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Abstract: ATAC-seq is a powerful tool for measuring the landscape structure of a chromosome. 1

scATAC-seq is a recently updated version of ATAC-seq performed in a single cell. The problem of 2

scATAC-seq is data sparsity and most of the genomic sites are inaccessible. Here, tensor decomposi- 3

tion (TD) was used to fill in missing values. In this study, TD was applied to massive scATAC-seq 4

data and generated averaging within 200 bp intervals, and this number can be as high as 13,627,618. 5

Currently, no other methods can deal with large sparse matrices. The proposed method not only could 6

provide UMAP embedding coincident with tissue specificity but also could select genes associated 7

with various biological enrichment terms and transcription factor targeting. This suggests that TD is 8

a useful tool to process large sparse matrix generated from scATAC-seq. 9

Keywords: scATAC-seq; tensor decomposition; large sparse matrices; single-cell applications 10

1. Introduction 11

ATAC-seq [1] is a powerful tool to profile chromatin accessibility. In particular, 12

scATAC-seq [2] can profile the accessibility of chromatin across the genome within in- 13

dividual cells. Although scRNA-seq is an effective tool, data need additional information 14

to interpret its results. scATAC-seq data can be analyzed in two ways: 1) the scATAC-seq 15

data coupled to scRNA-seq data [3], or 2) tracing for potential factors that bind to identified 16

open chromatin regions from scATAC-seq data. This prevents us from understanding 17

scATAC-seq as it is. 18

For example, Satpathy et al. [4] tried to find cell type-specific cis- and trans-regulatory 19

elements, mapping of disease-associated enhancer activity, and reconstruction of trajectories 20

of differentiation from progenitors to diverse and rare immune cell types. Giansanti et 21

al. [5] used a predefined set of genomic regions to interpret the scATAC-seq. Buenrostro 22

et al. [6] also tried to find an association with transfactors and cis elements. Although 23

these are only a few examples, it is obvious that they need massive external information to 24

interpret the scATAC-seq results. 25

In this paper, we applied tensor decomposition (TD) [7] to the scATAC-seq data set and 26

found that the low-dimensional embedding obtained by UMAP applied to that obtained 27

by TD is highly tissue-specific. This can open numerous avenues of research to make use of 28

scATAC-seq data without additional biological information. 29

Although there are some studies that applied TD to scRNA-seq [8,9], to our knowledge, 30

there are no studies that applied TD to scATAC-seq. 31

2. Materials and Methods 32

Figure 1 shows the flow chart of the analysis. 33

2.1. scATAC-seq profiles 34

The scATAC-seq data set we analyzed in this study is obtained from Gene Expression 35

Omnibus (GEO) [10], the ID is GSE167050. We used eight samples of GSM5091379 to 36

GSM5091386 from four mice tissues (CTX, MGE, CGE and LGE) with two replicates each 37
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Figure 1. Flow chart of the analysis

(Table 1). Each of the eight samples is associated with three files, barcodes, features, and 38

matrices, which correspond to single cells, genomic coordinates, and scATAC-seq values, 39

respectively.

Table 1. Number of single cells included in the files analyzed in this study. CTX: Cortex, MGE: Medial
ganglionic eminence, CGE: Caudal ganglionic eminence, LGE: Lateral ganglionic eminence

Tissues CTX1 MGE1 CGE1 LGE1 CTX2 MGE2 CGE2 LGE2 total
number of single cells (Mk) 4108 6845 4013 6577 4946 3465 4530 4769 39253

