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.04.502823
http://creativecommons.org/licenses/by-nc-nd/4.0/


with a substrate concentration of 30mM carbon, except for polysac-
charide cultures. For a full list of substrates, see SI Table 2.

Strains. For a full list of strains including their taxonomy and iso-
lation details, see SI Table 1. Apart from a few exception (notably,
the marine model bacterium Ruegeria pomeroyi DSS-3 (32) and the
Vibrio strains YB2 (33), 1A06, 12B01, and 13B01), all strains were
isolated from enrichments of coastal seawater on various polysac-
charides. Strains were originally double-streaked at the time of iso-
lation, and double-streaked again before being arrayed in two 96
well plates and stored in 5% DMSO at -80degC.

Phenotyping experiments. Before the main phenotyping exper-
iment, the strain library was thawed and inoculated 1:10 into rich
media. After 3 days, cultures were diluted 1:10 into minimal media
without carbon for 2h, and then diluted 1:15 into prefilled 384 well
plates (5µl into 75µl) containing minimal media with a single car-
bon source, in duplicate. Plates were sealed with MicroAmp Optical
Adhesive Film (Applied Biosystems) to prevent contamination.

Bacterial growth was estimated by optical density at 600nm,
which was measured at least once a day (twice a day initially) on a
Tecan Spark plate reader with a stacker module (Tecan Trading AG,
Switzerland). Plates were stored at room temperature in the dark in
between readings.

After the experiment, growth curves were extracted and, if
they crossed a minimum threshold of optical density, fitted using
a custom fitting algorithm, based on the logistic growth model, that
automatically estimated growth rate (the maximal exponential rate),
lag time (the time before maximum growth is reached), yield (the
maximal optical density reached), and death rate (the rate of decay
of optical density after the maximum was reached). The R2 of the
nonlinear fitting procedure was on average 0.9931 (CI 95% [0.9767,
0.9996]).

Replicability. Two prior experiments were performed similarly (v1,
v2) except with small alteration to inoculation protocol, carbon
sources, and strains. For all three experiments, we computed
the SAP, which were well-correlated across experiments (see SI
Fig S7); in the main text, we report the average SAP per strain
across all experiments that contained that strain. See Supplemen-
tary Note 1 for details.

Comparison with Kehe et al.. Kehe et al. (34) grew 20 soil bac-
teria on 33 carbon substrates for 72 hours and reported the growth
yield for each condition normalized by the maximal yield per strain.
We extracted the yields from their Supplementary Figure S2 using
automated image analysis (replotted as SI Fig. S15a) and performed
principal component analysis on the resulting growth vectors, which
showed clear clustering of the strains by taxonomy and concentra-
tion of average loadings of sugars and acids along the first principal
component.

Genome analysis & Bioinformatics. Genomes for novel isolates
were sequenced in multiple batches at the BioMicroCenter at MIT
and at MiGS. We used SPAdes (35) with standard parameters to as-
semble draft genomes and checked genome completeness and con-
tamination by CheckM (36). In cases, where first draft genomes
were contaminated, we reisolated and sequenced until contamina-
tion was below 5%. In the final library, two strains remain with
contamination >5%; those are excluded from all analyses.

Gene calling was performed by prodigal (37), genome anno-
tation by eggnog v4.5 (mmseqs mode) (38) and CAZyme annota-
tion by dbCANv2 (diamond mode) (39). Taxonomy assignment and

creation of phylogenetic tree was performed by the standard work-
flow in GTDB-tk (40), followed by renaming of taxa falling into the
NCBI clades Vibrionales and Alteromonadales (both assigned En-
terobacterales by GTDB) to use the more familiar names for those
clades.

Genome-scale metabolic models were created with
CarveMe (41) using standard parameters. Growth on various
carbon sources was simulated using cobrapy, using custom media
emulating the mineral content of the experimental media (42).

Annotations and raw genome sequences were analyzed using
Mathematica 12 (43) and R 4.2.0 (44). Trees were plotted using
ggtree (45). Multiple-sequence alignment of amino-acid sequences
for duplicated orthologs was performed using MEGA (46).

KEGG pathway analysis. The KEGG ontology was used to define
genes in different metabolic pathways. We analyzed the presence of
KEGG pathways in three ways, for each strain and pathway:

• Pathway completeness: number of KOs with at least one
copy present

• Degree of duplication: of those genes that are present, the
total number of KOs that are present in more than one copy

• Pathway coverage: total number of KOs in the pathway,
divided by the total genome size (number of KOs)

All correlations between pathway abundance measurements
and SAP/GC content were corrected for multiple testing using the
Bonferroni correction.

A complete list of KEGG orthologs and pathways considered
for the analysis in the main text is given in SI Tables 4 and 5.