40

2.2. Pre-processing scATAC-seq profile 41

The values stored in the matrix files are averaged over 200 bp intervals, which are 42

supposed to correspond to the length of one wrap of chromatin and linker. Since this results 43

in a sparse matrix, it is stored in a sparse matrix format having columns and rows equivalent 44

to the number of single cells and total number of intervals, which is up to 13,627,618. This 45

value is approximately equal to 12.5 million, which is calculated by dividing the total 46

number of mice genome bps by the interval length, i.e. 2.5 billion by 200. 47
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Figure 2. UMAP embedding of eight samples analyzed in this study (see Table 1)
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Figure 3. Upper: scatter plot of the number of single cells, NI J , 1 ≤ I, J ≤ 10, in one of 10× 10 regions,
SI J . Lower: Spearman’s correlation coefficients of NI J between eight samples.
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Figure 4. Hierarchical clustering by UPGMA of eight samples (Table 1) using coordinates obtained
by UMAP. Distance is represented by negatively signed correlation coefficients in Fig. 3

2.3. Application of singular value decomposition 48

To obtain a low-dimensional embedding of the individual samples k that will be
reformatted as a tensor, we applied the singular value decomposition (SVD) to matrix,
xk

ij ∈ RN×Mk (N = 13,627,618 and Mks are in Table 1) as

xk
ij =

Mk

∑
ℓ=1

λℓuk
ℓiv

k
ℓj (1)

where uk
ℓi ∈ RMk×N and vk

ℓj ∈ RMk×Mk are orthogonal singular value matrices. Then we

get concatenated matrix Uℓi ∈ R8L×N of uℓi where L < min(Mk) is the used number of
principal components. SVD is applied to Uℓi and we get

Uℓi =
8L

∑
ℓ′=1

λℓ′u
′
ℓ′iv

′
ℓ′ℓ (2)

where u′
ℓ′i ∈ R8L×N and vℓ′ℓ ∈ R8L×L are orthogonal singular value matrices. 49

Low-dimensional embedding can be obtained as

Vk
ℓ′ j =

N

∑
i=1

u′
ℓ′ix

k
ij ∈ R8L×Mk . (3)
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and we get concatenated matrix Vℓ′ j ∈ R8L×∑8
k=1 Mk 50

2.4. Sparse matrix format and singular value decomposition 51

Storing xk
ij and Uℓi in a sparse matrix format allows us to deal with a matrix that has a 52

dimension N greater than 10 million. It also enables us to apply SVD to these using the 53

irlba package [11] in R [12], which is adapted for large sparse matrices. 54

2.5. UMAP 55

UMAP was applied to concatenated matrix, Vℓ′ j, ℓ′ ≤ L, by umap [13] function in R 56

with the option umap.defaults$n_neighbors <-30 (other options remain as default). 57

2.6. Estimation of distribution of single cells in UMAP 58

To quantify the distribution of single cells in UMAP, we divided the entire region 59

into 10 × 10 regions. The region SI J , 1 ≤ I, J ≤ 10 is {(x, y)|(I − 1)∆x ≤ x ≤ I∆x, (J − 60

1)∆y ≤ y ≤ J∆y} where ∆x =
max(xj)−min(xj)

10 and ∆y =
max(yj)−min(yj)

10 and xj and yj are 61

coordinates of jth cell in UMAP embedding. The number of single cells, NI J , in the region 62

SI J is equal to the number of (xj, yj) ∈ SI J . 63

2.7. UPGMA 64

UPGMA was performed with hclust function in R using option method=‘average’. 65

Negative signed correlation coefficient of NI J between pairs of samples were used as 66

distance. 67

2.8. Gene selection 68

As described in the previous study [7], we tried to select genes using u′
2i. P-values are

attributed to the region i using

Pi = Pχ2

[
>

(
u′

2i
σ2

)2
]

(4)

with excluding is with u′
2i = 0. Pχ2 [> x] is the cumulative χ2 distribution where the 69

argument is larger than x and σ2 is the standard deviation. P-values are corrected by BH 70

criterion [7] and is associated with adjusted P-values less than 0.01 are selected. 71

2.9. Genome region annotation 72

The selected genomic regions are evaluated by annotate_regions function in annotatr 73

package [14] within Biocoundiuctor [15]. 74

3. Results 75

After obtaining concatenated matrix Vℓ′ j as described in the Methods section, UMAP 76

was applied to Vℓ′ j ∈ RL×∑8
k=1 Mk , i.e., the first L dimensions of Vℓ′ j (in this case, L = 77

10). Figure 2 shows the two-dimensional embedding of eight samples in Table 1. As 78

observed in the investigated coordinates, the distribution of single cells in eight samples 79

fully overlapped with each other. Nevertheless, the distribution of single cells seems to 80

be somewhat tissue-specific. To quantify the similarity of distributions, we divided the 81

whole region into 10× 10 regions and counted the number of cells in the individual regions. 82

Figure 3 shows the scatter plots and correlation coefficients of NI J between eight samples. 83

The correlation coefficients between similar tissues were generally high. Whereas in few 84

cases, correlation coefficients between different tissues were also high. To see if correlation 85

coefficients were useful for classifying samples, we applied UPGMA (unweighted pair 86

group method with arithmetic mean) to negatively signed correlation coefficients (Fig. 4). 87

It is obvious that similar tissues were paired in the clustering. In addition to this, two CTX 88
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samples were clustered together, apart from six ganglionic eminence samples (LGE, CGE, 89

and MGE); which is also biologically reasonable. 90

Next, we tried to select genes using the results of proposed method and biologically 91

evaluate selected genes. We used u′
2i among the ten u′

ℓ′i computed to select genes using 92

eq. (4), since the second component was often more associated with biological features 93

in the previous studies [7]. As a result, we selected 16,469 regions. This is only 0.1 % of 94

all 13,627,618 regions. We have biologically evaluated selected regions as in Fig. 5 and

genes_intergenicgenes_3UTRsenhancers_fantom
cpg_shelves
cpg_inter

genes_cds

cpg_islands

genes_5UTRs

lncrna_gencode

cpg_shores
genes_firstexons

genes_intronexonboundaries

genes_exons

genes_exonintronboundaries

genes_promoters

genes_1to5kb

genes_introns

Figure 5. Pie chart of annotations by annotatr [14] about 16,469 regions selected by the proposed
method.

95

Table 2 using annotatr [14]. It is obvious that selected regions are associated with numerous 96

functional sites in spite of the very small number of selected regions compared with human 97

genome (less than 0.01 % as mentioned above). 98

To further evaluate selected regions, we uploaded associated 1,147 gene symbols 99

identified by annotatr to Enrichr [16] (the list of the 1,147 gene symbols is available as 100

supplementary material). Then we have found many enrichment as follows (All of full 101

versions of the following tables that list only top ten are available as supplementary 102

materials). At first, transcription factors (TFs) are associated with selected genes from 103

various aspects. Table 3 lists the top 10 TFs in “ENCODE and ChEA consensus TFs from 104

ChIP-X” of Enrichr. As can be seen, P-values are very small, thus the results are very 105

significant. Since scATAC-seq is supposed to detect open chromatin to which TFs bind, this 106

is reasonable. Table 4 also lists yet another enrichment of TFs. Not only P-values are as 107
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Table 2. Details of number of annotations in pie chart shown in Fig. 5

genes_intergenic genes_3UTRs
909 1097

enhancers_fantom cpg_shelves
1388 1772

cpg_inter genes_cds
2250 4925

cpg_islands genes_5UTRs
5555 5565

lncrna_gencode cpg_shores
8806 9054

genes_firstexons genes_intronexonboundaries
10218 13052

genes_exons genes_exonintronboundaries
15803 16799

genes_promoters genes_1to5kb
22589 29173

genes_introns
39852

Table 3. Top 10 TF in “ENCODE and ChEA Consensus TFs from ChIP-X” of Enrichr

Term Overlap P-value Adjusted P-value
PBX3 ENCODE 238/1269 3.42 × 10−64 3.55 × 10−62