Generalized linear model for SAP. To predict the SAP from ge-
nomic information, we developed two models. For the simple model
described in the main text and used in Fig. 2c and d, we computed
the total relative abundance of sugar and acid genes (unique genes
in sugar and acid degradation pathways, see SI Table 5) from the
eggnog annotations for each strain. We then used the two vectors of
relative abundances S⃗ and A⃗ to predict the vector of ⃗SAP as

SAP ∼ tanh
(
sS⃗ + aA⃗

)
,

where the tanh function ensure that the predicted SAP values are
between −1 and +1.

For the more complex model used in Fig. 3e, we used the same
procedure but using the pathway coverage defined above for each of
the 46 pathways given in SI Table 4.

Progenomes. Reference genomes were downloaded from
proGenomes and one genomes chosen randomly for each
species (16). Genomes were annotated with eggnog; genomic GC
content and the number of genes were extracted using custom R
scripts. We computed pathway abundances for all genomes as
described above and then predicted SAP by using those abundances
as inputs into the linear model trained using our measured SAP.

IJSEM trait database. Substrates used for growth for a large num-
ber of strains were obtained from a trait database assembled by Bar-
beran et al. by text mining of articles in the International Journal
of Systematic and Evolutionary Microbiology (15). The probability
of growth for each substrate was measured by the number of entries
within a particular range of genomic GC content that mentioned this
substrate.
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Enrichment cultures. We analyzed relative abundance from en-
richment cultures performed by Estrela et al. of 8 soil and leaf sam-
ples in 24 individual carbon sources (4 replicates each) (20). Briefly,
16S rRNA amplicons were sequenced and analyzed by dada2. We
estimated genomic GC content for each ASV by matching taxon
names with the SkewDB database contained genomic information
on thousands of genomes. When exact species names did not match,
we proceeded to the family level and finally order level, averaging
over all representatives at that taxonomic level. Finally, we com-
puted the abundance-weighted mean GC content per community ac-
counting for the standard deviation of GC estimates.