IRF3 ENCODE 158/663 3.81 × 10−56 1.98 × 10−54

NFYB ENCODE 429/3715 3.78 × 10−54 1.31 × 10−52

NFYA ENCODE 312/2250 7.23 × 10−54 1.88 × 10−52

FOS ENCODE 148/637 5.10 × 10−51 1.06 × 10−49

SP1 ENCODE 153/707 1.53 × 10−48 2.65 × 10−47

SP2 ENCODE 168/994 2.36 × 10−38 3.51 × 10−37

CREB1 CHEA 205/1444 1.74 × 10−35 2.26 × 10−34

RFX5 ENCODE 104/559 3.46 × 10−27 4.00 × 10−26

UBTF ENCODE 183/1631 2.20 × 10−19 2.28 × 10−18

Table 4. Top 10 TF in “ENCODE TF ChIP-seq 2015” of Enrichr

Term Overlap P-value Adjusted P-value
IRF3 HepG2 hg19 162/755 6.11 × 10−51 4.98 × 10−48

IRF3 HeLa-S3 hg19 264/1809 6.24 × 10−49 2.55 × 10−46

FOS GM12878 hg19 210/1244 2.51 × 10−48 6.83 × 10−46

SP1 K562 hg19 203/1249 5.26 × 10−44 1.07 × 10−41

CHD2 MEL cell line mm9 255/1826 1.52 × 10−43 2.10 × 10−41

FOS K562 hg19 270/2000 1.54 × 10−43 2.10 × 10−41

SP2 H1-hESC hg19 185/1184 1.64 × 10−37 1.91 × 10−35

SP1 HCT116 hg19 219/1577 1.45 × 10−36 1.47 × 10−34

SP2 HepG2 hg19 211/1507 1.11 × 10−35 1.01 × 10−33

FOS HeLa-S3 hg19 146/860 1.85 × 10−33 1.51 × 10−31

significant as Table 3, but also some TFs, IRF3, SP1, and SP2, are commonly selected. Table 108

5 also lists additional TF enrichment. In contrast to Tables 3 and 4 that are based upon 109

experiments, Table 5 is sequence (motif) based. It still has highly significant enrichment of 110

TFs although significance steadily decreases. The results listed in Tables 3, 4, and 5 coincide 111

with the fact that the scATAC-seq detects open chromatin to which TFs bind. 112

Next we consider tissue specificity. Even if selected genes are associated with TF target 113

genes, if it is not related with tissues where HTS was performed, it is not trustable. Table 6 114
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Table 5. Top 10 TF in “TRANSFAC and JASPAR PWMs” of Enrichr

Term Overlap P-value Adjusted P-value
SP1 (mouse) 242/2360 1.56 × 10−20 4.84 × 10−18

PCBP1 (human) 142/1360 1.26 × 10−12 1.96 × 10−10

SP1 (human) 141/1406 2.95 × 10−11 3.05 × 10−9

TEAD2 (mouse) 154/1591 4.74 × 10−11 3.67 × 10−9

TEAD4 (human) 127/1354 1.93 × 10−8 1.20 × 10−6

TCFAP2A (human) 126/1367 6.01 × 10−8 2.92 × 10−6

SMAD4 (mouse) 141/1580 6.60 × 10−8 2.92 × 10−6

SP3 (human) 121/1332 2.47 × 10−7 8.98 × 10−6

EGR1 (mouse) 141/1617 2.61 × 10−7 8.98 × 10−6

E2F6 (human) 114/1358 2.26 × 10−5 6.99 × 10−4

Table 6. Top 10 experiments in “Allen Brain Atlas 10x scRNA 2021” of Enrichr

Term Overlap P-value Adjusted P-value
Mouse 359 OPC down 96/841 6.78 × 10−11 4.30 × 10−8

Human Endo L2-5 NOSTRIN SRGN down 83/703 2.76 × 10−10 8.75 × 10−8

Mouse 372 SMC down 62/466 5.24 × 10−10 8.77 × 10−8

Mouse 375 VLMC down 68/535 5.52 × 10−10 8.77 × 10−8

Mouse 357 Astro down 77/651 1.15 × 10−9 1.46 × 10−7

Human Astro L1-6 FGFR3 PLCG1 down 95/880 1.67 × 10−9 1.77 × 10−7

Mouse 356 Astro down 73/617 3.10 × 10−9 2.67 × 10−7

Human VLMC L1-5 PDGFRA COLEC12 down 83/742 3.68 × 10−9 2.67 × 10−7

Mouse 374 VLMC down 64/513 3.78 × 10−9 2.67 × 10−7

Mouse 377 Micro down 50/365 9.54 × 10−9 6.06 × 10−7

lists top 10 experiments in “Allen Brain Atlas 10x scRNA 2021” of Enrichr. It is obvious 115

that selected genes are also associated with tissue specificity. Interesting, Allen Brain Atlas, 116

which does not consider single cell is not coincident with the selected genes (not shown 117

here). This suggests that we have to take into account whether it is taken from bulk or 118

single cells when we consider tissue specificity. 119

Table 7. Top 10 cells in “CellMarker Augmented 2021” of Enrichr

Term Overlap P-value Adjusted P-value
Radial Glial cell:Undefined 6/11 1.26 × 10−5 8.04 × 10−3

Neural Stem cell:Brain 8/25 5.14 × 10−5 1.46 × 10−2

Neural Stem cell:Undefined 12/58 9.15 × 10−5 1.46 × 10−2

Purkinje cell:Brain 16/96 1.06 × 10−4 1.46 × 10−2

Natural Killer T (NKT) cell:Fetal Kidney 312/4543 1.41 × 10−4 1.46 × 10−2

Mesoderm cell:Undefined 16/99 1.55 × 10−4 1.46 × 10−2

Astrocyte:Embryonic Prefrontal Cortex 37/342 1.60 × 10−4 1.46 × 10−2

Cancer Stem cell:Brain 8/30 2.15 × 10−4 1.71 × 10−2

Pancreatic Polypeptide cell:Pancreas 6/18 3.59 × 10−4 2.53 × 10−2

Neural Progenitor cell:Embryonic Prefrontal Cortex 21/166 5.48 × 10−4 2.74 × 10−2

Although Table 7 also lists the associated brain tissue specificity, some other tissue 120

specificity is also associated. Table 8 is full of transcription activities and Table 9 is full of 121

DNA binding. It is also coincident with that scATAC-seq detects open chromatin. 122

All of these analyses suggest that the selected genes are biologically reasonable. 123

4. Discussion 124

Although TD can generate the feature that can cluster samples properly (Fig. 4), if 125

other methods cannot do this, the proposed method is more efficient and unique in terms 126
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Table 8. Top 10 terms in “GO Biological Process 2021” of Enrichr

Term Overlap P-value Adjusted P-value
negative regulation of transcription, DNA-templated (GO:0045892) 117/948 1.90 × 10−15 6.51 × 10−12

positive regulation of transcription, DNA-templated (GO:0045893) 123/1183 6.35 × 10−11 1.09 × 10−7

negative regulation of transcription by RNA polymerase II (GO:0000122) 82/684 1.68 × 10−10 1.92 × 10−7

negative regulation of cellular macromolecule biosynthetic process (GO:2000113) 69/547 5.72 × 10−10 4.90 × 10−7

positive regulation of transcription by RNA polymerase II (GO:0045944) 97/908 1.93 × 10−9 1.33 × 10−6

negative regulation of nucleic acid-templated transcription (GO:1903507) 59/464 7.67 × 10−9 4.38 × 10−6

regulation of transcription by RNA polymerase II (GO:0006357) 188/2206 1.04 × 10−8 5.08 × 10−6

positive regulation of nucleic acid-templated transcription (GO:1903508) 62/511 1.92 × 10−8 8.22 × 10−6

regulation of transcription, DNA-templated (GO:0006355) 184/2244 2.44 × 10−7 9.30 × 10−5

negative regulation of neuron differentiation (GO:0045665) 10/24 3.47 × 10−7 1.19 × 10−4