Data availability. Genomes and annotations are available under
doi:10.17632/xfh8t8568g.1.
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Supplementary Figure S2. Number of carbon sources supporting growth per strain.
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Supplementary Figure S3. Fraction of all strains that were able to use a given substrate as sole carbon and energy source.
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Supplementary Figure S4. Lack of strong correlation between number of carbon sources that support growth, growth rate, and yield.
a) Average yield (blue dots) and rate (red squares) binned by the number of carbon sources that supported growth. More generalist
species (more carbon sources consumed) achieve slightly higher average yield, but the effect size is likely not practically relevant. b)
For each condition (substrates × strain, we plot the growth rate and yield, which are very slightly positively correlated (p = 2 × 10−6,
R2 = 0.005). c) Linear slopes for the per-strain regression of yield with growth rate; only 3/186 strains exhibited a statistically significant
. The vertical line corresponds to the slope of the regression in panel b.
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Supplementary Figure S5. Detailed loadings of all substrates in the Principal Component Analysis in Fig. 1. a) Averaged loadings of
fine-grained categories of substrates, normalized to unit length. b) Individual loadings per substrate for each principal component (PC).
Note how all acids have negative loadings on PC1 but all but one organic acids switch sign on PC2 relative to amino acids.
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Supplementary Figure S7. Reproducibility between experiments. a) Correlation coefficients between all three experiments (V1, V2,
V3; V3 is the experiment primarily discussed in the main text), correlating the ability to grow on a given substrate across all strains. b)
Scatter plots of the SAP measured for each strain between all three replicate experiments.
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Supplementary Figure S8. Phenotype distance, defined as the cosine distance between consumption vectors, as a function of
genomic distance between pairs of strains, where the genomic distance is the GTDB-tk distance (a) or the Bray-Curtis distance between
gene content (panel b, based on copy numbers of KEGG KO) or module content (panel c, based on abundance of KEGG modules).
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Supplementary Figure S9. Comparison between measured and predicted growth on individual substrates. Predicted growth was
derived from FBA simulations of genome-scale metabolic models created using CarveMe using standard parameters (no gapfilling).
This procedure yielded 58% correct predictions (vertical line), which was within the range of correct predictions achieved when the
comparison was performed with shuffled labels (distribution, obtained by shuffling labels 1000 times, each time measuring the propor-
tion of correct predictions).
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Supplementary Figure S10. Number of CAZymes (glycosyl hydrolases, top; polysaccharide lyases, bottom) and their correlation with
sugar-acid preferences (right panels). The insets show − log10 p per order, the negative log10 of the p-value obtained from linear
regressions of CAZyme number with SAP within each order. − log10 p > 2 (vertical line) corresponds to a significant correlation at
the 5% level, Bonferroni correcting for multiple testing. The square symbols in panel b correspond to the squares in Fig. 1d, i.e., the
flavobacteriales and pseudomonadales strains with atypical phenotypes for their taxonomy, which have fewer/more CAZymes than their
close relatively, respectively (see main text).
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Supplementary Figure S11. Three measures of pathway abundance, as defined in the Methods, and their interrelations. a) Predicting
coverage from completeness (linear model) generally yields higher quality fits than predicting coverage from duplication. b) After
correcting for completeness, duplication tends to explain more of the residuals than completeness does after correcting for duplication.
c) Neither duplication nor coverage of any individual pathway correlated very strongly with SAP, and whether duplication or coverage
of a given pathway was more predictive of SAP depended on the pathway.
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Supplementary Figure S12. Illustrating the concept of functional duplication on the example of the galactose degradation pathway
(KEGG pathway ko00052). Shown is the central part of the pathway that converts lactose and other oligosaccharides first to β-D-
galactose, which is transformed through multiple steps to α-D-glucose-6-phosphate, which then enters glycolysis. For some reaction,
we found multiple orthologs in the same strains (e.g., up to 6 orthologs of K01785 (galM, aldose 1-epimerase, EC:5.1.3.3). These
ortholog are not pure duplication, as illustrated by the tree on the right. The tree is based on a multiple-sequence alignment of
all sequences annotated K01785 across all strains. We have highlighted the 6 copies found in the Zobellia strains A2M03, which are
spread around the tree and often grouped with orthologs found in distantly related species. In fact, across all highly duplicated orthologs
(maximum number of orthologs per strains at least 6), the pairwise distance (computed from the tree using the cophenetic.phylo function
in the ape library in R), was about equally likely to be greater between orthologs in the same strain relative to orthologs in different
strains, as it was to be smaller. Thus, "duplicated" orthologs in a strain likely represent functional variants of different evolutionary origin.
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Supplementary Figure S13. Phylogenetic tree based on GTDB-tk of species contained in the IJSEM trait database (15) as well as
progenomes (by species name) (16). Note that two phyla, Actinobacteriota and Firmicutes, are not at all represented in our strain
library.
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Supplementary Figure S14. Genomic GC content and consequences for nutrient requirements. a) GC content is relatively conserved
at the order level across our strain library. b) GC content predicts the carbon and nitrogen requirements per coded amino acid. c) Same
data as Fig. 3a without binning: GC content is correlated with genomic GC content across the whole set of strains, but not within orders.
d) Because of the correlation of GC content with both nutrient requirements and SAP, SAP is positively/negative correlated with the
number of carbon/nitrogen atoms per coded amino acid.
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Supplementary Figure S15. Re-analysis of data from Kehe et al. (34). The heatmap corresponds to SI Fig. S2 in Ref. S15, but with
rows and column sorted by cosine similarity. Principal component analysis of this matrix shows the clustering of the two taxonomic
orders and their alignment with the average loadings of acids and sugars.
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Supplementary Figure S16. Principal component analysis (PCA) of genome content reproduced taxonomic structure. a) PCA based
on relative abundances of individual genes (see SI Table 3 for a list of the 2505 genes in 46 pathways used for the analysis) in central
metabolism showed clear clusters for the different orders. b) PCA based on relative abundances of the same 46 pathways, with the
average loadings of sugar and acid pathways.
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Supplementary Note 1: Biological replicate experiments
Following pilot experiments, we performed variants of the experiments three times, with slight alterations to strains, substrates, and procedure.
The final experiment 3 is described in the main methods. Substrates that did not support growth in any species in experiment 3 are indicated
in SI Table 1. Additional substrates tested in experiments 1 and 2 are listed below.

Experiment 1. Experiment 1 was performed before draft sequences were obtained for all strains and therefore contained contaminated strains
which were subsequently removed from the analysis and replaced with either reisolated or new strains; the final set of strains is given in SI
Table 2.

The following substrates were used in experiment 1 but were not included in the final experiment because they yielded no or very little
growth: sodium formate, L-lyxose, ethylene glycol, maleic acid, L-sorbose, acetaldehyde, norvaline, and PABA (para-aminobenzoic acid).

The inoculation procedure for experiment 1 was as follows: after 4 days of growth in MB at room temperature, strains were transferred
into fresh media in 384 well plates using a metal pinning tool (VP 384, V&P Scientific) that was cleaned between plates by first washing in
water, then pure ethanol. The pinning tool was then flame sterilized and cooled for 1 minutes.

Experiment 2. Experiment 2 was performed similarly to experiment 1, except that disposable pinning tools (VP 248, V&P Scientific) were
used for each plate and immediately discarded.

The following substrates were used in experiment 2 but were not included in the final experiment because they yielded no or very little
growth: sodium glyoxylate, L-lyxose, ethylene glycol, norvaline, and PEP.
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