Table 9. Top 10 terms in “GO Molecular Function 2021” of Enrichr

Term Overlap P-value Adjusted P-value
sequence-specific double-stranded DNA binding (GO:1990837) 81/712 2.63 × 10−9 1.61 × 10−6

sequence-specific DNA binding (GO:0043565) 78/707 2.02 × 10−8 6.17 × 10−6

double-stranded DNA binding (GO:0003690) 71/651 1.39 × 10−7 2.83 × 10−5

DNA-binding transcription factor binding (GO:0140297) 29/208 8.46 × 10−6 1.29 × 10−3

transcription regulatory region nucleic acid binding (GO:0001067) 29/212 1.23 × 10−5 1.50 × 10−3

DNA binding (GO:0003677) 74/811 5.08 × 10−5 5.18 × 10−3

acetylation-dependent protein binding (GO:0140033) 7/21 1.14 × 10−4 8.75 × 10−3

lysine-acetylated histone binding (GO:0070577) 7/21 .14 × 10−4 8.75 × 10−3

dihydropyrimidinase activity (GO:0004157) 4/6 1.47 × 10−4 1.00 × 10−2

mRNA binding (GO:0003729) 30/263 2.62 × 10−4 1.61 × 10−2

of tensor representation. Currently, there are very few tools to process scATAC-seq data 127

with only matrix data. For example, although the extended data in Fig. 1 of the past 128

study [17] summarizes ten de facto standard methods that can deal with a scATAC-seq data 129

set, no methods can process the scATAC-seq data set with only matrix data. We also tried 130

some methods [18–21] not included in the above list. No tools could efficiently process 131

xk
ij efficiently, it is possible due to the large N. Thus, the proposed method is the only one 132

that can deal with a data set of this size. One of the reasons why the proposed method can 133

handle this large N is that it stores the data set in a sparse matrix format. SVD performs 134

using the tool adapted for the sparse matrix format, and we do not need to process dense 135

format. Thus, the proposed method can deal with huge data sets. Of course, it is not a only 136

reason because one of the most popular tools among these tools, signac, that can accept 137

sparse matrix format cannot process this large data set as a whole at all (because of not 138

enough memory) as mentioned above, either. 139

To further confirm the inferiority of signac to our method, we applied signac to 140

two pairs of samples, that is, CTX1 and CTX2, as well as CTX1 and MGE1, since signac 141

was unable to process the eight samples at once as mentioned above, although signac 142

could accept a sparse matrix format in contrast to other methods specific to the scATAC 143

sequence. Figure 6 shows the results when two signac-implemented strategies, merge and 144

integration, are applied to the two pairs of samples, respectively. It is obvious that signac 145

did not recognize that CTX1 and CTX2 are the same tissue, since CTX1 and CTX2 are not 146

overlapped at all and are completely separated. In actual, the separation between CTX1 147

and CTX1 is similar to that between CTX1 and MGE1 that are not the same tissues. In 148

addition to this, in contrast to CTX1 and CTX2 in Fig. 2 where they look similar, those in Fig. 149

6 do not look similar at all, either. Thus, ours are better than signac in recognizing identities 150

of the sames tissues as well as distinction of the different tissues only using scATAC-seq 151

data set. 152
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Figure 6. Upper: UMAP representation of signac applied to the pair of CTX1 and CTX2
(ATAC1(orange) and ATAC5(cyan) correspond to CTX1 and CTX2, respectively). Lower: UMAP
representation of signac applied to the pair of CTX1 and MGE1 (ATAC1(orange) and ATAC2(cyan)
correspond to CTX1 and MGE1, respectively).

5. Conclusions 153

In this paper, we applied TD to an scATAC-seq data set and the obtained embedding 154

can be used for UMAP, following which the embedded material obtained by UMAP can 155

differentiate tissues from which the scATAC sequence was retrieved. TD can deal with 156

large sparse data sets generated by approximately 200 bp intervals, as these can be stored 157

in a sparse matrix format. The large size of these data sets cannot be processed by any other 158

methods. The proposed method is the only method that can deal with high-resolution 159

native scATAC-seq data sets. 160
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